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Abstract— Differential linear repetitive processes are char-
acterized by a series of sweeps, or passes, through a set of
dynamics defined over a finite interval or duration with inter-
action between successive passes. They are distinct from other
classes of 2D continuous-discrete linear systems due to the
fact that information propagation in one of the two separate
directions only occurs over a finite duration. Moreover, this is
an intrinsic feature of the underlying dynamics as opposed to
an assumption introduced for analysis purposes. This paper
shows that the structure of the initial conditions at the start
of each new pass of the process is critical to its stability
properties.

I. INTRODUCTION

The essential unique characteristic of a repetitive (termed
multipass in the early literature) process can be illustrated
by considering machining operations where the material or
workpiece involved is processed by a sequence of sweeps,
termed passes, of the processing tool. Assume that the pass
length α (i.e. the duration of a pass of the processing tool),
which is finite by definition, has a constant value for each
pass. Then in a repetitive process the output vector, or
pass profile, yk(t), 0 ≤ t ≤ α, (t being the independent
spatial or temporal variable) produced on pass k acts as a
forcing function on the next pass and hence contributes to
the dynamics of the new pass profile yk+1(t), 0 ≤ t ≤ α,
k ≥ 0.

Industrial examples (see, for example, [2], [3]) include
long-wall coal cutting and metal rolling operations. Also
problem areas exist where adopting a repetitive process
setting for analysis has clear advantages over alternatives.
This is especially true for classes of iterative learning
control schemes (see, for example, [1]) and of iterative so-
lution algorithms for classes of dynamic nonlinear optimal
control problems based on the maximum principle (see, for
example, [6]). In the iterative learning control application,
the stability theory for so-called differential and discrete
linear repetitive processes is the basic starting point for a
rigorous stability/convergence theory for a powerful class
of such algorithms. For the optimal control algorithm, use
of the repetitive process setting for analysis has (uniquely)
led to the development of numerically reliable solution
algorithms.

The basic unique control problem for repetitive processes
is that the output sequence of pass profiles generated can
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contain oscillations that increase in amplitude in the pass-
to-pass direction (i.e. in the k-direction in the notation for
variables used here). Early approaches to stability analysis
and controller design for (linear single-input single-output)
repetitive processes and, in particular, long-wall coal cutting
were based on first converting the system into an equivalent
infinite-length single-pass process [3]. This, for example,
resulted in a scalar differential/algebraic system to which
standard scalar inverse-Nyquist stability criteria were then
applied. In general, however, it was soon established that
this approach to analysis (and controller design) would,
except in a few very restrictive special cases, lead to
incorrect conclusions [7]. The basic reason for this is that
such an approach effectively neglects their finite pass length
repeatable nature together with the effects of resetting the
initial conditions before the start of each new pass.

This last fact has led to the development of a rigorous sta-
bility theory for linear repetitive processes. This theory [7]
is based on an abstract model of the underlying dynamics
in a Banach space setting which includes all processes with
linear dynamics and a constant pass length as special cases.
The theory shows that two distinct concepts of stability
for these processes exist, termed asymptotic stability and
stability along the pass respectively, where the former is a
necessary condition for the latter.

In this paper, we consider the application of this the-
ory to a very important sub-class known as differential
linear repetitive processes. This sub-class is characterized
by the fact that information propagation along the pass
(t-direction) is described by a linear matrix differential
equation and that from pass to pass (k-direction) by a
linear matrix difference equation. Hence they can also
be considered as a sub-class of so-called 2D differential-
discrete linear systems which have received some attention
in the literature, see, for example, [4]. Unlike such systems,
however, they do have practical applications and the main
point of this paper is to show that the structure of the
initial conditions on each new pass is critical to the stability
properties exhibited by a given example.

