
Abstract— Gain-scheduling is possibly the most widely used 
nonlinear control design technique in industry.  However, 
guaranteeing the stability of the nonlinear closed loop can be 
extremely challenging, specifically for endogenously scheduled 
controllers.  Given a set of locally linear models and 
previously designed controllers, this paper addresses the 
problem of 1) guaranteeing internal stability of the nonlinear 
closed loop, and 2) determining the class of disturbances and 
reference changes that can be stably endured, despite 
arbitrarily fast changes in the scheduling parameter. A simple 
example illustrates the approach.

I. INTRODUCTION

ANY physical systems exhibit dynamics that vary 
appreciably over the typical operating regime; a 

single linear controller may fail to achieve acceptable 
performance throughout the envelope of conditions.  One 
of the most popular solutions to this nonlinear control 
design problem is the use of gain-scheduling, in which a 
nonlinear controller constructed by interpolating a family 
of local controllers. Thus the nonlinear control design 
problem can be divided into several control problems 
where linear design tools are generally employed. This 
“divide-and-conquer” [1] methodology has found success 
in a variety of applications. The success of the gain-
scheduled approach seems directly attributable to its 
simplicity in design and implementation.  In the literature, a 
wide variety of approaches are termed “gain-scheduling.” 
For the purpose of this paper, we consider a gain-scheduled 
controller as one that interpolates between local linear 
control laws as a function of scheduling variables, which 
capture the system nonlinearities.  

Despite the overwhelming success in industrial practice, 
the principal difficulty of using gain-scheduled control is 
guaranteeing stability. By blending several linear 
controllers, the resulting global controller is nonlinear, and 
results in the addition of “hidden coupling terms” [2] or 
additional dynamics due to the interpolation functions. 
Thus, although the gain-scheduled controller may be stable 
at every fixed value of the scheduling variable, the true 
global closed loop may not be stable.  
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Stability of the closed loop system is generally addressed 
by one of the following three methods.  First, proving that 
the gain-scheduled controller is stable for all fixed values 
of the scheduling variable, and then inferring overall 
stability by assuming slowly varying scheduling 
parameters.  Although this is appropriate for exogenously 
scheduled systems, it may not be possible for endogenously 
scheduled systems where the scheduling parameters may 
vary arbitrarily fast.  Second, stability for time-varying, but 
often rate-limited, scheduling parameters is guaranteed by 
construction of the gain-scheduled controller using LPV or 
LFT methods.  This generally assumes an explicit model of 
the nonlinear system, which may not be available. Third, 
stability is verified through extensive simulation and 
experiments.  

In this paper we address the following problem: Given a 
set of local linear models of the plant  
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and given a priori a set of local linear controllers  
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interpolate the local controllers to create a gain 
scheduled controller, sK , such that the internal stability 
is guaranteed for arbitrarily fast variations in the scheduling 
variable.  Furthermore, guarantee that for finite energy, 

2
w , or peak amplitude, w , disturbances, the maximum 

deviation in system outputs is bounded by y . In the 

solution approach, the gain-scheduled controller is 
constructed by weighting the outputs of individual linear 
controllers; an approach termed a Local Controller 
Network.  Similarly, the nonlinear model is assumed to be 
adequately represented as a Local Model Network.  The 
disturbance-to-output bounds are guaranteed by the use of 
Lyapunov methods, which are formulated as Linear Matrix 
Inequalities that can be solved computationally efficiently. 

The remainder of this paper is organized as follows.  
Section 2 reviews past research efforts concerning gain-
scheduling.  Section 3 presents two frameworks for the 
interpolation of the local controllers and models. The 
necessary LMI tools used for guaranteeing the disturbance-
to-output bounds are given in Section 4, and an illustrative 
example is presented in Section 5. 
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II. BACKGROUND

A. Gain-Scheduling Overview 
In 2000, two separate survey articles appeared detailing 

the history and scope of gain-scheduling [2],[1].  The 
acknowledged motivation of gain-scheduled controllers is 
the ability to solve a nonlinear control problem by using 
available linear control tools. Application areas have 
included flight control, engine control, power plants, 
vehicle control, and many others.  

