0-7803-9098-9/05/$25.00 ©2005 AACC

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

ThA05.4

Non-smooth Feedback Stabilizer for Strict-feedback Nonlinear
Systems Not Even Linearizable at the Origin

S.G. Cheong, J. Back, H. Shim and J.H. Seo

Abstract— We present a continuous feedback stabilizer for
nonlinear systems in the strict-feedback form, whose chained
integrator part has the power of positive odd rational numbers.
Since the power is not restricted to be larger than or equal
to one, the linearization of the system at the origin may
fail. Nevertheless, we will show that the closed-loop system
is globally strongly stable with the proposed continuous (but,
possibly not differentiable) feedback. We formulate a condition
that enables our design by characterizing the powers of the
given system. The condition also shows that our result is an
extension of (Qian and Lin, Systems and Control Letters, 2001)
where the power of odd positive integers has been considered.

I. INTRODUCTION

In practice, there exist systems that do not have the first
approximation at the origin, e.g., a leaky bucket whose
dynamics is given by h = —CVh [1, p.41], or the
hydraulic control systems [2]. Partly motivated by this fact,
we construct a continuous (but possibly non-differentiable)
state feedback stabilizer which globally stabilizes a single-
input nonlinear system in the strict-feedback form given by

& = xy' + d1(x1)
&p = x5° + P21, 72)
(D

in =u™ +¢n($1, ,In)

where ¢;(x1,---,1;), i = 1,---,n, are C' functions
vanishing at the origin and 7;’s are rational numbers whose
numerators and denominators are all positive odd integers
(we will call such r; a positive odd rational number). We
stress that the linearization of the system at the origin may
fail, that is, it may not exist, since r;’s can have a value
less than 1.

This is a sharp contrast to the previous works [3]-[9]
which have considered a system whose right-hand side is
C' in the state z, or all r;’s are greater than or equal to 1 so
that its linearization at the origin may be uncontrollable. In
[31, [4], [6], they constructed a state feedback for the system
(1) in which all r;’s are positive odd integers. Lin and Qian
[3] explicitly constructed, using a tool called adding a power
integrator, a globally stabilizing smooth feedback control
law for system (1) under the condition that the odd integer
powers r; are in decreasing order (i.e., r; > --- > 1y >
1), and under a growth condition that |¢; (21, - ,2;)| <
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(lwa|™ + -+ + |zi|™)yi(21, -+ ,25), 4 = 1,-++ ,n, where
each ;(+) is a smooth nonnegative function. The decreasing
assumption and the growth condition have been removed in
[4], [7] while a continuous (instead of smooth) feedback is
obtained in [4] and a smooth but time-varying feedback is
designed in [7]. More generally, a triangular system

,Z‘i_»,_l), izla"'an_la

Tn) +u,

& = fi(z1, -

i'n = fn(xla' o

has been dealt with in [8], [9], but it is assumed that all
fi(-)’s are C'™° so that its linearization at the origin does
exist.

The proposed feedback stabilizer for system (1) is con-
tinuous but may not be differentiable in the state because
the linearization of the system may fail, or it may be un-
stable but uncontrollable recalling the Brockett’s necessary
condition [10] for smooth feedback. Also, uniqueness of
the solution for system (1) is not guaranteed since the right-
hand side of (1) may not be locally Lipschitz (again because
some r; can be less than 1 and/or the feedback control may
also be just C?). Therefore, the concept of stability meant
in this paper is global strong stability (GSS) introduced in
[11], which is understood that the origin is stable in the
sense of Kurzweil and every solution of the system with
any initial condition in R™ converges to zero as time goes to
infinity (although a solution from a certain initial condition
may not be unique). In fact, like in [4], we will design a
C? feedback control as well as a corresponding C'! (positive
definite and proper) Lyapunov function. Then, by [11, pp.
23,24], GSS of the closed-loop system follows once the time
derivative of the Lyapunov function is a negative definite
function of the state.

The paper is organized as follows. In Section II-A, we
state our main theorem whose proof is given in Section II-
C where a constructive design procedure of the feedback
stabilizer is presented. In Section II-B, the assumption
proposed in the main theorem of Section II-A is discussed
in detail, where some relation to the previous work [4] is
also pointed out. We conclude the paper in Section IV after
presenting a design example in Section III.

