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Abstract— In this paper, we study spatially synchronous
two-agent navigation on a structured partially unknown graph.
The general edge cost statistics are given, and the agents
gather and share exact information on the cost of local edges.
The agents purpose is to traverse the graph as efficiently as
possible. In previous work, we formulate the problem as a
Dynamic Program, and exploit the structure of an equivalent
Linear Program to compute the optimal value function. Here,
we use the optimal policy to formulate a Markov chain with
an infinite number of states whose properties we analyze. We
present a method that computes the steady state probability
distribution of the agent separation, exploiting the repetitive
structure of the Markov chain as the agent separation goes to
infinity. The results confirms and quantify the intuition that
the less rewards, the more beneficial for the agents to spread
out.

I. INTRODUCTION

In recent years, multi-agent navigation problems have
become of major interest to many researchers. The main
idea is that a group of multiple, possibly cheap and di-
verse agents execute tasks faster, more reliably, and more
efficiently than a single agent. Applications range from co-
ordinated terrain exploration, search and rescue operations,
to coordinated thermal search and deceptive reconnaissance
missions.

In general, one of the principal challenges multi-agent
systems pose is the computational complexity of design-
ing optimal agent controls. Therefore, many researchers
focus on approximate sub-optimal strategy design, which is
computationally simpler. In [8], a group of agents exploits
the energy efficiency of flying in formation to coordinate
the traversal of a set of agents as energy efficiently as
possible. The two-agent case is solved exactly; however,
for larger problems, approximate solutions were needed.
Other examples include casting of the multi-agent problem
in a the pursuit-evader framework in [2], where an agent
clusters pursues a single evader. Approximate solutions are
presented. Further, decentralization is often the adequate
modeling tool suggested by nature, for example the swarms
in [4], [7] where local single-agent navigation rules ade-
quately model agent flocking. However, in many practical
problems, a centralized decision maker is available and
there is a need to rigorously study the potential benefits
cooperation provides.

In this paper, we consider the problem of optimal two-
agent graph traversal, where to each edge is associated a

cost. A priori, only the edge cost statistics are given, but on
a particular set of edges around the current agent position
(the local observation zone), the exact edge cost is observed
and shared. We exploit a trade-off between two competing
tendencies. First, there is the tendency for the agents (A
and B) to spread, increasing the size of the union of the
local observation zones (O = OA ∪ OB). Indeed, agents
close to each other have overlapping observation zones and
not as many edge costs are observed. More information
yields enhanced efficiency, hence the spreading tendency.
On the other hand, the agents tend to converge so that agent
A’s reachable set of edges (RA) intersects with OB and
vice versa. Only then can each agent take advantage of
potentially cheap edges the other agent observes and exploit
the benefit multiple agents have over single agents.

In past work [5], [6], we present an algorithm to compute
optimal two-agent policies. In particular, the algorithm
computes the optimal value function in two steps. First,
we solve a small linear program which yields the optimal
value function for small agent separations, the zone where
efficient cooperation takes place. Then, we simulate an
autonomous linear time invariant system, which provides
the optimal value function for large agent separations. The
method is briefly reviewed in this paper.

The contribution of this paper is the study of the steady
state characteristics of the underlying Markov Decision
Process (MDP) under an optimal policy. The MDP has
infinitely many states, but its structure can be exploited to
obtain the exact steady state probability distribution of the
agent separation. The method presented here is somewhat
similar to traditional methods to derive properties of infinite
state space Markov chains in queueing systems [3].

The paper is organized as follows. In section II we intro-
duce the notation and formulate the problem. In section III,
we present a mathematical model and briefly summarize
the algorithm, developed in previous work, that computes
the optimal value function. In section IV, we formulate the
MDP and present a method to compute the steady state
probability distribution of the agent separation, illustrated
and discussed in section V. Finally, section VI concludes.

II. NOTATION AND PROBLEM FORMULATION

In this section, we introduce the notation and formulate
the two-agent navigation problem as a graph traversal
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Fig. 1. Graph structure and notation. The gray area represents the local
observation zone of an agent located at vertex vij ; formally, Oi is the set
of colored edges.

problem with partial edge cost information.
We grid the navigation terrain into sectors and associate

a vertex v ∈ V to each sector. Edges e ∈ E connect pairs of
vertices which reduces the navigation problem into a graph
traversal problem on the graph G(V, E). The structured
transition graph we consider consists of an infinite number
of vertical lines of vertices, having an infinite number of
vertices each. A horizontal vertex array is referred to as a
lane, while a stage refers to a vertical line of vertices. For
the graph structure and related notation, see Fig 1. Note
that at each vertex, three edges with associated superscript
k ∈ {−1, 0, 1} lead to the next stage.

