
A Globally Convergent Run-to-run Control Algorithm with
Improved Rate of Convergence

G. François, B. Srinivasan and D. Bonvin
Laboratoire d’Automatique

École Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland.

Abstract— Run-to-run control consists of using the meas-
urements from previous runs to drive the outputs of the
current run towards desired set points. From a run-to-run
perspective, a dynamic system can be viewed as a static input-
output map. For systems where this static map corresponds
to a sector nonlinearity, a globally convergent fixed-gain run-
to-run control algorithm has been recently proposed by the
authors. This paper shows that it is possible to improve the rate
of convergence of this algorithm by adapting its gain. Thus,
the run-to-run controller switches from a Broyden update
to a fixed low-gain update whenever it is necessary to jump
over a local minimum. This algorithm is shown to be globally
convergent for systems with sector nonlinearities.

Keywords : Run-to-run control, Sector nonlinearity, Gauss-
Newton, Broyden update, Convergence analysis.

I. INTRODUCTION

The class of systems where the operation is repeated over
time has received increasing attention in recent years [1].
Many industrial processes, especially in the areas of batch
chemical production, mechanical machining and semicon-
ductor manufacturing, fall under the category of repetitive
dynamic processes [2], [3]. Run-to-run control exploits
the repetitive nature of a process to drive the outputs to
desired set points. For this, the measurements obtained from
previous runs are used to adapt the manipulated variables
of the current run [4], [5]. These control schemes are very
attractive in practice since they only require measurements
that are available at the end of the run.

Though the system is truly dynamic, from a run-to-
run perspective (i.e. upon integration of the within-run
dynamics), the map between the manipulated and controlled
variables is a static one [6], [7]. Upon completion, each run
can be seen as mapping parameters that characterize the
input trajectories to output values available at final time.
An important feature of run-to-run control is the presence
of an implicit one-run delay between the update of the
manipulated variables at the beginning of the run and the
availability of the outputs at the end of the run.

The standard run-to-run control techniques use lineariz-
ation for controller design [8]. The static nonlinear map
is linearized at some operating point, for which a linear
controller is designed. The difficulty with this approach
arises from the fact that the linearization, which is locally
valid, may no longer be appropriate when the operating
point changes. For systems with sector nonlinearities [9],
[10], an algorithm that is globally convergent has been pro-

posed recently [11]. Global convergence is ensured provided
the controller gain is low, i.e. it does not exceed a limit
that is inversely proportional to the slope of the sector.
However, since the worst-case slope needs to be considered,
the convergence of this low-gain controller may be rather
slow.

The problem of computing the inputs that bring a static
system towards desired set points is equivalent to that of
solving a set of nonlinear equations. For this latter problem,
several numerical methods that exhibit fast convergence
are available in the literature [12]. However, since global
convergence can rarely be proven for these methods, they
are prone to converge to a local minimum.

This paper proposes to combine a Newton-Raphson type
of update (for fast convergence) with a fixed low-gain
update (to ensure global convergence). The run-to-run con-
troller is typically updated using Broyden formula, except
in the neighborhood of a local minimum where a fixed low
gain is used. The main advantage of this algorithm is its
relative high speed of convergence, while still guaranteeing
global convergence.

The paper is organized as follows. The run-to-run control
of linear and nonlinear systems is reviewed in Section II.
The class of nonlinearities addressed in this paper and
the earlier convergence results are also presented therein.
Section III describes the standard approach for solving non-
linear equations, while the novel algorithm that is globally
convergent and allows significant improvement in the rate
of convergence is proposed in Section IV. This algorithm is
then illustrated in Section V through the run-to-run control
of a simple illustrative example, and Section VI concludes
the paper.

