
A Comparison of Sequential Function Chart and
Object-Modelling PLC Programming

Vivek Hajarnavis and Ken Young

Abstract—This paper analyses the use of two control software
design methodologies for developing a solution to control an
automated manufacturing cell. Two separate approaches,
Sequential Function Charts and an object-modelling tool
called Enterprise Controls are compared and contrasted with
a view to establishing the effectiveness of each approach.
These experiences are illustrated by comparing software to
operate a simple clamp. Enterprise Controls provided a
simpler solution, which reduced both the time taken for
implementation of process changes as well as the need for
these to be carried out by trained personnel. The experience
showed that the object modelling approach provides benefits
to manufacturers by aiding manufacturing flexibility, though
this comes with a processor overhead. Concerns remain as to
whether or not Enterprise Controls will be accepted by
practicing control engineers in industry. Further work to
quantify these benefits is planned.

I. INTRODUCTION

Automated production lines in the car industry rely
extensively on computer control in order to achieve the
required manufacturing function. Typically, a computer
called a programmable logic controller (PLC) is used to
implement the algorithm required to control this machinery.
Usually, this algorithm is digital logic and has historically
been achieved using a programming language called ladder
logic. Ladder logic is a graphical language, and a method
of expressing the “if…then” construct used extensively in
structured programming methods in mainstream
programming of information systems. The background
behind this language is based on its users, who were
historically plant electricians with responsibility for
maintaining the hard-wired control systems that had been
in existence prior to the advent of the PLC.

The advantage of well-structured ladder logic is that
programs are easy to debug. A maintenance technician can
look at a ladder program and immediately identify whether
the status of an individual input or output bit is correct.

Consequently, manufacturers in the car industry have been
reluctant to adopt alternative programming techniques.

Manuscript received August 31, 2004, revised February 14, 2005. This
work was supported by the EPSRC and Rockwell Automation.

Vivek Hajarnavis is a Research Engineer at the Warwick
Manufacturing Group, University of Warwick, Coventry, CV4 7AL
England (E-mail: V.Hajarnavis@Warwick.ac.uk)

Ken Young is a Reader at the Warwick Manufacturing Group,
University of Warwick, Coventry, CV4 7AL England (Phone: +44 24
76522764, Fax: +44 24 76573743, E-mail: K.W.Young@Warwick.ac.uk)

In recent years, a desire for standardisation of
programming approaches across PLC’s supplied by
different manufacturers has led to the creation of the
IEC61131-3 standard. This defines five languages – ladder
logic, sequential function charts (SFC), statement list
(STL), function blocks and structured text. SFC was
derived from Grafcet, a graphical language based on a
French national standard and itself an evolution of a Petri-
net. The main advantage of an SFC is that it allows
visualisation of the main states in a system together with all
possible changes in state and the reasons why these
changes could occur [1].

More recently, a desire by manufacturers to offer a wider
range of products has placed greater emphasis on the ability
to modify the machines carrying out the manufacturing
process. This, coupled with the availability of more
powerful processors has opened up the possibility of
alternative programming techniques. Two examples of new
methods of PLC programming are object-oriented software
engineering and automatic generation of code. These new
approaches aim to increase the ease with which a process
can be changed, suggesting that there is scope for
identifying whether a particular logic design methodology
or approach is suitable for use by a manufacturer wishing
to implement quick rapid process changes. This paper
compares and contrasts the experience of using one of
these new tools with SFC, one of the languages defined by
the IEC61131-3 standard. This draws on the experiences
gained from programming a sequence of operations within
a test cell at the University of Warwick. Differences are
illustrated further by describing the code operating a simple
clamping operation.

II. LOGIC DESIGN

Previous work on logic design methodologies has
centred on trying to estimate the time and effort required to
create the software needed to operate a piece of equipment
correctly, comparing ladder logic with academic tools such
as Petri-nets and modular finite state machines. Tests have
suggested that programs written with implementations of
Petri-nets are easier to modify than those that are based on
structured ladder code [2]. However, these results are based
on implementations of Petri-nets using traditional ladder

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

ThA09.2

2034

programming and may not necessarily be appropriate for
use in industry as it would undermine the debugging
methods used by designers at present [3]. This is owing to
the requirement for latching logic, a situation in which
outputs are turned on and off in different locations.
Conversely, ensuring that each output is triggered on a
single rung aids understandability of the code.