To each edge ek
ij is associated a cost ck

ij . In this paper,
we assume that the edge costs are independent identically
distributed (i.i.d.) random variables with values picked from
a finite set L = {0, 1}. We denote p as the probability of
encountering a zero edge cost. A priori, only the edge cost
statistics are available and edge costs are time invariant.

The graph traversal problem is modeled as a discrete time
decision problem where at time zero agents A and B are
positioned at the vertices on lanes lA0 and lB0 (∈ N and
with lA0 ≤ lB0 ) at stage zero, indicated by the subscript. At
each time step, each agent chooses to traverse one of the
three available links to the next stage. Therefore, we let the
time index coincide with the stage index and at time i the
agents reach stage i at lanes lAi and lBi (where the agent are
(re)labeled such that lAi ≤ lBi , i ≥ 0). Since at each time
step agents A and B are positioned at the same stage, we
refer to this as spatially synchronous motion.

At each stage i, we associate a local observation zone to
both agents, namely OA

i and OB
i , a set of edges of which

the cost is observed and known. In this paper, we define the
local observation zone for agent A positioned at vertex lAi ,
as (see Fig. 1)

OA
i = {e−1

ij , e0
ij , e

1
ij , e

0
i+1,j}.

Local observation zone OB
i is defined similarly. Upon

arrival at a vertex, each agent observes the costs of until
then unobserved edges and communicates these to the other
agent. At stage i the set of agents incurs the costs associated

with the edges traversed to reach stage i+1. We formulate
the following main problem.

Problem 1: [Main] Let a set of two agents be located
at positions lA0 and lB0 of graph G(V, E). The edge costs
are time invariant and i.i.d. random variables over L with
probability p for a zero edge cost. The agents navigate
spatially synchronously through the graph in the direction
of increasing stage indices, infinitely long. Furthermore,
the agents share the costs of the edges in their respective
local observation zones perfectly and instantaneously upon
reaching a vertex.

Then, find the navigation strategy for both agents so that
the expected discounted sum of costs incurred at each stage
is minimized. Here, the expected value is taken over all
initially unobserved edge costs; costs incurred at stage i
are discounted by factor αi, where 0 ≤ α < 1.

III. MATHEMATICAL PROBLEM FORMULATION AND

SOLUTION ALGORITHM

In Section III-A, we present a Dynamic Programming
(DP) formulation of the graph traversal problem. In Sec-
tion III-B, we give a brief overview of the method to
compute the optimal value function.

A. DP Formulation

We cast the two-agent navigation problem as a discounted
cost, infinite horizon DP problem as follows [1]. Since
graph G exhibits spatial invariance properties in the hori-
zontal and vertical directions, and the agents are constrained
to advance synchronously, we choose the system state x ∈
S, to be independent of the stage and the absolute positions
of the agent pair, dropping indices i and j. Let CA and CB

denote the vectors with as entries the costs of the edges
in OA and OB , respectively, at the current position of A
and B. Then, we define the system state x = (s, CA, CB),
where s = lB − lA ∈ N

+ is the agent separation.
Let S(s) ⊂ S denote the set of states associated with
separation s. Let u = (uA, uB) ∈ U = {−1, 0, 1}2 denote
the decision vector where u(·) ∈ {−1, 0, 1}, representing
the three possible decisions available to each agent. Given
xi and ui at time step i, the agent cluster moves into the
new state

xi+1 = f(xi,ui), (1)

where f : S × U → S is the state transition function. The
cost incurred in the transition from state xi to xi+1 is the
sum of the edge costs of the edges the agents traverse. Let
policy µ : S → U be a particular two-agent policy. Then,
the expected discounted cost Jµ(x0) the agents incur in
advancing for an infinite number of time steps, given initial
state x0 and under policy µ is

Jµ(x0) = lim
N→∞

E

[
N∑

i=0

αig(xi, µ(xi))

]
,
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subject to the system equation (1), and where 0 ≤ α < 1
is the discount factor. With the principle of optimality, the
optimal value function J∗(x) solves Bellman’s equation,

J∗(x) = min
u∈U

E [g(x,u) + αJ∗(f(x,u))] . (2)

A policy that minimizes the right hand side of Eq. (2) is
referred to as an optimal policy µ∗.