II. RUN-TO-RUN CONTROL

Consider the control of a repetitive dynamic process that
is characterized by two independent time variables, the
run time t, t ∈ [0,t f ], and the run index k, k = 1,2, · · ·,
where t f is the final time in run k. The input profiles,
uk[0,t f ], can be parameterized using a finite (typically low)
number of input parameters, pk ∈ℜm [13]. Thus, knowledge
of the parameters pk allow the construction of the entire
input profile uk(t),∀t ∈ [0,t f ]. This profile is applied to the
dynamic system that evolves with the states xk(t),∀t ∈ [0,t f ]
and produces the run-end outputs zk ∈ ℜq that are available
at final time. Thus, from a run-to-run perspective, one does

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

ThA05.3

1901



not consider the run-time dynamics between uk(t) and xk(t)
explicitly, but rather the static input-output map zk = z(pk).
Figure 1 illustrates these concepts.

pk Profile
Generation

uk(t) xk(t) zkDynamic
System

Output
Map

Static Map

Fig. 1. Input-Output Static Map

In run-to-run control, the input parameters pk are updated
between consecutive runs using the run-end outputs of the
previous runs to eventually meet the set points for the
outputs, say zre f = 0. A square system is assumed here
for simplicity, i.e. q = m Figure 2 represents schematically
the run-to-run adaptation of the input parameters based on
integral action:

pk+1 = pk + K(zre f − zk) (1)

pkzre f K
+
−

+
+

zk

Delay

Delay

Static
Map

Fig. 2. Run-to-Run Control Based on Integral Action

where K is the m×m controller gain matrix. Note that
the delays introduced in Figure 2 traduce the fact that the
computation of the input parameters that will be used in the
k + 1th run uses the values of the input parameters and the
outputs that are defined for the kth run.

It is furthermore assumed that there exists a value p∗ for
which z(p∗) = zre f = 0. The challenge in run-to-run control
arises from the fact that p∗ is typically unknown and needs
to be determined.

A. Run-to-run Control of Linear Systems

If the static map is linear, i.e. z = H(p− p∗) with H a
m×m matrix, the following result provides an adaptation
law that can be used to enforce pk = p∗ and zk = 0 as k →∞.

Theorem 1: Let z = H(p− p∗), where H is full rank. Let
the adaptation law be

pk+1 = pk − γH−1zk (2)

where γ is a scalar gain, pk the input parameters used in the
kth run, and zk the corresponding run-end outputs. Then, for
0 < γ < 2, pk → p∗ and zk → 0 as k → ∞.
The proof is straightforward and can be found in [11].

B. Convergence Analysis for a Class of Nonlinear Systems

This section considers a class of nonlinearities where
there is agreement between the local and global pictures.
This class of nonlinear systems is a special case of systems
with sector nonlinearities [10].

The following assumption is made:
There exists a full-rank m ×m matrix H̄ and a scalar

α > 0 such that

zT z < αzT H̄(p− p∗), ∀ p �= p∗ (3)

Note that this assumption implies that there exists a p∗ for
which z = 0. Using the notation ∆p = p− p∗, the classical
definition of sector nonlinearity is (z − aH̄∆p)T (bH̄∆p−
z) > 0, with 0≤ a≤ b [10]. This means that the nonlinearity
lies between two linear functions, aH̄∆p and bH̄∆p, as
shown in Figure 3. The condition imposed here, zT z <

αzT H̄∆p, is a special case of sector nonlinearity with
a = 0 and b = α. Note that, a lot of nonlinear systems,
including real systems ([14]), can fall under this category
provided a large value for b is choosen. Note that the

z(p)

0
0 ∆p

aH̄ ∆p

bH̄ ∆p

z(p)

Fig. 3. One-dimensional example of sector nonlinearity

linearization is not around the (unknown) solution p∗ but
rather some arbitrary operating point. With this assumption,
the following theorem can be stated.