II. CASE 1 — SIMPLE BOUNDARY CONDITIONS

The state space model of a differential linear repetitive
process has the following form over 0 ≤ t ≤ α, k ≥ 0

ẋk+1(t) = Axk+1(t) + Buk+1(t) + B0yk(t)
yk+1(t) = Cxk+1(t) + Duk+1(t) + D0yk(t) (1)

Here on pass k, xk(t) is the n× 1 state vector, yk(t) is the
m × 1 pass profile vector and uk(t) is the l × 1 vector of
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control inputs.
To complete the process description, it is necessary to

specify the boundary conditions i.e. the state initial vector
on each pass and the initial pass profile (i.e. on pass 0).
In this section we consider the simplest possible choice for
these, i.e.

xk+1(0) = dk+1, k ≥ 0
y0(t) = f(t) (2)

where dk+1 is n×1 vector with known constant entries and
f(t) is an m×1 vector whose entries are known functions of
t over 0 ≤ t ≤ α. Note here that xk+1(0) is independent of
the previous pass dynamics and hence this set of boundary
conditions is termed ‘simple’.

The stability theory for linear constant pass length repet-
itive processes is based on the following abstract model
of the underlying dynamics where Eα is a suitably chosen
Banach space with norm ||.|| and Wα is a linear subspace
of Eα

yk+1 = Lα yk + bk+1, k ≥ 0 (3)

In this model yk ∈ Eα is the pass profile on pass k, bk+1 ∈
Wα, and Lα is a bounded linear operator mapping Eα into
itself. The term Lαyk represents the contribution from pass
k to pass k+1 and bk+1 represents known initial conditions,
disturbances and control input effects.

The linear repetitive process (3) is said to be asymp-
totically stable [7] if ∃ a real scalar δ > 0 such that,
given any initial profile y0 and any disturbance sequence
{bk}k≥1 ∈ Wα bounded in norm (i.e. ||bk|| ≤ c1 for some
constant c1 ≥ 0 and ∀k ≥ 1), the output sequence generated
by the perturbed process

yk+1 = (Lα + γ)yk + bk+1, k ≥ 0 (4)

is bounded in norm whenever ||γ|| ≤ δ.
This definition is easily shown to be equivalent to the

requirement that ∃ finite real scalars Mα > 0 and λα ∈
(0, 1) such that

||Lk
α|| ≤ Mαλk

α, k ≥ 0 (5)

(where ||.|| is also used to denote the induced operator
norm). Necessary and sufficient conditions for this last
condition are that

r(Lα) < 1 (6)

where r(·) denotes the spectral radius of its argument.
In the case of processes described by (1) and (2), it can

be shown that asymptotic stability holds if, and only if,
r(D0) < 1. Also if this property holds and the control
input sequence applied {uk}k converges strongly to u∞ as
k → ∞ then the resulting output pass profile sequence
{yk}k converges strongly to y∞ — the so–called limit
profile defined (with D = 0 for ease of presentation) over
0 ≤ t ≤ α by

ẋ∞(t) = (A + B0(Im − D0)−1C)x∞(t) + Bu∞(t)
y∞(t) = (Im − D0)−1Cx∞(t)
x∞(0) = d∞ (7)

where d∞ is the strong limit of the pass sequence {dk}k≥1.
In effect, this result states that if a process is asymp-

totically stable then its repetitive dynamics can, after a
‘sufficiently large’ number of passes, be replaced by those
of a 1D discrete linear system. Note, however, that this
property does not guarantee that the limit profile is stable in
the 1D differential linear systems sense, i.e. all eigenvalues
of the matrix (A+B0(Im−D0)−1C) have strictly negative
real parts — a point which is easily illustrated by the
example given below. Hence it is possible to converge in the
pass-to-pass direction to a limit profile which is ‘unstable
along the pass’.