B. Solution Algorithm: Review

Let µ∞ : S(s) → U denote the policy where at
separation s each agent follows the single agent optimal
policy and where ties are broken by choosing the pair
of decisions that minimizes the resulting agent separation.
Then, we look for an optimal two agent policy µ∗ that is
such that for any particular p and α (0 ≤ p ≤ 1, 0 ≤ α < 1),
there is an s̄ ≥ 0 such that for all s ≥ s̄, µ∗(x) = µ∞(x),
for x ∈ S(s).

This allows for the formulation of the following LTI
system:

Xs+1,∗ = AXs,∗ + B, (3)

where the entries of Xs,∗ are functions of the optimal value
function at separations smaller than or equal to separation s.
The simulation of system (3) allows to compute the optimal
value function J∗(x) at the separations s = s̄, s̄ + 1, . . ..

Since the optimal value function is upper bounded by
twice the (bounded) single agent optimal value function,
the initial conditions of LTI-system (3) are required to
only excite the stable system modes. This allows for the
formulation of a well-defined LP, referred to as LPin

of which the solution is the optimal value function for
separations s < s̄. For a detailed treatment of this algorithm,
we refer the reader to [6]. The paper can be found on
http://web.mit.edu/jdemot/Public/allerton.

IV. ANALYSIS OF THE STEADY STATE OPTIMAL AGENT

BEHAVIOR

In this section, we study the steady state agent behavior
under an optimal policy. In particular, we present a method
to compute the probability distribution of the agent separa-
tion after initial transition effects have died out.

With the optimal policy µ∗, the state evolution can be
described by means of an infinite state Markov chain.
Specifically, let δs

qr ∈ D (s ≥ 0, q, r ∈ L) denote the
state whereby the agent separation is s, and whereby the
observation zone pair is any pair for which c0

A = q and
c0
B = r, representing the costs of first edge straight ahead

of A and B, respectively. Other local observation zone edge
costs are independent of u, and hence states are lumped
together as described (see [6], for details). Set D is the set
of Markov chain states. For the remainder of this section,
we denote by state the Markov chain state δs

qr. Fig. 2 shows
the Markov chain structure conceptually, only depicting
outgoing arcs for the three states associated with separation
s ≥ 2. This element is repeated for all separations s ≥ 2
with natural extensions at separations s = 0 and s = 1.
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Fig. 2. Element of the two-agent Markov chain structure.
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Fig. 3. Conceptual representation of the block multi-diagonal structure
of Markov chain transition matrix Q.

Let pk(δ) denote the probability for being at state δ after k
state transitions. Let

πk =
[

(pk
0)T (pk

1)T (pk
3)T . . .

]T
,

where pk
s =

[
pk(δs

00) pk(δs
01) pk(δs

11)
]T

. In words,
πk contains the state probability distribution after k state
transitions. We define q(δ′|δ) as the probability the next
state is δ′, given the current state δ. Given the edge cost
statistics and µ∗, we can compute q(δ′|δ) for all δ, δ′ ∈ D.
Let matrix Q denote the state transition matrix. Since from
separation s, only the separations s+σ (for σ = −2, . . . , 2)
can be reached, the matrix Q has a block multi-diagonal
structure (see Fig. 3). In Q, the entry on the row and column
corresponding to δ′ and δ, respectively, contains q(δ′|δ).
Sub-matrix Qs

σ ∈ R
3×3 (σ = max{−2,−s}, . . . , 2)

describes the transitions from the states associated with
separation s to the states associated with separation s + σ.

We have that policy µ∞ is optimal for all s ≥ s̄.
Therefore, the matrix Q has a recurring structure for all s ≥
s̄. In particular, let Qs contain the rows of Q corresponding
to separation s, for s ≥ s̄. Then,

Qs =
[

0 · · · 0 Q−2 Q−1 Q0

Q1 Q2 0 · · · ]T
,

where the zero-matrices are of the appropriate dimensions.
Fig. 3 shows the recurring structure of Q for s ≥ s̄.