Theorem 2: Consider the static map z(p) with z = 0 for
p = p∗. Let H̄ be a full-rank m×m matrix and α a scalar
such that (3) is satisfied. Also, consider the adaptation law

pk+1 = pk − γH̄−1zk (4)

where γ is a scalar gain. For 0 < γ <
2
α , pk → p∗ and zk → 0

as k → ∞.
The proof of this theorem uses a Lyapunov approach and
can be found in [11]. It is interesting to note that the
Lyapunov function used in the proof is Vk = ∆pT

k H̄T H̄∆pk

where ∆pk = pk − p∗. Denoting by z̄k the linear estimate of
zk, i.e. z̄k = H̄∆pk, it follows that Vk = z̄T

k z̄k. The interest of
this remark will be showed in the next sections.

The main difficulty with this run-to-run control algorithm
lies in its potentially slow rate of convergence: a larger
sector, i.e. a larger α, calls for a smaller γ, and thus slower

1902



adaptation. Hence, α should be chosen as the smallest
value that satisfies (3). Even with this choice, the rate of
convergence may be slow and the algorithm extremely time-
consuming when starting far form the solution.

III. SOLVING NONLINEAR EQUATIONS VIA NUMERICAL

METHODS

Run-to-run control consists of iteratively finding the value
p∗ that satisfies z(p∗) = zre f = 0 where z(p) is a set of
nonlinear algebraic equations. Hence, it is natural to want to
design run-to-run controllers using the numerical methods
that are available for solving nonlinear equations.

A. Newton-Raphson Method

The Newton-Raphson method is probably the most
simple iterative method for solving the nonlinear equations
z(p) = 0. With this method, the inverse of the Jacobian is
used for adaptation:

pk+1 = pk − J−1
k zk (5)

where Jk = ∂z
∂p |pk is the Jacobian of z(p) at p = pk.

Under certain assumptions, it can be shown that, if the
initialization point is sufficiently close to the extremum,
Newton-Raphson method is well defined and converges
quadratically [12]. However, this method has two main
disadvantages:

1) It assumes the knowledge of the Jacobian Jk at all the
points zk. However, only the values of zk are known
in the context of run-to-run control.

2) There can be points pk for which the Jacobian Jk

loses rank, i.e. for the minima of z(p). These points
can make the algorithm diverge since the inverse of
the Jacobian is not defined.

B. Jacobian Estimation using Broyden Formula

The adaptation law (5) uses the Jacobian of z. The
problem now consists of estimating this Jacobian from
values of zk. The most straightforward idea is to use finite
differences, which can be experimentally very expensive.

An alternative is to estimate the Jacobian matrix iter-
atively using, for example, quasi-Newton methods. Let’s
denote by Bk(pk) the estimate of the Jacobian matrix at
pk. Quasi-Newton methods build a linear model, Lk(p) =
zk +Bk(p− pk), which approximates zk in the neighborhood
of pk.

Defining δk = zk+1 − zk and sk = pk+1 − pk leads to the
classical secant equation:

Bk+1sk = δk (6)

Except for the case q = m = 1, this equation has an
infinite number of solutions for Bk+1. Thus, the challenge
is to pick a solution that exhibits good properties. Broyden
[15] proposed to select the Jacobian estimate that minimizes
the variation between the successive linear models Lk and
Lk+1, thus leading to the update formula:

Bk+1 = Bk +
(δk −Bksk)sT

k

sT
k sk

(7)

IV. PROPOSED ALGORITHM

To overcome the local nature of most of the numerical
methods used for solving nonlinear equations, it is proposed
here to switch from a variable-gain update, e.g. Newton-
Raphson with Jk estimated using Broyden formula, to a
fixed low-gain update whenever there is risk of converging
towards a local minimum, for which the Jacobian may
lose rank. This fixed low-gain update corresponds to the
adaptation law in Theorem 2.