Rugh and Shamma discuss gain-scheduling in terms of a 
four-step process [2]. First, determine a linear parameter-
varying model of the plant either from first principals, or by 
interpolating identified models. Second, use linear design 
methods to design controllers.  Third, determine the 
method of interpolating the linear controllers as a function 
of the scheduling variable(s). Two common rules of thumb 
for selecting the scheduling variables is that they should 1) 
capture the plant nonlinearities, and 2) they should vary 
slowly [3]. Fourth, assess the stability and performance of 
the overall system, often by extensive simulations or 
experiments.  

B. Stability Guarantees 
The stability analysis of a gain-scheduled controller in 

closed loop with a nonlinear plant can pose a challenging 
problem. Most analytical methods for guaranteeing stability 
focus on achieving frozen-parameter stability, or closed 
loop stability for any fixed value of the scheduling 
parameter (i.e. no scheduling dynamics are considered).  
Although individual controllers may be stabilizing at the 
design points, the interpolated controller may not be 
stabilizing at intermediate points.  A simple example of this 
phenomenon can be given as following. Let a plant and   
two stabilizing controllers be defined as in Equation 3.  An 
interpolated controller could be defined as in Equation 4 
where 1,0 .  Although both 1K  and 2K  stabilize the 
plant, the blended controller 

bK  destabilizes the plant for 

1,25.0 .
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Interpolation methods that guarantee frozen parameter 
stability have been termed “stability-preserving” 
interpolation methods [4]. Recent research has focused on 
guaranteeing this level of stability by design [5],[6].  Then 
by assuming a slowly varying scheduling variable, the 
stability of the true system is inferred. Alternatively, 
internal stability of the gain-scheduled system can be 
guaranteed by construction, by designing an LPV controller 
that guarantees that a common or parameter dependant 
Lyapunov function can be found to prove stability of the 

nonlinear closed loop.  This requires that the controllers be 
designed en mass and have a common structure, and in 
general depend on a bound on the rate of change of the 
scheduling variable. Examples of these types of approaches 
can be found in [7],[5],[8].   

While these types of approaches may be valid for a class 
of systems where the controller is scheduled using an 
exogenous signal, with known limits on the rate of change, 
the nonlinear behavior of many systems is more 
appropriately captured by scheduling parameters that are 
functions of plant outputs or controlled inputs.  
Guaranteeing the stability of these endogenously scheduled 
systems is a more challenging problem, because a bound on 
the rate of change may not be known a priori. Furthermore, 
practical stability necessitates that despite reference 
changes or disturbances, the scheduling variables and 
system outputs remain within prescribed bounds. 

C. Interpolation Methods 
Different methods for interpolation are reported in these 

survey articles, including the interpolation of poles, zeros, 
and gains, interpolation of H  controllers by interpolating 
Riccati equations, interpolation of balanced state space 
matrix coefficients, interpolation of state and observer 
gains, and the interpolation of eigenvalue placement state 
feedback gains (for a list of references, see [2]). 
Alternatively, several authors have reported the use of 
controller blending, where the system signals of each of the 
linear controllers is blended as a function of operating 
condition to form a global nonlinear controller 
[9],[10],[11]. 

In this paper, the latter type of gain-scheduling, termed 
“output-blending,” is concerned.  This approach is similar 
to the Tagaki-Sugeno models/controllers in the field of 
fuzzy logic [12]. The principal benefit of this approach is 
the ability to simply gain-schedule between controllers of 
different sizes and structures; no restrictions are placed on 
the design of the individual controllers.  

III. GAIN-SCHEDULED NETWORKS

A. Local Controller and Local Model Networks 
This output blending approach generally assumes the 

configuration shown in Figure 1. This diagram illustrates 
the closed loop dynamics in the standard framework.  The 
input disturbance w1, and the control output signals u, are 
inputs to the nonlinear plant model, whose output y and the 
reference disturbance w2, are inputs to the each of the linear 
controllers. The nonlinear controller is formed by 
weighting the individual outputs of several linear 
controllers.  These weighting or blending functions are a 
function of a scheduling variable , as h .  Common 
assumptions include 1,0i

 and 1i
, with the 
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magnitude based on the relative distance to the respective 
design point in the scheduling space.