We wish to compute

π∗ = lim
k→∞

πk,

the steady state probability distribution. The vector π∗ is
the eigenvector corresponding to the unique unit eigenvalue
of Q. We exploit the structure of Q to obtain π∗, using
a principle similar to the one underlying the algorithm
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to compute the optimal value function presented earlier.
Specifically, we formulate an autonomous LTI system
whose state trajectories are the steady state probabilities
for s ≥ s̄, where the separation s plays the role of
“time” in a classical LTI system. We then formulate a
set of linear equalities whose solution are the steady state
probabilities for s < s̄. The set includes linear equalities that
ensure the computation of initial conditions so that only the
stable LTI modes are excited. Lastly, the condition that the
probabilities are required to sum up to one ensures the set
of equalities yields a unique solution. The latter condition
is equivalent to the maximization in LPin.

We have that

Qπ∗ = π∗. (4)

Therefore, for s ≥ s̄, we have that

p∗
s =

2∑
σ=−2

Qσp∗
s+σ, (5)

where p∗
s is the steady state version of pk

s . We transform
this equation into a forward recursive equation. In particular,
we have that rank(Q2) = 1. Therefore,

Q2 = q2(r1)T , (6)

where q2, r1 ∈ R
3×1 are non-zero vectors. Since

rank(Q1) = 2 and

rank
([

Q1 Q2

])
= 2,

we have that

Q1 = q11(r1)T + q12(r2)T , (7)

where r1 and r2 ∈ R
3×1 are linearly independent and

q11,q12 ∈ R
3×1 are non-zero vectors. Further, rank(I −

Q0) = 3. Hence, we have that

I − Q0 = q01(r1)T + q02(r2)T + q03(r3)T ,

where r3 ∈ R
3×1 is linearly independent of the vectors

r1 and r2, and where q01,q02,q03 ∈ R
3×1 are non-zero

vectors. Let ρi,∗
s = (ri)T p∗

s , for i = 1, 2, 3. Furthermore,
let

ρ∗s = Rρp∗
s, (8)

where

ρ∗s =
[

ρ1,∗
s ρ2,∗

s ρ3,∗
s

]T
.

Then, we can write Eq. (5) as[
q01 q02 q03

]
ρ∗s = Q−2Rρρ

∗
s−2 + Q−1Rρρ

∗
s−1 +[

q11 q12

] [
ρ1,∗

s+1

ρ2,∗
s+1

]
+ q2ρ

1,∗
s+2, (9)

It can be verified that q2, q12 and q03 are linearly indepen-
dent. Therefore, we can write recursion (9) as

Q′
2ρ

′∗
s+2 =

∑
σ∈{1,0,−1,−2}

Q′
σρ′∗s+σ, (10)

where

Q′
2 =

[ −q2 −q12 q03

]
is invertible, where

ρ′∗s =
[

ρ1,∗
s ρ2,∗

s−1 ρ3,∗
s−2

]T
,

and where Q′
σ (for σ ∈ {1, 0,−1,−2}) can be determined

from Eq. (9). Note that the last column of Q′
−1 and the

last two columns of Q′
−2 have zero entries. Eq. (10) is a

forward recursion which we convert in the autonomous LTI
system⎡
⎢⎣

ρ′∗
s+2

ρ′∗
s+1

ρ′∗
s

ρ′∗
s−1

⎤
⎥⎦ =

⎡
⎢⎣

Q′′
1 Q′′

0 Q′′
−1 Q′′

−2

I 0 0 0
0 I 0 0
0 0 I 0

⎤
⎥⎦

⎡
⎢⎣

ρ′∗
s+1

ρ′∗
s

ρ′∗
s−1

ρ′∗
s−2

⎤
⎥⎦ , (11)

where Q′′
σ = (Q′

2)
−1Q′

σ , for σ = 1, 0,−1,−2. We write
system equation (11) in short as ρ̄∗s+2 = Aρρ̄

∗
s+1. The

subscript s of ρ̄∗s indicates the largest separation s at which
some linear combination of the steady state probability
distribution is known, given ρ̄∗s′ for s′ ≤ s.