A. Algorithm Description

Let’s introduce the function f (pk) = zT
k zk. The algorithm

proceeds as follows: a Newton-Raphson algorithm with
adaptation of the Jacobian estimate is used as long as f (pk)
decreases significantly. Hence, the adaptation proceeds with
the variable-gain update as long as

f (pk+1) < (1−β) f (pk) (8)

where β is a scalar, 0 < β < 1, that is introduced to
guarantee a certain reduction in f . If the descent rate is
lower than β (and the solution has not been reached yet,
as indicated by f (pk) < ε, with ε a small positive scalar),
a local minimum of z(p) is being approached. In such a
case, the algorithm switches to the fixed low-gain update
until f (pk) has decreased sufficiently. Then, the algorithm
switches back to the variable-gain update. The fact that f
will decrease sufficiently with the fixed low-gain adaptation
is guaranteed by Theorem 2. In fact, f can be seen as a
Lyapunov function. The proposed algorithm is given in
Figure 4.

B0 is initialized as H̄ unless a better guess is available.
Furthermore, the runs done with fixed low-gain adaptation
can be used to update the Jacobian estimate, using δk =
z0

k+1 − z0
k and sk = p0

k+1 − p0
k .

B. Convergence Analysis

Using the results of the previous sections, the following
theorem can be stated.

Theorem 3: Consider the static map z(p) with z = 0 for
p = p∗. Let H̄ be a full-rank matrix and α a scalar such
that (3) is satisfied. Then, the algorithm in Figure 4 exhibits
global convergence to z = 0 for γ <

2
α . Moreover, f (pk) =

zT
k zk acts as a Lyapunov function.

Proof: Consider the function f (p0
k) = z0T

k z0
k . For it to

be a Lyapunov function, it should be positive definite and
decrease with the iteration number k. f is positive definite
since it is a quadratic function. Also, f (p∗) = 0. To prove
that f (p0

k+1) < f (p0
k), two cases need to be distinguished.

1) If the variable-gain update generates a point for which
(8) is satisfied, then f (p0

k+1) < (1−β) f (p0
k) < f (p0

k).
2) If the variable-gain update does not generate a point

for which (8) is satisfied, then the algorithm switches
to the fixed low-gain update. In this case also, it can
be shown by contradiction that f (p0

k+1) < f (p0
k):

1903



k = 0, j = 0

Initialize p0
0 and B0 = H̄

z0T

k z0
k < ε End

p0
k+1 = p0

k −B−1
k z0

k
Variable-Gain

Update

z jT

k+1z j
k+1

z0T
k z0

k

< (1−β)

p0
k+1 = p0

k

p j+1
k+1 = p j

k+1 − γH̄z j
k+1

j = j + 1

Fixed Low-Gain
Update

p0
k+1 = p j

k+1
z0

k+1 = z j
k+1

k = k + 1, j = 0
Update Bk using (7)

Yes

Yes

No

No

Fig. 4. Proposed algorithm where k is the iteration number of the outer
loop and j the iteration number of the inner loop

Suppose f (p0
k+1) ≥ (1 − β) f (p0

k). At the
inner-loop level, this implies that, for all j,
f (p j

k+1) ≥ (1 − β) f (p j
k) > (1 − β)ε �= 0. On the

other hand, since the fixed low-gain update is
asymptotically convergent, there always exists a j
for which f (p j

k+1) < σ, for any non-zero positive σ.
This leads to a contradiction and, hence, it can be
stated that f (p0

k+1) < (1−β) f (p0
k) < f (p0

k).

Hence, Condition (8) is satisfied for all k by construction,
and f (pk) is a Lyapunov function for the variable-gain
update and converges exponentially in k towards 0. Note
that this convergence is only exponential in k, i.e. for the
outer loop, and not in the total number of iterations.

Five remarks are in order:
1) The algorithm uses the fast convergence property of

the Newton-Raphson algorithm whenever possible,
and the robust convergence property of the fixed-
gain approach to cautiously avoid points for which
the computation of the inverse of the Jacobian may
lead to divergence.

2) Note the similarity of the Lyapunov functions for the
inner loop z̄T z̄ and for the outer loop z0T

k z0
k . In fact,

the function f is forced to be a Lyapunov function for
the outer loop using the fact that its linear prediction
z̄T z̄ is a Lyapunov function for the inner loop.