For convenience, let us define the set of all rational num-
bers whose numerators and denominators are all positive
odd integers by (,qq4- Note that the set ()44 is closed under
multiplication, division and odd number of additions, but is
not closed under even number of additions or subtraction,
and that, furthermore, 2t? or 2% for a, b, ¢ € Qoaq
is a positive function of x.

1907



II. MAIN RESULT

A. Statement of Main Theorem

We now state our main theorem.
Theorem 1: Suppose that, for the system (1), all r; €

Qodd> © = 1,--- n. If there exist g, 1, - , bn € Qodd
such that
Hos - s o > 1, (2)
1 1 1
rl§7r2§min{7}7
251 Mo 2 Mo H1
1 1 1
'arn<min{77"'7 }7 (3)
Hn Ho M1 Hn—1
1 1 1
Ogi_ﬁ<7_r£§...< _I'n 4)

fn’

then there exists a CY feedback controller v = u(z) with
u(0) = 0 which renders the origin of the closed system
globally strongly stable. In addition, if the assumption holds
with all y; =1 (2 =0,---,n), then the feedback controller

u(+) is smooth. O
Remark 1: From (4), the condition that u; = 1 (i =
0,---,n)isequivalenttol > r; > --- > r,. Note also that,

once a set of p;’s satisfying the assumption is found, (qu;)
with ¢ € Q,qq also satisfies the assumption if (2) holds with
them. On the other hand, the value of r,, does not restrict
the existence of a set of u;’s for the assumption (because
a large u, can always be chosen), which is conceptually
presumed since the input term »"" of the system (1) can be
replaced by another control v. %

B. Discussions on the Assumption

The assumption of Theorem 1 results in a generalization
of the previous works. To see this, we provide several cases
when the assupmtion holds automatically in the following:

(a) the dimension of the system (1) is less than 3, and all
i € Qodds

(b) the dimension of the system (1) is 3 and all r; € Qg4
are such that r; < 1,7=1,2,

(c) all r; € Qoqq are such thatr; < 1/2,i=1,--- ,n—1,
(d) all r; € Qpqq are such that 1 < r;,i=1,---,n—1,
(e) all 7; € Quoqq are such that 1 < r;, ¢ = 1,---,m,

and r; < 1/2, i = m+1,--- ,n — 1, with some

1<m<n-—2,
(f) all 7; € Qoqq are in decreasing order, i.e., 1 > -+ >
Tn—1-
It is seen that the result of [4] is recovered as the case
(d), and the case (e) implies a cascade connection of (d)
and (c). Now let us prove the claims one by one.

Proof of (a): In case of n = 1, the selection of g = 1 and
1 = max{1,7} satisfies the assumption. When n = 2,
the assumption holds with g = 1, g3 = max{1,r;} and
to = romax{l,ry,1/r1}.

Proof of (b): Pick pq, po, p3 as

1 11 1 11
M1 7‘1#0’ H2 7”2#07

1 1 1 1 1
—min{1,1+}.
M3 T3 T2 1) Mo

The assumption (3) follows from these since 1/p1 > 1/
and 1/pe > 1/pg due to r; < 1.
Now choose (o as

{1 1 1 | { 1 1}}
po =maxq —,—,—minq 1,14+ — — — ,
T T2 T3 T2 1

so that 1 < p; € Qoad, ¢ =0, -+, 3 (assumption (2)).
Then, the assumption (4) also holds. Indeed,
1 1 1 1
1 on_, _7“2:<_1)20,
Mo M1 M1 M2 1 0

1 3 1 . 1 1
— =|——min¢1,14 — — —
H2 M3 T2 T2 1
(1 ) 1
>——-1]—.
1 Ho

Proof of (c): We first choose uq,- - , ptp—1 to be propor-
tional to w, which will be determined later. Let 7y, £

min{ry,r9, -+, 7y} and choose ;1 as
1 Tn/Tmi T—
_IolTwin s Tast 0 )
Hn—1 Hn Hn

so that —1— — I'n — i(fn_l —7ry) > 0 from rp, < 1/2.