The reason why asymptotic stability does not guarantee
a limit profile which is ‘stable along the pass’ is due to the
finite pass length. In particular, asymptotic stability is easily
shown to be bounded-input bounded-output (BIBO) stability
with respect to the finite and fixed pass length. Also in cases
where this feature is not acceptable, the stronger concept
of stability along the pass must be used. In effect, for the
abstract model (4), this requires that (5) holds uniformly
with respect to the pass length α. One of several equivalent
statements of this is the requirement that ∃ finite real scalars
M∞ > 0 and λ∞ ∈ (0, 1) independent of α which satisfy

||Lk
α|| ≤ M∞λk

∞, ∀ α > 0, ∀ k ≥ 0 (8)

and it is clear that asymptotic stability is a necessary
condition for stability along the pass.

Several equivalent sets of necessary and sufficient con-
ditions for stability along the pass of processes described
by (1) and (2) are known [7] but here it is the following set
which will be required.

Theorem 1: Suppose that the pair {A,B0} is controllable
and the pair {C, A} is observable. Then a differential linear
repetitive process described by (1) and (2) is stable along
the pass if, and only if, r(D0) < 1, r(A) < 1 and all
eigenvalues of the transfer function matrix

G(s) = C(sIn − A)−1B0 + D0 (9)

have modulus strictly less than unity ∀ s = ıω, ω ≥ 0.
The first condition here (i.e. r(D0) < 1) is asymptotic

stability and the second (i.e. r(A) < 1) can be interpreted
physically as the requirement that the first pass profile is
uniformly bounded with respect to the pass length. Note,
however, that these conditions are not strong enough for
stability along the pass as the following simple example
demonstrates.

Consider the single-input single-output case when A =
−1, B = 0, B0 = 1 + β, C = 1, D = 0, D0. Then in this
case the limit profile (7) is unstable as 1D linear system
if β > 0. Also G(s) = 1+β

s+1 and hence stability along the
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pass requires that β < 0. In physical terms, this means
that each frequency component of the initial profile must
be attenuated from pass-to-pass.

The conditions for stability along the pass in this case
are easy to test using, in effect, well established 1D linear
systems stability tests. In the next section, we will show
that this situation is not true if the pass initial vector part of
the boundary conditions become a function of the previous
pass profile.

III. CASE 2 — DYNAMIC BOUNDARY CONDITIONS

The boundary conditions of the previous section are the
simplest possible and cases exist where they are simply
not strong enough to adequately model the underlying
process dynamics (even for initial simulation and/or control
analysis). Instead, it is necessary to consider a state initial
vector sequence which is an explicit function of the previous
pass profile. One possible form is

xk+1(0) = dk+1 +
N∑

j=1

Kjyk(tj) (10)

where dk+1 is as in (2), 0 ≤ t1 < t2 < · · · < tN ≤ α, are N
sample points along the previous pass, and Kj , 1 ≤ j ≤ N,
is an n × m matrix with constant entries. One possible
physical application of such boundary conditions is in the
coal cutting example where at the end of each pass the
cutting machine is hauled back in reverse at high speed to
the start and then the machine plus supporting infrastructure
is ‘snaked forward’ by hydraulic rams such that it now rests
on the previous pass profile. The weight of the machine (up
to 5 tonnes) means that the initial conditions at the start
of the new pass will definitely not be independent of the
previous pass profile. Moreover, as discussed further below,
suitable choice of the parameters in (10) leads to links
with other classes of linear systems. This set of boundary
conditions is termed ‘dynamic’ (to reflect their pass-to-pass
dependence).

It is routine to show that processes described by (1)
and (10) can be written as a special case of the abstract
model (and hence the stability theory can be applied). In
the case of asymptotic stability, we have the following result
where for the remainder of this paper we assume without
loss of generality that D0 = 0 in (1).