This approach is sometimes termed a Local Controller 
Network (LCN) and is attractive because of the simplicity 
of the controller implementation.  A controller is 
constructed using standard linear techniques and a linear 
approximation of the nonlinear model, either using a 
linearized first principles model or a data-driven identified 
model.  This process is repeated for several key operating 
conditions, and the resulting controllers are computed in 
parallel, while a weighted sum of their outputs is applied to 
the nonlinear plant. For the purposes of this paper, the local 
controllers are assumed to be given a priori and without 
common size or structure. Although this approach is simply 
and frequently implemented, guarantees of closed loop 
stability are not currently available.  

LCN
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Figure 1: Output Blending Based on a Local Controller Network (LCN) 

For analysis purposes, the nonlinear plant is often 
assumed to be adequately represented by a Local Model 
Network (LMN), where the local linear representations of 
the plant are the result of the linearization of a nonlinear 
model, or simply data-driven empirical models. We will 
denote the LMN as sPsP ii

, and similarly the LCN 

as sKsK ii
. For the purposes of this study we 

assume that each linear controller and plant model can be 
represented as in Equations1 and 2. 

K (s)

u y e2
P (s)

e1

w1 w2

K (s)

u y e2
P (s)

e1

w1 w2

Figure 2: Closed Loop System with LMN/LCN 

The closed loop stability analysis of the LMN/LCN 
poses a significant challenge, including the possibility that 
individual plants/controllers may not be open loop stable. 

Because of the nature of output blending, the LCN sK

can be written in state space form as shown in Equation 5, 
and similarly for the LMN sP . Thus the Local Model 
Network and Local Controller Network are Linear 
Parameter Varying (LPV) systems that are affine in the 
bounded parameters 1,0i

. The closed loop system (Fig. 
2) from Tww 21  to Tyu  is given in state-space form in 
Equation 6, and denoted sG . Note that this system can 
be represented as a system affinely parameterized in 
with constraint 1i

. Alternatively, the system can be 
recognized as a polytopic model formed from a convex set 
of individual models 
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B. Local Q-Networks and Local S-Networks 
While the Local Controller Network is a straightforward 

and intuitive framework for creating a gain-scheduled 
controller, the blended controller may not be stabilizing for 
fixed intermediate values of the scheduling variable. 
Furthermore, the framework requires that the each of the 
local plant and controller models be open-loop stable. 
However, an alternative framework for blending the 
controller efforts results in the recovery of the original local 
controllers at the design points, but increases the stability 
of the gain-scheduled system. This framework has been 
termed J-Q interpolation [4], or blending of the Youla 
parameters [6].  Past researchers have proposed this 
framework as a means of guaranteeing frozen parameter 
stability at intermediate design points, while recovering the 
original local controllers at the design points.  

At this point we introduce coprime factors and the 
associated Youla parameterization (see [13] for more 
details).  A controller may be decomposed into coprime 
factors UVUVsK

~~ 11  where RHVVUU
~,,~, .

Similarly we may decompose a plant model as 
NMNMsP
~~ 11 .  Assuming that 

0K  stabilizes 
0P ,
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these coprime factors satisfy the Bezout identity (Equation 
7), and all stabilizing controllers may be parameterized as 
in Equation 8 where RHQ  and is termed the Youla 
parameter. Thus when implementing a blended controller 
for a plant 

0P , the blended controller may be constructed as 
in Equation 9  where each 

iQ  is given in Equation 10 and 

0K  is any controller that stabilizes the plant.  Thus at 1i

the original local controller 
iK  is recovered.  Moreover, 

because the QK  is stabilizing for any RHQ , then 

QK  is stabilizing for every frozen value of , since 

RHQi
 and thus RHQii

.