L. Mn—1 Hn, Hn .
Similarly, determine fi,,_s,- - , o recursively as

1 T 1.

== ! + 7(7ﬂn71 - rn)
Mn—1 Hn

1 Tr— 1

== 2 + 7(7077,—1 - rn)

Hn—3 Hn—2 Hon (6)
1 T 1
— =2 + 7(7”71—1 - Tn)v
Mo M1 229

which are all in Q,qq since p, € Qoqq- Then, (4) follows
with

el m_ 1. 1
Mo H1 p1 M2 Hn—1  Hn
The above choice of u;’s also results in
1 1 N _ T
= (r7z—1rn—1 +rn-1— TTL) 2 o2
Hn—2 Hn Hn,
1 1 s N T
= — (rn7274n72 +Trp—1 — Tn) £ 2
Hn—3 Hn Mn (7)
1 1 o o
— = — (M1 + a1 — ) & —.
Ho Hn Hn

Therefore, by picking u, € Q,qq such that

Hn 2 ma’X{17’F07 e 7fn—1}a
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the assumption (2) follows from (5) and (7).
Since r,, = TminTn—1, We have from (7) that

Tl S Tpno2=Tp 1Tp—1+Tn_1 — TminTn-1 < 271

because 7min < 71 < 1/2, and that

Tpo1 < Tpo3 =Tn9Tn—2+Tn_1 — TminTn-1 < 2Tn—1

because 7,,_1 < 7,_2 from above and r,,_o+1—7rpin > 1
for the left inequality, and because 7,_o < 27,_1 from
above and (2r,_o + 1 — rpyin) < 2. Likewise, we have that

fn—l < ’Fi = Ti-‘rlfi-i-l + fn—l - Tmin":n—l < an—l (8)
for: =0,--- ,n— 1, where the case n — 1 is trivially true.
From the left inequality of (8),

’anl _ friflﬂ S E _ i7
Finally, from (5), (7), the right inequality of (8), and since
2r; < 1,

i=0,---,n—1. (9

Ty 1Ty

2riTp_1 _ Tp—1
S < bl
i Hn Hn Hn
for i = 1,--- ,n — 1. This inequality, combined with (9),
leads to the assumption (3).

Proof of (d): Pick any pp € (Qoqq such that g > 1. Then,
by taking p;’s recursively as

M1 = T1lo, M2 = T2U1,

the assumption is satisfied. In fact, (3) and (4) hold with
equality (because r; > 1, and thus, pg < p1 < - < uy),
and clearly, (2) is also satisfied.

cy Mn = Tnln—1,

Proof of (e): First, we choose jig, -
algorithm in Proof of (c) for 7,41, - -
1, ,Tn_m). And, let

, lp—m through the
, T (as if they were

Mm+i:r1"'rmﬂia Z:O,,’I’L—m

Note that a multiplication of any value of Q.44 larger than
1 does not violate the assumption. For the rest of u;, we
choose

_ Hm _ — _ M1 R
Hm—1 = =T1Tm—-1Mo, -, Mo = —— = Ho-
T'm T1

Since r; > 1 for ¢ = 0,--- ,m, this selection ensures (2).

Also, po,--- , um satisfy (4) with equality (recall that
their selection is the same as in Proof of (d)). In fact,
the assumption (4) holds with all p;’s because i, -+, tin
have been constructed as in Proof of (c), and it hold that
1/ -1 — T/t < 1/t — T'ma1/ phm+1 because the left
hand side is zero.

While pg, -,y again satisfy (3) as in Proof of (d),
the assumption also holds with py,4+1, - , ptn,- Indeed,

1 1 1
rm+1§min{>7"'a}a Ty
Hm+1 Mo M1 Hm

because 1/, < -+ < 1/up, and thus, the above holds by
the construction of iy, - - , fn.

Proof of (f): If r1 > --- > rpy, 21> 1y 2> 2711
with a certain 1 <m < n — 2, pick u; as

o =1, pi1 =7ripo, -, Hm = Tmm—1,

Hm+i = Hm, (1:177n7m717)

where rpin = min{ry,---,7,}. Then, (2) holds in an
obvious way, and pug,- -, Uy, satisfy (3) and (4) with
equality by the same reason as in the proof for (d), while,

with L1, , i, (3) and (4) become
Tm+1 _ Tm+1 < i T'm+2 _ Tm+2 < i
Hm+1 Hm Um, Hm+2 Hm ,Um7 ’
and
0= 1 _ngl—rm+1_1—rm+2_
Hm—-1  Hm Hm, Hem
< 1 rn 1 Tmin

which are true.