Theorem 2: Suppose that the pair {A, B0} is controllable
and D0 = 0 for simplicity of presentation. Then a differ-
ential linear repetitive process described by (1) and (10) is
asymptotically stable if, and only if, r(Lα) < 1 where

r(Lα) = max{0, sup{|z| : z �= 0 & det(zIn−M(z)) = 0}}

M(z) :=
N∑

j=1

KjCeÂ(z)tj

and
Â(z) = A + z−1B0C, z �= 0

Proof: (See also [5]) Here is required to compute
r(Lα) and no general rules exist for this task, other than
the obvious necessity to compute the spectral values of Lα

and hence their moduli. Note also that severe difficulties
could arise if the space Eα and/or the operator Lα have a
complex structure. As shown below, however, this task is
possible for the processes considered in this (and the next)
section where the approach to the spectral calculations used
is to consider the equation

(zI − Lα)y = η (11)

and construct necessary and sufficient conditions on the
complex scalar z to ensure that (i) a solution exists ∀ η ∈
Eα, and (ii) that this solution is bounded in the sense that
||y|| ≤ K0||η|| for some real scalar K0 > 0 and ∀ η ∈ Eα.

To evaluate r(Lα) we examine the problem of solv-
ing (11) for y ∈ Eα when η ∈ Eα. In particular, we
construct conditions on z such that the map η 	→ y is
defined and bounded in Eα. Note also that if f = Lαy
then zy − f = η ⇒ y = z−1(f + η) and the relationship
between f and η is described by

ẋ(t) = Ax(t) + B0y(t)

f(t) = Cx(t), x(0) =
N∑

j=1

Kjy(tj)

Using y = z−1(f + η) we now have that

x(t) = eÂ(z)t

⎧⎨
⎩

N∑
j=1

z−1Kj [Cx(tj) + η(tj)]

+
∫ t

0

eÂ(z)(t−τ)z−1B0η(τ) dτ

}
(12)

The existence of a solution y to (zI − Lα)y = η is equiv-
alent to the consistency of (12) for x(t) at t1, t2, · · · , tN .
(Note: Matching y(t) at t1, t2, · · · , tN ensures that zy−f =
η between these points.) Also a solution exists if, and only
if,

zx(th) −
N∑

j=1

eÂ(z)thKjCx(tj) =
N∑

j=1

eÂ(z)thKjη(tj)

+
∫ th

0

eÂ(z)(th−τ)B0η(τ) dτ (13)

Now let gh(z) denote the right-hand side of this last
equation and define

g(z) :=
[

gT
1 (z) · · · gT

N (z)
]T

Also let M̂(z) denote the nN × nN matrix whose block
entries are n × n matrices M̂hj(z) where

M̂hj(z) = eÂ(z)thKjC

Hence (13) can be written as[
zInN − M̂(z)

]
Xs = g(z) (14)
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where Xs =
[

xT (t1) · · · xT (tN )
]T

.
It is now routine to show that a sufficient condition for the

existence of a unique solution Xs of (14) is that det(zInN −
M̂(z)) �= 0. In this situation, z /∈ σ(Lα). Also it is easy
to show that this non-singularity condition is necessary by
using the controllability assumption to construct an f such
that there is no solution to

[
zInN − M̂(z)

]
Xs = g(z), and

hence no solution to (zI − Lα)y = f for that choice of f.
Finally, write

M̂(z) =

⎡
⎢⎣

eÂ(z)t1

...
eÂ(z)tN

⎤
⎥⎦ [

K1C · · · KNC
]

and note that det(zInN − M̂(z)) = zn(N−1)det(zIn −
M(z)). The result is now proved by noting that

σ(Lα) = {z : z �= 0, det(zIn − M(z)) = 0} ∪ {0}

Further simplification (reduction in dimension) is possi-
ble in some special cases, e.g. the following.

Corollary 1: Consider a differential linear repetitive pro-
cess described by (1) and (10) in the special case when
Kj = KTj , 1 ≤ j ≤ N, where K is an n×m matrix with
constant entries and Tj , 1 ≤ j ≤ N, are m × m matrices
with constant entries. Then in this case asymptotic stability
holds if, and only if, all solutions of

det

⎛
⎝zIm −

N∑
j=1

TjCeÂ(z)tjK

⎞
⎠ = 0

have modulus strictly less than unity.
In general, Theorem 2 shows that the property of asymp-

totic stability for differential linear repetitive processes is
critically dependent on the structure of xk+1(0), k ≥ 0.
Suppose also that this sequence is incorrectly modelled
as in (2) instead of as a special case of (10). Then the
process under consideration could well be interpreted as
asymptotically stable when in actual fact it is asymptotically
unstable (and hence unstable along the pass).