I
I

MN
UV

VN
UM

0
0

~~
~~

 (7) 

1
0000 QNVQMUQK  (8) 

1
0000 iiii QNVQMUQK  (9) 

00
~~

UVVUQ iii
 (10) 

These ideas can be carried further by defining a similar 
notion for the LMN using the dual Youla parameter 

RHS . All plants that are stabilized by the controller 
0K

may be parameterized as in Equation 11, where 
1

000 MNP  is any nominal plant stabilized by 
0K . Similar 

to a controller network formed by the interpolation of the 
Youla Parameter Q , a model network may be formed as an 
interpolation of the dual Youla parameter S  (Equations 12 
and 13). 

1
0000 SUMSVNSP  (11) 

1
0000 iiii SUMSVNSP  (12) 

00
~~

NMMNS iii
 (13) 

The application of these ideas to gain-scheduling follows 
naturally.  First a nominal plant 

0P  and controller 
0K  are 

selected, and assuming that each controller is stabilizing for 
each plant, the parameters 

iQ  and 
iS  are determined such 

that at 1i
 the original local plant 

iP  and controller 
iK

are recovered.  Then in place of a LCN, a network of the 
parameters 

iQ  is used.  Similarly, the model network is 
formed by a network of the 

iS  parameters.  The resulting 
interconnected system is depicted in Fig. 3. In keeping with 
the terminology, we refer the blended controller as a Local 
Q-Network (LQN) and the blended model as a Local S-
Network (LSN).  The interconnection of matrices 

KJ  and 

PJ  (given in Equations 14 and 15), can be verified as given 
in Equation 16.  Thus the system of Fig. 3a is internally 
stable if and only if the system in Fig. 3b is stable. The 

interconnection in Fig. 3b is given in state-space form in 
Equation 17, and is denoted sH .
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Figure 3: Closed Loop System with LQN/LSN and Simplified Loop 

This framework allows stable scheduling of plants and 
controllers that may be open-loop unstable.  Furthermore, 
this approach reveals a design freedom in choosing 

0K  and 

0P . That is, although the local dynamics are recovered at 
each design point, the nonlinear closed loop may differ at 
intermediate points, and depends on the choice of 

0K  and 

0P .  Note that the relationship between Tww 21  and 
Tyu  for the modified framework is given by Equation 

18, where 1T , 2T , and 3T  depend only on the choice of 
0K

and
0P . In general, the choice of 

0P  can be made such that 
the LSN adequately represents the nonlinear plant. 
However, the choice of 

0K  is somewhat arbitrary, and can 
be chosen such that the class of acceptable disturbances is 
maximized. 
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IV. STABILITY ANALYSIS USING LMIS

With the closed loop system being represented as 
polytopic system, stability can be determined using 
Lyapunov based approaches. Specifically, the internal 
stability of the interconnected LMN/LCN system can be 
guaranteed for arbitrarily fast variations in the scheduling 
parameter if a common Lyapunov function can be found 
for each of the 

iA
~  of the closed loop system. For 

exogenously gain-scheduled systems, this condition would 
be sufficient for guaranteeing global stability throughout 
the operating envelope, although no indications are given 
regarding performance. However, for endogenously
scheduled systems, the above conditions are still 
insufficient. For practical stability, it is necessary to ensure 
the scheduling parameter remains within acceptable bounds 
for an assumed class of disturbances. 

For endogenously scheduled systems, h  and 
yuf , .  Although the existence of a common 

Lyapunov function guarantees the boundedness of u and y,
large values of u and y could drive the system outside of 
the region for which the LMN, and hence the analysis, is 
valid. To quantify the worst case amplification from 
disturbances to u and y requires more analysis. 

To this end, we consider two norm measures: finite 
energy to peak deviation 

LL
sG

2

, and peak-to-peak 

deviation 
LL

sG .  For polytopic systems such as the 

interconnected LMN/LCN, upper bounds on these norms 
can be formulated as Linear Matrix Inequalities (LMIs). 