If m = n — 1, this is a special case of (d), and if 1 >
r1, then the assumption holds similarly with pg = --- =
Hn—1 = 1 and Hn = Tn/rmin-

Remark 2: Other than the cases of items (a)-(f) in
the above, the existence of p;’s satisfying the assumption
depends on the given set of r;’s'. However, there does exist
an example of r;’s that do not fit into any cases (a)—(f),
for which it is impossible to find appropriate u;’s. Indeed,

consider r; = % ro = 3, r3 = 1 and suppose that there
exist po, - - , p3 satisfying the assumption. Then, by (4),
1 41 3 1 4 1
0<—"%57———, 0<—+——-—
o 3p1 Mo B B2 M3
and by the second inequality of (3),
3_1
M2 Mo
These three inequalities are compactly written as
1
-1 32 =3 0] |®
0 -1 4 —1{|8|=0
1 0 -3 0 He
s

where > implies the component-wise comparison. Now, by
pre-multiplying a row vector [2, 3, 2], we obtain

—(1/3)/p1 —3/p3 > 0,

which is a contradiction of (2). O

ISince the conditions (2), (3) and (4) can be easily converted into the
LMI (Linear Matrix Inequality) form, it can also be solved numerically.
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C. Constructive Proof of the Main Theorem

In order to prove Theorem 1, we construct a feedback
stabilizer through a modified backstepping procedure. The
novelty of this procedure resides in the construction of the
corresponding control Lyapunov function at each step. Un-
like the conventional backstepping [12] or the construction
of [4], the control Lyapunov function needs to be chosen
considering the design of later steps to come. To enable this,
we have formulated by the assumption of Theorem 1 a key
property necessary for the selection of Lyapunov functions
at each step. (Recall that the selection of pu;’s is affected
by the set of whole r;’s in the assumption.) This implies
that we will use the values of p;’s, which is obtained by
the assumption, in the backstepping procedure.

Furthermore, we will frequently employ the following
inequalities borrowed? from [4].

e For z,y € Rand 1 < g € QQ,qq, We have

oyl < 297 a4y (10)
e ForO0<c¢,deR and p >0,
cl,,|d c c+d d —< ) jc+d
< — —p d .11
oll? < —plal"F 4 L

e Fora,b,ceR,if 0 <a<b<c we have
j2|° < |2 + |2 = [2]*(L+ |2[*7%), z€R, (12)

because |z|® < |z]* < |x]® + |z|° for |z| < 1 and
|z|° < |z| < |z|* + |z|¢ for |z| > 1.

o Let ¢; : R® — R be a C' function with ¢;(0) =
0. Then, there exists a smooth non-negative function
~i(x1,22, -+ ,x;) such that

|¢i($1,"' 7%')\ < (\371\ +---+ |33i|)%‘($1,"' 7331‘)-
(13)

In addition to those puq,--- ,un selected through the
assumption, we choose vg, -+ ,U,_1 € Qoqq satisfying

UOavlv"'avn—lzlv
T r T 14
UO+71:’U1+72:"':’UTL71+77 ( )
M1 He2 Hn

which will also be used through the procedure.

The proof is given in an induction and the structure of
the proof is similar to [4]. For the first step of the induction,
we choose a Lyapunov function as

Vi) = [ (o i) do
x

*

1

where z; = 0 for convenience. Note that V;(-) is C1,
positive definite and proper. Then, by (13),

Vi(a1) = (21°)" (5" + é1(21))
< (21°)" (23" — 23" + 23" + |0 Iy (21).
2Inequalities (10) and (11) are proved (with slight extension) by [4,

Lemma 2.3] and [4, Lemma 2.4], respectively, while inequality (13) is
quite standard.

Since por1/p1 < 1 by (3), we have, using (12),

1] < [ [P0 (14 g (707 )

where ¢ > 1. Then, by taking a smooth positive function 7;
such that (1 + |z|(¢=#071/#1)), (21) < A1 (1), we obtain

Vi(wy) < (21°)" (a3 —a3"™)
()" a5 4 () A ().
If we take the virtual control x5 such that
1 1

25" = =) A (n+ 71 (1)) 1= —(@f) M af (21),
(15)

then we have
Vi(z1) < —n(@o)" T 4 (aho)vo (a5 — a5™).

It should be noted that z3 and 23" may not be C, while
x5H1 is (because g > 1).