3) A justification for the choice of the variable-gain
adaptation lies in the fact that, if Bk is a good

approximation of Jk, the variable-gain update is in
the descent direction: ∂ fk = ∂ f

∂p |pk ∂p =−zT
k JkB−1

k zk =

−zT
k zk < 0 if Bk = Jk.

4) Of course, if numerous calls to the inner loop are
needed, it might even happen that the fixed low-
gain adaptation converges faster than the proposed
algorithm. This would mean that there are many
points where a full Newton step does not decrease f .
In this case, however, the problem can be considered
asreally difficult to solve and the low-gain update can
no longer be considered as slow.

5) Since f (p0
k) = z0T

k z0
k is a Lyapunov function for the

variable-gain update and not for the fixed low-gain
update, z jT

k z j
k can grow from a run to the next upon

switching to the fixed low-gain adaptation.

C. Proposed Algorithm vs. Numerical Optimization

Numerical optimization methods can also be used for
solving nonlinear equations. The solution of z(p) = 0
corresponds to the global minimum of f = zT (p)z(p).
Unfortunately, this optimization problem can have local
minima.

The most commonly-used numerical optimization meth-
ods are the quasi-Newton methods, for which the search
direction is a rotated version of the gradient. Along this
direction, a line search procedure is performed, i.e. one
searches for a step size that satisfies the Goldstein con-
ditions [16], [17]. Then, the Hessian is updated using an
appropriate update formula [18].

Though the function to be minimized in numerical op-
timization and the Lyapunov function for the proposed al-
gorithm are similar, there are some fundamental differences
between the two approaches:

1) The gradient-based numerical optimization methods
may converge to a local minimum, in contrast to the
proposed algorithm.

2) In the proposed algorithm, the fact that f (p∗) = 0 is
used to choose the Lyapunov function. In gradient-
based algorithms, this information is not exploited.

3) In the proposed algorithm, the fixed low-gain ad-
aptation replaces standard line search procedures. In
other words, instead of trying to satisfy the Goldstein
conditions [16] that are based on the gradient of the
objective function, ”small” steps are done until the
local minimum that is being reached is jumped over.

V. ILLUSTRATIVE EXAMPLE

The goal of this section is to show through a simple ex-
ample the improved performances of the proposed algorithm
compared to the fixed low-gain update of Theorem 2.

Consider the set of nonlinear equations z(p):

z1 = p1 + p2 + 2sin(p1)

z2 = p2 + 2sin(p1)+ 2sin(p2) (9)

This square two-input-two-output system exhibits a sector
nonlinearity characterized by H̄ = I and αmin = 4.59. To

1904



illustrate this, the function T (z, p) = zT z
zT H̄ p

is plotted as a
function of p in Figure 5. This function is not defined for
p1 = p2 = 0 and exhibits a maximum that explicits αmin =
4.59. This is the smallest value of α for which System (9)
satisfies Equation 3 with H̄ = I. Hence, the maximum gain
for the fixed low-gain adaptation is γ = 2

4.59 = 0.435.
This system is such that f = zT z has at least three minima,

two local ones and the global one (0,0) ∀ p1, p2 ∈ [−10; 10]
(Figure 6). Note that the knowledge of the global solution
(0,0) is not mandatory and is only assumed for illustrating
the convergence of the algorithm.

-20
-15

-10
-5

0
5

10
15

20

-20
-15

-10
-5

0
5

10
15

20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

p
1

Test function for determining α

p
2

Τ(
z
, 
p

)

Fig. 5. Test function T (z, p) = zT z
zT H̄ p

for determining α

-10 -6 -2 2 6 10
-10

-6

-2

2

6

10

p
1

p 2

Contour of zTz

x

x

x

Fig. 6. Contour of the evaluation function with 40 levels

Figures 7 and 8 illustrate the convergence using both the
fixed-gain (using (4) and the proposed algorithms (using
(5), and using (4) whenever necessary). Both approaches
converge to the global solution. Table I shows the evolution
of f in function of the run number.