An alternative approach is the implementation using a
SFC, as this possesses many of the characteristics of a Petri
net [4]. In view of the origin of the SFC language, this
result is not surprising, though the experiences suggest that
there is a difference in performance, suitability and ease of
use of the five programming languages defined in the IEC
61131-3 standard.

The development of software design techniques for use
in PLC’s has taken place independently of software
engineering techniques in the commercial environment
because of two main differences. Firstly, software for
industrial use requires good quality diagnostics in order to
maintain production in the event of a plant fault. Secondly,
there is often a need to allow users to modify plant
functionality quickly and accurately. All the same,
technology transfer from one environment to the other may
help overcome some of the difficulties encountered by PLC
programmers [5].

One area in which traditional software engineering
techniques are becoming more visible is in the area of
formalisation of programming tools. This can serve various
purposes, such as verification and validation and suggests
that like traditional industrial programming techniques,
there are various alternative approaches for developing a
solution for the same program using formalised design
techniques [6]. Furthermore, formalisation techniques can
stimulate the development of translation tools, such as
mechanisms to express programs written in statement list in
the Extensible Markup Language (XML) [7]. Given that
formalisation could be done in different ways,
identification of a formalised approach most suitable for
use in the automotive manufacturing environment would be
an interesting exercise.

A new idea which is starting to come into use is the
concept of offline verification of control software, making
use of existing information to generate automatically the
PLC code required to operate a process [8]. As part of this
process, there would be benefits gained from integrating
diagnostic capability into the offline models. Inclusion of
diagnostic capability within the model means that any
system changes lead to a corresponding modification
within the Human Machine Interface (HMI). This ensures
that control code and diagnostic mechanism are
synchronised, eliminating the need for programmers to
look at code for debugging purposes. A move away from
reliance on ladder for error correction could make ladder-
based implementation of Petri-nets or finite state machines
more acceptable, especially if the actual implementation is
hidden from the user.

Offline programming tools also present the opportunity
for adopting an object-oriented approach to developing
control programs with their modular approach allowing re-
use of existing work. There are instances of successful
implementations of object-orientation for industrial control.
One example is an object-oriented front end for a robotic
manufacturing cell, which introduced a level of abstraction
and allowed operators rather than specialists to program
machinery [9]. Another example describes the
implementation of a control system to operate the under-
body welding line at VW Portugal [10]. This work again
refers to a reduction in development time rather than
describing process change time. The programming tool
described in this paper, a commercial application called
Enterprise Controls (EC) makes use of a similar approach
and software structure to that described in these examples.

III. FACT CELL

The FACT (Future Automation Control Technology) cell
(Figure 1) is a test environment for new automation
techniques. The cell is controlled using a number of Allen-
Bradley ControlLogix PLC’s, all of which have network
connections to Ethernet, ControlNet and DeviceNet. These
three networks are used primarily for programming, peer-
to-peer communication between PLC’s and data links to
and from hardware respectively, though some
communication with control hardware does take place over
each network. A separate Pilz PLC provides safety
functions, communicating with remote devices over
SafetyBusP.

Figure 1: FACT Cell

This facility contains three robots and a conveyor
system, on which a tooling pallet assembly is mounted. The
pallet can be moved to a station in front of each robot,
where it is clamped in place using a pneumatically operated
locking pin and a Stäubli quick-fit connector which
provides compressed air, DeviceNet and SafetyBusP
connections to the tooling pallet. The connections allow
twelve clamps used for holding space-frame components

2035

on the pallet to be operated. The cell provides an example
of many of the operations typically used in a Body-in-
White facility in a car factory, and allows different
sequences of operations to be programmed and tested.
Similar equipment in each cell, as well as multiple clamps
makes this facility particularly suited for demonstrating
reuse of control code.

IV. COMPARISON OF PROGRAMMING TECHNIQUES

A. Sequential Function Charts
SFC’s consist of step and transition pairs, as can be seen

in Figure 2. Steps are depicted by rectangles and transitions
by horizontal lines. A SFC step corresponds to a place in a
Petri-net, and represents process status. The difference
between a SFC and a Petri-net is the ability to assign a
control function to a SFC step; a Petri-net place only
provides an indication of whether or not a state is active
based on the presence or absence of a token. Petri-net and
SFC transitions are alike in that they represent the
occurrence of events. In this sense, Petri-nets can be seen
as the method by which SFC’s operate rather than being a
programming language in their own right.

The functionality of SFC steps and transitions is
achieved by associating code written in one of the other
IEC61131-3 languages with each step and transition. The
principle is based on carrying out the operation in each step
until such time as the state of the transition changes. Figure
2 also shows that SFC’s can aid the debugging process.
The step highlighted indicates that the program is awaiting
logic in one of the transitions below the active step to
become true.