Generalized H2 Performance 
The first case is often referred to as the generalized H2

norm, and a bound can be efficiently determined by solving 
a set of LMI conditions that is equivalent to seeking the 
existence of a quadratic Lyapunov function of the form 

PxxxV T , which jointly satisfies Equations 20 and 21. 
For a polytopic system, these conditions are easily formed 
as the LMIs in Equation 22. Given this condition, we say 
that 

LL
sG

2

.  This approach is, in essence, 

searching for an invariant ellipsoid that contains the set of 
all reachable states with finite energy, and then determining 
the set of peak outputs given a set of possible states. A 
more complete discussion and the accompanying proofs 
can be found in [14] and [15]. 
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Peak-to-Peak Performance 
The solution to bounding the peak-to-peak norm is 

similar to the previous case, and is based on seeking for an 
invariant ellipsoid that contains the set of all reachable 
states with peak input, and then the peak output given the 
set of possible states.  Similarly, for a polytopic system, 
these conditions are easily formed as LMIs in Equations 23 
and 24. Given this condition, we say that 

LL
sG .

Although this is not a strict set of LMIs, this challenge may 
be overcome by solving the LMIs for fixed , and doing a 
line search over 

ij A
~Remax2,0 . Again we refer 

the reader to [14] and [15] for more information. 
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With computationally efficient means of determining 
upper bounds on these two norms for polytopic systems, 
the designer can determine the class of disturbances or 
reference changes that will result in acceptable values of u
and y, and ensure that yuf ,  stays within an 
acceptable region in the scheduling space.

V. EXAMPLE PROBLEM

To demonstrate the proposed method for stability 
analysis, a nonlinear mass-spring-damper system is used. 
The governing equations are given in 25.  The damping 
coefficient and the spring constant vary as a function of the 
displacement.  The root locus for the system is shown in 
Fig. 5 for varying y.  The scheduling variable is selected as 

y , and design points are chosen at several points along 
the one-dimensional scheduling space. H  controllers are 
designed for each point using frequency dependent 
performance weightings on the tracking error and 
controller effort. The LCN is formed using the weighting 
functions shown in Fig. 4. Similarly, a LMN representation 
of the plant is formed using identical weighting functions 
and blending fixed plant models for 7.0,3.0c ,

05.0,15.0k , and 1m .

xy

wux
ycyk

x

01
1
010

 (25) 
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Table 1: Norm Bounds for the Gain-Scheduled Mass-
Spring-Damper 

LCN/LMN LQN/LSN 
(depends on choice of 

0K )

210 21

sup
w

y

w
< 0.78 < [0.46, 0.65] 

220 22

sup
w

y

w
< 2.46 < [0.94, 0.95] 

10 1

sup
w

y

w
< 23.95 < [1.69, 1.91] 

20 2

sup
w

y

w
< 302.2 < [1.63, 3.07] 

Using the LCN as the framework for scheduling our 
controllers, performance bounds are found using the LMI 
machinery outlined previously as shown in Table 1. Thus 
the gain-scheduled system is internally stable, and the peak 
deviation in the scheduling space can be bounded for 
disturbances with finite energy or finite peak magnitude. 

The value of these bounds can be decreased significantly 
using the alternative LQN/LSN framework. For example, 
selecting 

iKK0
, the analysis for the Youla gain-

scheduled systems yields the bounds of shown in Table 1 
Note that the bound varies depending on the choice of  

0K ,
indicating some flexibility in the design process. 

VI. CONCLUSIONS

This paper explores guaranteeing global stability of a 
gain-scheduled system for exogenous and endogenous 
scheduling with arbitrarily fast changes in the scheduling 
parameter.  Using Local Model Networks and Local 
Controller Networks, bounds on the peak deviation in the 
scheduling space for disturbances with finite energy or 
finite peak magnitude can be efficiently determined using 
LMIs.  A modified formulation of the gain-scheduled 
system using the Youla parameterization is shown to result 
in significantly lower bounds, and an element of design 
freedom that can be exploited when designing the gain-
scheduled controller.  
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