β was fixed to 0.01. In other words, the algorithm
switched to the fixed low-gain adaptation whenever the
outer loop did not succeed in reducing the function f by at

TABLE I

ADAPTATION RESULTS

Algorithm Run 3 Run 5 Run 7 Run 21
Fixed Gain f = 13.06 f = 10.29 f = 12.39 f = 0.0047
Proposed f = 10.44 f = 3.01 f = 0.002 -

least 1%. With this value of β, only one call to the inner
loop of the algorithm was necessary. Also note that the
termination tolerance on f , i.e. ε, was fixed to 0.005. As a
result, the proposed algorithm was approximately 3 times
faster than the low-gain one as can be seen in Table I.

Two remarks can be made:

1) p1 and p2 were initialized relatively far from the

global minimum

(
p0

0 =

[
20
20

])
. In this case, the

fact that the adaptation gain is bounded penalizes the
number of necessary iterations in the fixed low-gain
algorithm.

2) The price to pay for converging faster is a stronger
excitation of the inputs p, which leads to larger
variations of the outputs, as can be seen in Figures 7
and 8.

Also, the proposed algorithm was compared to standard
algorithms for solving nonlinear equations, using the same
termination tolerance for f (0.005):

1) The standard Gauss-Newton approach that uses a
Newton-Raphson update law and the Broyden for-
mula to compute the Jacobian was tested. With the
same initialization point, the f solve procedure of the
Matlab 6.5 c© software converged towards the solution

of z = 0. However, when starting from p1
1 =

[
−7
4

]
,

the procedure stopped upon reaching a local minimum
of z for which the Jacobian loses rank. This illustrates
the possible failure of these algorithms.

2) The standard quasi-Newton approach that uses a
mixed quadratic and cubic line search procedure and
the BFGS formula for the Hessian update and the
same initialization point was also tested. With these
parameters, the quasi-Newton f minunc procedure of
the Matlab 6.5 c© software converged towards a local
minimum: after 43 evaluations of the function f (p),
the algorithm provided the values p1,43 = −1.719,
p2,43 = 3.923, z1(p43) = 0.226, z2(p43) = 0.537 and
f (p43) = 0.169. This illustrates the local nature of
numerical optimization algorithms.

VI. CONCLUSIONS

This work has demonstrated the effectiveness of run-to-
run control applied to a class of nonlinear systems. To
accelerate the speed of convergence of a fixed-gain run-
to-run control algorithm, a new algorithm that uses tools
from numerical optimization has been proposed. Despite
the local nature of quasi-Newton methods, a proof of global

1905



Evolution of z
1
 and z

2
 with fixed low gain adaptation

z
2

z
1

-30

-20

-10

10

20

30

40

0

Evolution of p
1
 and p

2
 with fixed low gain adaptation

p
2

p
1

-25

-20

-15

-10

-5

0

5

10

15

20

2 4 6 8 10 12
Run Number

Fig. 7. Evolution of z and p with fixed low-gain adaptation

-30

-20

-10

0

10

20

30

40

Evolution of z
1
 and z

2
 with the variable gain adaptation

z
2

z
1

2 4 6 8 10 12-25

-20

-15

-10

-5

0

5

10

15

20

Run Number

Evolution of p
1
 and p

2
 with the variable gain adaptation

p
2

p
1

Fig. 8. Evolution of z and p using the proposed algorithm

convergence was obtained for a class of nonlinear systems.
Significant improvement of the speed of convergence was
observed and illustrated through the run-to-run control of a
simple static example.