The software to operate the FACT cell was structured
such that SFC’s provided the overall framework, with small
sections of ladder code used to give the functionality. The
program was designed such that operations associated with
a piece of equipment could be easily identified. This
architecture allows the program to be developed such that
each component can be operated manually from a HMI or
as part of an automatic sequence, consisting of a number of
manual operations called consecutively by the code in the
PLC. This automatic sequence is based on a set of
command words held within the data table of the PLC.

System flexibility was improved by adding an
opportunity for a user to modify the steps in the automatic
sequence from the HMI screen instead of entering numeric
values manually into a PLC data table. This facility was
quite limited and only allowed an operator to select from a
limited, pre-defined set of operations. Any further
modification of the sequence required changes to the SFC
code. Similarly, the inclusion of a new operation required
extensive work to analyse and perform the function
indicated by the operation code. In some cases, it required
the creation of a new SFC.

Commissioning revealed that further work was required
to aid handling of errors and emergency stop situations. In

order to address this, diagnostic features were added to the
SFC to provide feedback to an operator as to the status of
the machinery, and additional step-transition pairs were
added to provide a “bypass” feature. Prior to the inclusion
of this code, there were instances when an operator had to
trigger a transition manually in order to recover from a
fault.

As the program size increased, the length of time taken
to transfer the program from the PC to the PLC also
increased. This added to the time taken to get the plant
operational again after a change.

The overall impression gained of the SFC-based
software was that it provided a neat method of developing
and maintaining a control system but still required a good
understanding of the PLC, hardware and manufacturing
system in order to allow effective modification of the cell.
Potential for re-use of code was very limited and
realistically only proved possible in a parallel branch
dealing with the emergency stop condition. A further
limitation was that the software structure required the
intervention of programmers familiar with the facility and
so it did not prove possible to delegate operation and
maintenance to technical staff.

Figure 2: Sequential Function Chart

B. Enterprise Controls
EC is an application running on a standard PC,

communicating with a ladder program running in an Allen-
Bradley ControlLogix PLC through an OPC server. The PC
application allows a user to create software device
templates containing the functionality required to operate a
piece of equipment. Instances of device templates can be
defined and tied to specific input / output (I/O) points on
the plant. Each device template contains diagnostic
capability and messaging functions to aid fault finding in
use. Configuration of the equipment, physical I/O points
and machine specific code are defined in a master ladder
file. This is the only time in which a programmer might
need to make use of a ladder-logic programming tool.

The standard operating principle within EC is the idea of

2036

setting a set of outputs (command behaviour) until an end
condition (status behaviour) is reached. The device
template also allows the definition of signals which would
create static errors (such as emergency stop cases) as well
as input conditions for creating running messages to
provide feedback on the progress of the process.

Definition of the hardware is followed by an automatic
code generation process which creates a ladder logic file
based on the pre-defined master file. This generated file
can be downloaded into the PLC. A sequence of operations
can then be created, calling the actions previously created
by the programmer. This sequence can then be downloaded
into the data tables of the PLC, a step which takes
considerably less time than the transfer of a complete
ladder program from offline PC to PLC. The code in the
PLC can be seen as an interpreter, taking the operations
input by the programmer and converting them into the
ladder code required to operate the real equipment.

Visually, the screen used to program sequences in
Enterprise Controls looks quite similar to an SFC but with
one main difference: there are no transitions (Figure 3).
Each sequence consists of a set of cells, and operations
relating to a device can be called from within a cell. The
end condition for that device is defined within its template,
and on completion the sequence will automatically drop
into the next cell.

The FACT cell control algorithm was implemented by
the same programmer who had previously programmed the
cell using SFC. The initial observation was that despite
limited training, operations in EC could be created with
very little effort and did not require a good understanding
of the PLC code. To give an example, code to operate a
single clamp was implemented within an hour of first using
the software, and extended to controlling a sequence of
twelve clamps a few minutes later. Creation of code to
perform the same operation in SFC took about a day with
replication required in order to operate each of the twelve
clamps in turn. In [3] it is stated that expertise plays a part
in the development of control logic, and in order to account
for the programmer’s experience when writing the EC
code, the software was subsequently re-written from
scratch in SFC and EC. Creation of a sequence with
comparable functionality to open and close two clamps in
order took approximately three times longer with SFC than
was the case with EC, showing that the more abstract
approach provided by EC gives a considerable time saving

Development of the device templates to create more
sophisticated devices such as robot interfaces took
considerably more effort and required an understanding of
the core functionality of the EC ladder program. However,
the advantage of this was that it only needed to be done
once. Following completion of code, creation of diagnostic
messages and verification that the operation was correct,
there was no further need to look at the underlying ladder
code and the template could be reused for other devices
simply by defining a new instance with different I/O points.