The limit profile in the case when the condition in
Theorem 2 holds is given by

ẋ∞(t) = (A + B0C)x∞(t) + Bu∞(t)
y∞(t) = Cx∞(t)
x∞(0) = (In − M(1))−1d∞

where the matrix inverse involved exists by asymptotic
stability.

Consider now the delay-differential systems in R
n mod-

elled by the state space equations

ẋ(t) = Ax(t) + B0x(t − α) + Bu(t), t ≥ 0
x(t − α) := x0(t), 0 ≤ t ≤ α (15)

If the delay α is interpreted as a pass length then it is ob-
vious that these systems have certain structural similarities

to the repetitive processes considered here. In particular,
introduce the following change of variables over 0 ≤ t ≤
α, k ≥ 0,

uk+1(t) = u(kα + t)
xk(t) = x((k − 1)α + t)

and define the pass profile as yk = xk, k ≥ 0. Then the
defining equation (15) can be written as a differential unit
memory linear repetitive process with state initial vector
defined by xk+1(0) = xk(α), k ≥ 0, i.e. as a special case
of (10).

The conditions for asymptotic stability follow as a special
case of Theorem 2, i.e. when N = 1 and t1 = α. In which
case we have asymptotic stability if, and only if, all roots
of

det
(
zIn − e(A+z−1B0)α

)
= 0 (16)

have modulus strictly less than unity. Also set z = esα.
Then (16) is equivalent to the requirement that

det
(
sIn − A − B0e−sα

) �= 0, Re(s) ≥ 0 (17)

i.e. the repetitive process concept of asymptotic stability
coincides with the normal condition for stability of this class
of delay differential systems. For an in-depth analysis of this
particular case see [2].

Turning now to stability along the pass, we require the
following result [7] for the abstract model of (3).

Theorem 3: A linear repetitive process described by (3)
is stable along the pass if, and only if,

(a)
r∞ := sup

α>0
r(Lα) < 1 (18)

and
(b)

M0 := sup
α>0

sup
|z|≥λ

||(zI − Lα)−1|| < ∞ (19)

for some real number λ ∈ (r∞, 1).
There are two possible cases which need to be considered

for processes described by (1) and . The first of these is that
as α → ∞ we keep N and tj fixed and the second is that
as α → ∞ we allow N → ∞ and tj → ∞. Of these,
the first is more generally relevant and the task now is to
examine (11), i.e. the equation (zI − Lα)y = η, in Eα

where α ≥ tN and η ∈ Eα. We require that
(a) ∀ α ≥ tN , r(Lα) < 1, which, due to the

assumptions on N and tj holds if, and only if,
Theorem 2 holds, and

(b) ∃λ ∈ (r∞, 1) such that the map f 	→ y is defined
and uniformly bounded with respect to α ≥ tN
and |z| ≥ λ.

We now have the following result.
Theorem 4: (See also [5].) Suppose that the pair

{A,B0} is controllable and the pair {C, A} is observable.
Then a differential linear repetitive process described by (1)
and (10) is stable along the pass if, and only if,
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(a) the condition of Theorem 2 holds,
(b) all eigenvalues of the matrix A have strictly neg-

ative real parts, and
(c)

sup
ω≥0

r(G(ıω)) < 1 (20)