We now use the LTI system to compute

Σ∗
s̄ =

∞∑
s=s̄

(p∗(δs
00) + p∗(δs

01) + p∗(δs
11)) , (12)

where p∗(δ) is the steady state version of pk(δ). It can be
verified that Aρ is diagonalizable. In particular, we have
that V−1

ρ AρVρ = Λρ, where ith column of Vρ is the ith
eigenvector of Aρ and where

Λρ = diagonal(λ1, . . . , λ12)

with λi the ith eigenvalue of Aρ (for i = 1, . . . , 12). The
system has three stable modes and nine unstable modes.
We divide Vρ, V−1

ρ and Λρ accordingly into submatrices.
Specifically,

Vρ =
[

Vρ1 Vρ2

]
,

where the columns of Vρ1 and Vρ2 are the stable and
unstable mode eigenvectors, respectively; similarly,

Λρ = diagonal(Λρ1, Λρ2)

and

V−1
ρ =

[
V̄T

ρ1 V̄T
ρ2

]T
.

Let

ρ̄′∗s = V−1
ρ ρ̄∗s. (13)

Then, the diagonalized system equation becomes ρ̄′∗s+2 =
Λρρ̄

′∗
s+1. We have that

Σ∗
s̄ =

∥∥∥∥∥
∞∑

k=0

p∗
s̄+k

∥∥∥∥∥ ,
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where ‖(·)‖ denotes the sum of the rows of (·). Let T3 ∈
R

3×12 be such that ρ∗s = T3ρ̄
∗
s . Then, with Eqs (8) and (13),

we have that
∞∑

k=0

p∗
s̄+k = R−1

ρ

∞∑
k=0

ρ∗s̄+k,

= R−1
ρ

∞∑
k=2

T3ρ̄
∗
s̄+k,

= R−1
ρ T3

∞∑
k=2

Vρ1ρ̄
′∗
s̄+k,1,

= R−1
ρ T3Vρ1(I − Λρ1)−1V̄ρ1ρ̄

∗
s̄+2,

where ρ̄′∗s̄+k,1 denotes the part of ρ̄′∗s̄+k associated with the
stable system modes, and where we use the fact that the
unstable system modes are not excited, since otherwise p∗

s

diverges which is impossible. For

W = ‖R−1
ρ T3Vρ1(I − Λρ1)−1V̄ρ1‖,

we have that

Σ∗
s̄ = Wρ̄∗s̄+2. (14)

In words, Eq. (14) provides the sum of the steady state
probabilities for s ≥ s̄ as a linear equation in ρ̄∗s̄+2.

We now formulate a set of linear equalities with p∗
s for

s ≤ s̄ + 1 as solution. In particular, let

p∗ =
[

(p∗
0)

T . . . (p∗
s̄+1)

T ρ1,∗
s̄+2 ρ2,∗

s̄+2 ρ1,∗
s̄+3

]T
.

The first 2 + 3(s̄ − 1) equalities in Eq. (4) are then⎡
⎢⎢⎣

Q0
0,I Q0

1 Q0
2 0 0 0 . . . 0 0

Q1−1 Q1
0,I Q1

1 Q1
2 0 0 . . . 0 0

Q2−2 Q2−1 Q2
0,I Q2

1 Q2
2 0 . . . 0 0

.

.

.

.
.
.

0 . . . 0 Q
s̄−1
−2 Q

s̄−1
−1 Q

s̄−1
0,I

Q
s̄−1
1 Q

s̄−1
2 0

⎤
⎥⎥⎦p∗ = 0,

(15)

where Qs
0,I = Qs

0 − I. We adapt the equalities of Eq. (4)
associated with p∗

s̄ and p∗
s̄+1 using Eqs (6) and (7) and the

definition of ρ∗s [Eq. (8)], which yields[
0 · · · 0 Q−2 Q−1 Q0 − I Q1

0 · · · 0 0 Q−2 Q−1 Q0 − I · · ·
q2 0 0
q11 q12 q2

]
p∗ = 0. (16)

Further, we add a set of equalities that ensures that the
unstable system modes are not excited. In particular, with
Tρ such that ρ̄s̄+2 = Tρp, we have as necessary condition

V̄ρ2Tρp∗ = 0. (17)

In the set of equations (15-17), we have ne = 6 + 3s̄
equations and an equal number of unknowns. However, less
than ne equations are linearly independent, since otherwise
only the zero vector is a solution, which is impossible.
We believe that for most relevant p and α, there are
exactly ne − 1 linearly independent equations in the set,
which is the subject of further investigation. The neth

linearly independent equation originates from the fact that
the probabilities sum up to one and, with Eq. (12), can be
written as

s̄−1∑
s=0

p∗
s + WTρp = 1.