Remark 3: When all py; = 1, a smooth (i.e., C)
feedback stabilizer can be obtained. For this, instead of oy
in (15), design a smooth «; such that

(n+ 41 (21))7 < as(21).

i L .
Then, by letting z5™ = — (/)" a " (z1) instead of

(15), all the above arguments still hold, but z5(= x3"")
is smooth. The same technique can be used for subsequent
steps. O

Inductive assumption: Suppose at (k — 1)-th step, there
are a C'', proper and positive definite Lyapunov function

Vi_1(z1,- -+ ,2x_1) and a set of C virtual controllers z7,
*

-+, xj, defined by

CCT 207 n = xxll«o _ mﬂlmuo

L

23" =—maa(21), np = xh' — a5z

e — Mk—1 Lo —

o == (21, o), e = @t —
T

where o/ (21, ,2;), 1 <i < k—1, are smooth positive
functions, such that
Vici(xy, -+ x5—1) < —(n—k +2)x

vo+ & vk*2+:k‘,:l Vo Th— _
<,r]1 n1 +"'+nk—1 k—1 +17kk_12 (Ikk 1 71:27% 1)'
To complete the induction, we consider at k-th step a

Lyapunov function defined by

Ve, op) =Vio1(2n, - s 2p—1) + Up(wn, -+, 21),
Up(21,--- , 2p) é/

The function V}, can be shown to be C'!, proper and positive
definite with the following property: for ¢ = 1,--- Jk — 1,

8Uk Tk (9 x*uk—l
— _ ,Uk_l(o—ﬂk-—l_l.zﬂkfl)vk—lflda ( k )7
8xi T* 8131

k

Tk

(oHr=t — pHe=1) " g,

*
k

(16)
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and

Vk—1

aUk’ — ( Pr—1 *#k—l)kal _ nk' ) (17)

i Ty — Xy
Proofs of these properties proceed just in the same way as
in the proofs for [4, Prop. 1 and 2] where the set of positive
odd integers is considered instead of our ,44. To save the
space from the lengthy proofs, we simply refer to the proofs
of [4, Prop. 1 and 2] for the claims above (the last equality
(17) is, however, trivial).
With these properties, we obtain

Vk‘(x17"' ,(L’k)
L oy TE=L
<- (nk+2)( PR ) ‘)
s (@ -2

k—1

oUy .

T @R+ dn(on o m)) + D5 “di (18)
i=1

We investigate the terms in (18) one by one. For the
second term, we first note that it is true that

Hk—1
Tk1<2"‘k1 ‘x”kl_xzﬂk’1’

T Tk—
‘.’L’k 1_372191

from (10) since px—1/rx—1 > 1 due to (2) and (3). Then,
it follows that

, - 1 Tk=1 . Th—1
|.%' k—1 _xz k71| <92 FE ’mgka _xz/ k—1|hp—1
Hence we obtain
V-2 Tk—1 T ki
— *Tk—1 Vg —2
I (o = ) | < [P TR
1
1 Vk— 2+Hk I Vk— 2-‘v-Mc I
377k 1 + Ck

S% <n1)0+;11 + .-

where ¢ is some positive constant obtained by employing

(11) with a certain constant p leading to the % term in the

second inequality, and the last inequality follows from (14)

and the fact that %% > 0 for all € R with a,b € Qoaq.
To handle the third term of (18), we note that

Vi — 2+ —1 U1+ —E
“k 1 K
/I ) + 1 Ck

19)

I ()|
< |nel™(lza| + -+ eyl - s 2e) by (13)
< el { (|2 [+ - A ok — 2]

+ (23] -+ i) by (@, - k)

% 1—1 3
(since |w;1q — $z+1|u < 2K |$z+1 - xf—&-l#
0,---,k—1 by (10), and since z;, """ = —n;a;)

k—1

i S
el DT
§=0

;L
T Mg
I J

i

J

. k—1
D
j=1

X yp(xy, -, Tk) (20)

(since 71 /pp < 1/po,1/pa, -+, 1/pg—1 < 1 by (2) and
(3), by applying (12) to each term in the summation of

(20))

k—1

k& _ Tk 1— L
< Il (gl (1 a5 ) 2175
=0

k—1
+> Inj

j=1

= <1+|7Ij|1 ”’“)O‘;‘J Ve(T1, - Tk).