An interesting alternative would be to incorporate stand-
ard line search in the algorithm. If acceptable reduction of
the Lyapunov function is not obtained with the variable-
gain update, another point is sought in the same direction
but with a smaller step size. The switch to fixed low-
gain adaptation is done only when the latter fails. This
way, the low-gain adaptation, which penalizes the rate of
convergence, is performed only when absolutely necessary.
Also, future research could extend the convergence analysis
to other classes of nonlinear systems.

REFERENCES

[1] W. Campbell, S. Firth, A. Toprac, and T. Edgar, “A comparison of
run-to-run algorithms,” in American Control Conference, Anchorage,
2002, pp. 4212–4217.

[2] E. Castillo and A. Hurwitz, “Run-to-run process control: Literature
review and extensions,” Journal of Quality Technology, vol. 29, pp.
184–196, 1997.

[3] E. Zafiriou, R. Adomaitis, and G. Gattu, “Approach to run-to-
run control for rapid thermal processing,” in American Control
Conference, Seattle, 1995, pp. 1286–1288.

[4] S. Arimoto and T. Naniwa, “Learnability and adaptability from the
viewpoint of passivity analysis,” Intelligent Automation and Soft
Computing, vol. 8, no. 2, pp. 71–94, 2002.

[5] A. Tayebi and M. Zaremba, “Robust iterative learning control design
is straightforward for uncertain lti systems satisfying the robust
performance condition,” IEEE Trans. Automat. Contr., vol. 48, no. 1,
pp. 101–106, 2003.

[6] B. Srinivasan, C. J. Primus, D. Bonvin, and N. L. Ricker, “Run-
to-run optimization via generalized constraint control,” Control Eng.
Practice, vol. 9, pp. 911–919, 2001.

[7] F. Doyle III, B. Srinivasan, and D. Bonvin, “Run-to-run control
strategy for diabetes management,” in IEEE Engineering in Medicine
and Biology Conference, Istanbul, 2001.

[8] G. Francois, B. Srinivasan, and D. Bonvin, “Run-to-run optimization
of an emulsion polymerization reactor,” in IFAC, Barcelona, Spain,
2002, pp. 1258–1263.

[9] T. Chu, L. Huang, and L. Wang, “Guaranteed absolute stability of
a class of delay systems with local sector nonlinearities via piece-
wise linear Lyapunov function,” in American Control Conference,
Arlington, 2001, pp. 4212–4217.

[10] M. Vidyasagar, Nonlinear Systems Analysis, Second Edition. Pren-
tice Hall, New Jersey, 1993.

[11] G. Francois, B. Srinivasan, and D. Bonvin, “Convergence analysis
of run-to-run control for a class of nonlinear systems,” in American
Control Conference, Denver, Colorado, 2003, pp. 3032–3037.

[12] E. Kreysig, Advanced Engineering Mathematics, Sixth Edition. John
Wiley And Sons, Inc, New York, 1988.

[13] B. Srinivasan, S. Palanki, and D. Bonvin, “Dynamic optimization of
batch processes: I. Characterization of the nominal solution,” Comp.
Chem. Eng., vol. 27, pp. 1–26, 2003.

[14] G. Francois, “Measurement-based run-to-run optimization of batch
processes: Application to industrial acrylamide copolymerization,”
PhD thesis 3128, Ecole Polytechnique Federale de Lausanne (EPFL),
Lausanne, Switzerland, 2004.

[15] C. Broyden, “A class of methods for solving nonlinear simultaneous
equations,” Mathematics of Computation, vol. 19, pp. 577–593, 1965.

[16] A. Goldstein, “On steepest descent,” SIAM J. Control, vol. 3, pp.
147–151, 1965.

[17] W. Press, S. Teulosky, W. Vetterling, and B. Flannery, Numerical
Recipes in C, The Art of Scientific Computing. Cambridge University
Press, Cambridge, 1988.

[18] R. Fletcher, Practical Methods of Optimization. John Wiley And
Sons, Inc, New York, 1991.

1906


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ArialNarrow-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Oblique
    /Times-Roman
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