We now have a set of ne linearly independent equations
in ne unknowns, with as unique non trivial solution p∗

s for
s = 0, 1, . . . , s̄ + 1. For separations s ≥ s̄ + 2, we simulate
the autonomous LTI system in Eq. (11) with Tρp∗ as initial
condition. From LTI system (11), it is clear that for s → ∞,
p∗

s decays exponentially to zero.

V. DISCUSSION AND EXAMPLES

In this section, we give examples of two-agent spatial
distributions for a set of probabilities p, and discuss some
properties.
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Fig. 4. Steady state agent separation probability distributions for different
values of p, under an optimal policy.
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Fig. 5. The agent separation expected value under an optimal policy as
function of p.

Fig. 4 shows the probability distribution of the two-agent
separation in steady state and under an optimal policy for
p = 0.1, 0.2, . . . , 0.9. The associated expected value of the
steady state agent separation is shown in Fig. 5. It can be
seen that for p close to one, where almost all edges have
zero cost, the expected agent separation is the smallest and
equals approximately 0.75. On the other hand, for p close to
zero, we have the largest expected agent separation, equal
to 2. This reinforces the idea that as fewer opportunities are
observed, the agents spread out more to increase the size
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of the environment where exact edge costs are observed,
increasing the probability of encountering a zero edge cost.
Conversely, for large p, the agents remain close to take
advantage of opportunities the other agent observes in the
case of an unfavorable situation.
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Fig. 6. Top: Steady state agent separation probability distribution for
a p close to zero (p = 0.06), under an optimal policy. Bottom: a set of
sample trajectories, for p = 0.06. Red (blue) arrows and lines indicate
traversed and observed edges of cost one (zero), respectively.
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Fig. 7. Top: Steady state agent separation probability distribution for a p
close to one (p = 0.94) under an optimal policy. Bottom: a set of sample
trajectories, for p = 0.94. Red (blue) arrows and lines indicate traversed
and observed edges of cost one (zero), respectively.

Two extreme but instructive cases, for p = 0.06 and
p = 0.94, are shown in Fig. 6 and in Fig. 7, respectively; in
the top half, the steady state separation spatial distribution is
shown, while in the bottom half a set of sample trajectories
is depicted. For p = 0.06, i.e. the case where ones are
abundant, we see (Fig. 6) that the separations s = 1 and
s = 3 are most probable. In the corresponding sample
trajectories, one can see that agents tend to go to separation
one, increasing the probability of agent A observing a
cheap edge that is reachable for agent B and vice versa.
However, with high probability, only ones are observed,
driving the agents apart to s = 3, where a set of eight
previously unobserved edges is observed, thus maximizing
the probability of encountering a zero. Again, with high
probability, only ones are in sight, and the agents converge
again to s = 1, where eight previously unobserved edges
enter the observation zone, finishing the “expected” cycle.

For p = 0.94, the case where zeros are abundant, we

see (Fig. 7) that the separation s = 0 is most likely,
followed by s = 1 and s = 2, both equally likely. The
sample trajectories indicate the mechanics of cooperation
here. In particular, let the agents start at s = 1, the most
advantageous separation. Most likely, only zeros are ob-
served, and agents continue straight ahead. With probability
p1 = 2p(1 − p) = 0.11 (for p = 0.94), an edge of cost
one enters an observation zone two stages ahead (see for
example stage 118 in Fig. 7). Consequently, the agents
converge to s = 0, which is maintained till again a one
appears, with probability p2 = 1−p = 0.06 (for p = 0.94).
The agents split to s = 2, maximizing the number newly
observed edges. Again, one edge cost of one enters an
observation zone with probability p1, which causes the
agents to converge to s = 1, where the “expected” cycle is
repeated. The difference in magnitude of p1 and p2 clarifies
the difference of the probabilities with which agent are at
separation s = 0 and at the separations s = 1 and s = 2.

VI. CONCLUSION

In this paper, we study two-agent navigation on a partially
unknown graph. The agents observe and share the cost of
the edges in a local observation zone. On unobserved edge
costs, only a priori statistics are available. In this paper,
we build on previous work to compute the steady state
probability distribution of the agent separation under an
optimal policy by exploiting the structure of the underlying
Markov chain. The results confirm and quantify the intuition
that the more ’hostile’ the environment, the more beneficial
for the agents to spread out and observe more, increasing
the probability of encountering an opportunity.
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