Within the FACT cell, this meant that the same template
could be used to operate six distinct locking pins, each with
different input and output points.

As well as the time saving noted, a further benefit
observed as a result of using EC was that it no longer
required a skilled operator to start, maintain and modify the
machine. The method of presenting a sequence as a set of
operations relating to a machine meant that a technician
with an understanding of the mechanical process could
make changes to the operation sequence without the need
for worrying about making changes to the underlying code.
Adding additional steps took little additional effort, and
transfer of the new sequence to the PLC typically took less
than a minute. The in-built diagnostics provided more
feedback than had been possible to implement in the SFC
software, eliminating the need for understanding and
debugging the underlying ladder code. This would be of
great benefit to an industrial user who has to implement an
engineering change at short notice, not least because this
could be done ensuring that diagnostic messaging and
appropriate interlocks are modified automatically.

Figure 3: EC Structure Editor

V. EXAMPLE: SIMPLE CLAMP

A further insight into the differences between the two
programming techniques can be seen by considering the
operation of the simplest device in the FACT cell: one of
the twelve pneumatically operated clamps (Figure 4). Each
clamp is operated by signalling one of two outputs which in
turn open valves to open or close the clamp as appropriate.
Two sensors fitted to the clamp provide an indication as to
whether or not a clamp has opened or closed properly.

The differences between the interfaces presented to the
programmer by the two programming tools can be seen by
comparing Figure 5 and Figure 6. The principal variation is
the approach: the SFC shows a breakdown of the process,
complete with diagnostic functionality whereas EC
provides a set of operations associated with a device.

Whilst the code to operate a single clamp using an SFC-
based approach was comparatively simple, creating a
sequence was more challenging. Initially, code to operate
all twelve clamps in a sequential manner was created on a
single SFC screen. The limitations of this approach became

2037

apparent when the order of operation needed to be
changed, as it required an extensive redesign of the SFC, a
process which took at least an hour. Subsequently, separate
SFC’s to operate each clamp were created with sequence
data held in the data table controlling the automatic
sequence. Once configured, this allowed limited sequence
changes to be implemented within a few minutes. A third
option made the use of a single SFC with user-defined data
types, or structures, to allow operation of twelve distinct
clamps from a single SFC.

Conversely, the more abstract approach followed by EC
made the implementation of sequence changes significantly
easier as it presented a programmer with the concept of a
mechanical operation (open or close clamp). This in turn
meant that major sequence changes could be implemented
and committed to the cell within a few minutes. Additional
operations could be added simply by adding new cells to
hold the new functions. Increasing the length and
complexity of sequences did not have a significant effect
on the length of time taken to download the operation to
the PLC Data table. Given diagnostic messaging was
already included within the device template, no additional
effort was required by the user and it did not prove
necessary to investigate the underlying PLC code.

Performance of the system was compared by taking
measurements of the processor scan time when each
program was running. The EC program in the PLC is
structured in two parts, one part consisting of the operating
system and the other section specific to the system to be
controlled. The operating system was found to have a
stable scan time, taking approximately 7 milliseconds to
complete a cycle whereas that of the system-specific part
varied according to the number of devices controlled. A
simple sequence to open and close two clamps in turn gave
a scan time of 3 milliseconds. In comparison, SFC code to
provide the same control function was found to have a scan
time approximately 20 times faster than that of the EC
variant. The SFC software was found to use 5% of the
memory required to run EC.

Figure 4: Clamps

Figure 5: Clamp Operation in SFC

Figure 6: Clamp Operation in Enterprise Controls

VI. SURVEY

Following a seminar to disseminate the findings of this
research, the delegates, all control engineers in industry
were asked a set of questions asking about their perception
of this type of product. All were positive about the concept
with some expressing concern about the inability to use
these tools with legacy equipment as well as the
commitment to hardware manufactured by a single
supplier. Further concerns were raised as to whether the
underlying PLC code was sufficiently reliable, as was the
issue of taking responsibility for any problems arising with
this code. Other end-users stressed the need for accurate
diagnostics within the devices as the issue of incorrect or
incomplete device templates would seriously hinder
operation.