Define a smooth positive function 4y (x1, - - - , ) such that

~ _ e 1-—L

(@, wk) = (L | 7502 Wy, a)
1

- — Tk oy

Fu(wn, - ymn) > (L [ 7)o (@, 2p)

for j =0, --- ,k—1 (with oy = 0 for convenience). Then,

[ (w1, )|

1 Tk))

e N
5176 (k| A (21, - - -

Mx-

1

<.
Il

<

M»

(Iﬂk”%+M|k1“ma,7m0

1

.
Il

(which follows from (11) with appropriate fk)

_1 (nfoﬁi n

3 2L

+
nkk ' Mk Ck(xh : "rk')
where (21, ,x5) =1/3 + kCp,, due to (14).
Finally, about the last term of (18), there exist smooth
positive functions By (x1,- - , k) such that

Vg—1

+l
un " Ok(T, e xk). (22)

The proof of this claim is lengthy, but can be found in the
Appendix.
Now, substituting (19), (21) and (22) into (18) yields

Vk(wl,...

(n—k—i—l)( L

,xg) <

+77;c)k ' (x};kﬂ 332291) +77:k lxl*cikl
Vp—14 oK
e (o + Gl k) + Brl@y, - ).

Therefore, by taking the virtual control z , ; such that
Tk
x;;:rkl :_77k {ln—k+1)
+ (Ck + Ck(‘rla R

’k "k

__nk

wg) + Br(w1, - )}

(xla axk)7 (23)
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we obtain
Vi(zy, -, p)
<-(n—-k+1) (nfﬁ:ll g n:k—1+;’;)
0 (@ — @)

which proves the inductive argument. Note again that z}, ,

and 7"y may not be C*, but zh* is.
At n-th step, applying the feedback control
u'™ = x':,:fl = _777‘:705777 (*T17 e ,(En) (24)

with the C proper and positive definite Lyapunov function

Vi(x1,- -+, x,) constructed via the inductive procedure, we
arrive at
. vo+ L V14 T2
Vn(xl,"'7xn)§—(’l71 “1++77n K
. (25)

= _{(leto - I‘T”O)UOJFM 4.
+ (I’T'U’L"fl — x:‘lﬂn—1)vn,1+%}'

Realizing the right hand side of (25) is negative definite
and applying the Kurzweil’s theorem [11, pp. 23,24], we
conclude that the origin of the closed-loop system is glob-
ally strongly stable.

Finally, when all p; = 1, the technique of Remark 3 is
applied to each step when we take «; in (15), (23), (24), so
that the resulting control u(z) is smooth. Hence, the proof
is completed.

III. AN EXAMPLE

Consider the nonlinear system

1
=i et (26)
To = US

which is not linearizable at the origin. With pg = p1 =
o = 1 (from Proof of (¢)) and vg = 1, v1 = vo+1r1—r9 =
}—g (from (14)), we choose Vi (z1) = %x% which is C1,
proper and positive definite. Following the proof, we can
compute the virtual control x5 as

zy = —x1 (0.4 + €™ (27 + 1))3

. 4 1
to obtain Vi(z1) < —04xf + z1(xd — xgé) Next, we
consider a C'!' proper positive definite function

Z2

-
I

o

Va(z1,22) = Vi(z1) + 10/ (0 —a3)* do.
3
The proof of Theorem 1 yields a smooth feedback control

u, which is defined by

u=— (xg —x3) X

N 2
900 + 3(1+ 22)2(0.4 + €™ (2 + 22))? (gﬁ)
1

ozx)°
+16 (1 + (22 — 23)?) —a; } ,
1

and the time derivative of V5 becomes
. 04/ 4
Va(ar, @) < =25 (:rf’ + (22 *905)%)
which implies that the origin of the closed system is GSS.

IV. CONCLUSION

In this paper, we have developed a C° state feedback
design method for the powers of the integrators perturbed by
C! lower triangular vector fields. Inspired by [4], we have
extended the result of [4] in the sense that the powers are not
restricted to positive odd integers. As a result, the system
considered here may not have the first order approximation
around the origin, which has rarely been studied in the
literature. In spite of this difficulty, the stability result
obtained in this paper is the global strong stability (GSS)
which has been frequently studied in the literature.

A technical contribution of the paper is the selection of
the powers in the control Lyapunov functions designed in
the backstepping procedure since the appropriate powers
should be selected reflecting the future design steps to
come. To solve this problem, we extracted a necessary
power sequence as a condition, with which the backstepping
procedure has been enabled.

For the future work, the problem of the global stabiliza-
tion under the condition that the powers of the integrators
are odd rational between 1/2 and 1, is left. And then, a
continuous output feedback control for global stabilization
of the systems will be of interest.
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