where
G(s) = C(sIn − A)−1B0

Proof: The necessity of (a) follows as r(Lα) ≤
r∞ < 1 requires asymptotic stability on finite intervals.
To prove the necessity of (b) it is necessary to consider
unbounded intervals. Write [0,∞) = [0, α0] ∪ [α0,∞)
with α0 > tN and let f ∈ E∞. Then it can be shown
that (6) implies that y ∈ E∞. Also by the controllability
assumption we can choose η such that x(α0) in (12) for
this case is arbitrary and the resultant response (i.e. y(t)
generated by the solution of (12)) on [α0,∞) is then given
by y(t) = CeÂ(z)(t−α0)x(α0). The uniform boundedness
of the response, and the observability assumption, now
establish that Â(z) is Hurwitz for all choices of complex z
in the range {z : |z| ≥ λ}. The necessity of (b) now follows
from this fact, the multivariable Nyquist criterion, and the
matrix identity

det(sIn − Â(z)) =
det(sIn − A)det(zIm − G(s))

zm

To prove sufficiency, first note that condition (a) and the
fact that the spectrum of Lα is independent of α ensures
that r∞ < 1 for any α > tN . Now consider the equation
(zI − Lα)y = η. Condition (a) then ensures that the
map (zI − Lα)−1 : η 	→ y in Lm

2 [0, α0] ∩ L∞[0, α0]
is uniformly bounded on any interval [0, α0] with α0 >
tN . Condition (b) shows that the corresponding matrix
Â(z) is bounded and stable for all complex z in the set
{z : |z| ≥ λ} where λ is any point in the non-empty
set (supω≥0 r(G1(ıω)), 1). Hence for these values of z

∃M̃ > 0 and ε > 0 such that ||eÂ(z)t|| ≤ M̃e−εt. The map
η 	→ y in Lm

2 [α0, α) ∩ L∞[α0, α) is hence also uniformly
bounded over the infinite range α ≥ α0 and {z : |z| ≥ λ}.
Condition (b) of Theorem 3 follows by combining these
results.

Suppose now that as α → ∞, N → ∞ and tj → ∞.
These are termed ‘drifting’ boundary conditions and the
following analysis is possible.

Lemma 1: Suppose that the pair {A,B0} is controllable
and consider a differential linear repetitive process de-
scribed by (1) and (10) in the case when as α → ∞,
N → ∞ and tj → ∞. Then (a) of Theorem 3 for stability
along the pass holds in this case if, and only if, r∞ < 1
where

r∞ = sup
N≥1

max{0, sup{|z| : z �= 0 &|zI − M(z)| = 0}}
(21)

To examine (b) of Theorem 3, let η denote the projection
of η∞ ∈ E∞ into Eα via the natural projection η(t) =
η∞(t), t ∈ [0, α]. Consider again the equation zy − f =

η, f = Lαy, in Eα but in the case when α ≥ tN and
η ∈ Eα. Then for λ ∈ (r∞, 1) it follows that a solution
of this equation exists on any interval [0, α] and can be
computed from

y(t) = z−1[f(t) + η(t)]
ẋ(t) = Ax(t) + B0y(t)
f(t) = Cx(t)

x(0) =
Nα∑
j=1

Kjy(tj) (22)

where Nα is the largest integer such that tj ≤ α. Also
for (b) of Theorem 3 to hold we require that (i) solutions
of (22) exist ∀α, and (ii) under the usual controllability and
observability conditions, the solution y for any ηα ∈ Eα

should satisfy ||y|| ≤ M̃ ||fα|| for some constant M̃ > 0
which is independent of α.

The first of these conditions is equivalent to Lemma 1
and for the second assume, without loss of generality, that
||η∞|| = 1. Then this condition is just the requirement
that the family {||ηα||}α≥0 is uniformly bounded. Suppose
also that the pair {C,A} is observable. Then it follows
immediately that the conditions of Theorem 1 are necessary
for stability along the pass in this case.

Return now to the equation zy − f = η. Then for |z| ≥
λ > r∞, λ ∈ (r∞, 1), we have that ||y|| ≤ r−1

∞ [1 + ||f ||] .
Hence it is sufficient to prove the uniform boundedness of
f on [0,∞) or, since f(t) = Cx(t) (the pair {C, A} is
assumed to be observable), that x is uniformly bounded on
[0,∞).