The main benefits of interest to the delegates were the
standardisation of control code, the ease of programming
and commissioning, the mechanism for ensuring that the
PLC and HMI link together, the transparency of the
approach and the speed of determining the root cause of
intermittent faults. All but the last factor are points which

2038

are essential if a control program needs to be modified by
anyone other than the original programmer. End-users state
that implementing a change in a PLC without a
corresponding modification within the HMI is a common
problem, leading to incorrect diagnostic messages. Thus,
integrating the diagnostic features into the functionality of
the device will overcome this problem. Acceptance by
system programmers that this “black box” approach will
still provide sufficient diagnostics was highlighted as a
potential difficulty.

VII. CONCLUSIONS

Contrasting two very different approaches to developing
a control system has shown that there is a considerable
benefit to selecting a methodology appropriate for the
situation. This work has shown that using design
automation tools provides advantages for a manufacturer
wishing to adopt a flexible manufacturing process in terms
of reduced development time and the ease of incorporating
diagnostic capability into the process, as well as reducing
the reliance on skilled programmers for implementing
simple process changes. There is potential for testing the
level of abstraction of a tool with a view to capturing the
level of complexity of a software module that provides
process flexibility without affecting diagnostic ability. The
next step in this area will be to design metrics to allow
measurement and quantification of each programming
technique in order to identify the benefits and pitfalls of
moving from programming with traditional IEC61131-3
languages to a more modular “black box” approach.

The advantage of additional flexibility and ease of use
comes at the cost of a processor overhead in both scan time
and memory usage. The values obtained suggest that this
overhead should not be a hindrance in most situations,
although applications such as high-speed machinery which
requires very fast response times would find EC unsuitable.

Presenting this work to end users has been generally
favourable, though the reaction has stressed the need for
good, rigorous design to ensure that device templates have
been sufficiently tested and validated for use in real
production environments.

There is scope for looking at the level of training and
skill required of an operator or programmer in order to
achieve a process modification using a particular
programming tool. Undertaking a program of tests over a
large sample size will be required to validate this work.

VIII. ACKNOWLEDGMENT

The authors would like to thank Ray Daniels and Phill
Hannam of Rockwell Automation for their support and
guidance during this work.

IX. REFERENCES

[1] Lewis, R.W.; Programming industrial control systems
using IEC 1131-3, Revised edition, The Institute of
Electrical Engineers, 1998, pp185-186

[2] Lucas, M.R. and Tilbury, D.M.; Quantitative and
qualitative comparisons of PLC Programs for a small
testbed with a focus on human issues; Proceedings of
the American Control Conference, Anchorage, Alaska,
May 8-10 2002, Vol. 5 pp4165-4171

[3] Lucas, M.R. and Tilbury, D.M.; A study of current
logic design practices in the automotive manufacturing
industry, Int. J. Human-Computer Studies 59 (2003)
pp725-753

[4] Carpanzano, E, Cataldo, A, and Tilbury, D; Structured
design of reconfigurable logic control functions through
sequential function charts, Proceedings of the American
Control Conference 2004, Boston, Massachusetts, June
30- July 2 2004, pp4467-4471

[5] Edan, Y and Pliskin, N; Transfer of software
engineering tools from information systems to
production systems, Computers & Industrial
Engineering 39 (2001) pp19-34

[6] Frey, G; Formal methods in PLC control at a flexible
manufacturing line, Proceedings of the 5th IFIP
International Conference for Balanced Automation
Systems in Manufacturing and Services, Cancun,
Mexico, September 2002, pp501-508

[7] Bani Younis, M and Frey, G; Visualization of PLC
programs using XML, Proceedings of the 2004
American Control Conference, Boston, Massachusetts,
June 30- July 2 2004, pp3082-3087

[8] Richardsson, J and Fabian, M; Automatic generation of
PLC programs for control of flexible manufacturing
cells, Proceedings of the IEEE Conference on Emerging
Technologies & Factory Automation, Lisbon, Portugal,
Sept 16-19 2003, pp337-344

[9] Norberto Pires, J and Sá da Costa, J.M.G.; Object-
oriented and distributed approach for programming
robotic manufacturing cells, Robotics and Computer
Integrated Manufacturing Volume 16, Issue 1, 2000,
pp29-42

[10] Flores, L and Barata, J; Object oriented software
engineering for programmable logic controllers, A
successful implementation, Proceedings of the IEEE
Conference on Emerging Technologies & Factory
Automation, Lisbon, Portugal, Sept 16-19 2003, pp116-
120

2039

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