Now return to (13) for this case and note that

Nα∑
j=1

Kj [Cx(tj) + η(tj)] =
[

K1C · · · KNαC
]

×

⎡
⎢⎣

x(t1)
...

x(tNα)

⎤
⎥⎦ +

Nα∑
j=1

Kjη(tj)

=
[

K1C · · · KNαC
]
H−1g(z) +

Nα∑
j=1

Kjη(tj)

= (zI − M̂(z))−1
[

K1C · · · KNαC
]
g(z)

+
Nα∑
j=1

Kjη(tj)

= (zI − M̂(z))−1

⎧⎨
⎩

Nα∑
h=1

Nα∑
j=1

KhCeÂ(z)thKjη(tj)

+
Nα∑
h=1

KhC

∫ th

0

eÂ(z)(th−τ)B0η(τ) dτ

}

+
Nα∑
j=1

Kjη(tj)
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where

H = zI −

⎡
⎢⎣

eÂ(z)(t1)

...
eÂ(z)(tNα )

⎤
⎥⎦ [

K1C · · · KNα

]

and (zI − M̂(z))−1 exists for |z| ≥ λ, λ ∈ (r∞, 1).
Return now to condition (b) of Theorem 3 in this case

and suppose that r∞ < 1 and the conditions of Theorem 4
hold. Then these ensure that ∃ real scalars Ma > 0, and
ε > 0, such that

||eÂ(z)t|| ≤ Mae−εt, ∀t ∈ [0,∞), ∀ |z| ≥ λ, λ ∈ (r∞, 1)

Suppose also that h := infj≥1 (tj+1 − tj) > 0, and that
∞∑

j=1

||Kj || < ∞ (23)

and hence

M̂∞(z) =
∞∑

j=1

KjCeÂ(z)tj

is uniformly absolutely convergent, i.e. (zI − M̂(z))−1 has
a uniform bound (in norm) for |z| ≥ λ, λ ∈ (r∞, 1).

We are now in a position to establish the following result.
Theorem 5: Suppose that the pair {A,B0} is control-

lable, the pair {C,A} is observable, and the conditions of
Theorem 4 hold. Suppose also that h = infj≥1 (tj+1−tj) >
0. Then a differential linear repetitive process described
by (1) and (10) and as α → ∞, N → ∞, and tj → ∞.
Then stability along the pass holds if (21) and (23) hold.

Proof: Given the assumptions and the analysis above,
it remains to prove that the convolution terms in (12) applied
to this case have uniform bounds. This follows immediately
on noting that

t 	→
∫ t

0

eÂ(z)(t−τ)z−1B0η(τ) dτ

is uniformly bounded for t ∈ [0,∞), |z| ≥ λ, λ ∈ (r∞, 1),

z 	→
∞∑

h=1

KhC

∫ t

0

eÂ(z)(th−τ)B0η(τ) dτ

is absolutely convergent ∀ |z| ≥ λ, λ ∈ (r∞, 1), and
uniformly bounded in this range, and

z 	→
Nα∑
h=1

Nα∑
j=1

KhCeÂ(z)thKjη(tj)

=
Nα∑
j=1

[
Nα∑
h=1

KhCeÂ(z)th

]
Kjη(tj)

=
Nα∑
j=1

M̂(z)Kjη(tj)

which is absolutely convergent and bounded in Nα for |z| ≥
λ, λ ∈ (r∞, 1), since M̂(z) has this property and ||η∞|| =
1.

IV. CONCLUSIONS

In this paper the stability analysis of an applicable class
of linear repetitive processes has been considered. The
major focus has been on the influence of the structure
of the boundary conditions on stability of so-called dif-
ferential linear repetitive processes which have immediate
use in terms of both the development of systems theory
and its applications. By considering three possible types
(in increasing order of complexity) it can be concluded
that failure to adequately model these conditions and, in
particular, the state initial conditions on each pass can lead
to a completely incorrect analysis of these processes.
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