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Abstract— It is known in the literature on Automated Highway
Systems that information flow can significantly affect the propagation
of errors in spacing in a collection of vehicles. This paper investigates
this issue further for a homogeneous collection of vehicles, where in the
motion of each vehicle is modeled as a point mass. The structure of the
controller employed by the vehicles is as follows: Ui(s) =C(s)∑ j∈Si (Xi−
Xj − Li j

s ), where Ui(s) is the (Laplace transformation of) control action
for the ith vehicle, Xi is the position of the ith vehicle, Li j is the desired
distance between the ith and the jth vehicles in the collection, C(s) is
the controller transfer function and Si is the set of vehicles that the
ith vehicle can communicate with directly. This paper further assumes
that the information flow is undirected, i.e., i ∈ S j ⇐⇒ j ∈ Si and
the information flow graph is connected. We consider information
flow in the collection, where each vehicle can communicate with a
maximum of q(n) vehicles, such that q(n) may vary with the size n of
the collection. We first show that C(s) cannot have any zeroes at the
origin to ensure that relative spacing is maintained in response to a
reference vehicle making a maneuver where its velocity experiences a
steady state offset. We then show that if the control transfer function
C(s) has one or more poles located at the origin of the complex plane,
then the motion of the collection of vehicles will become unstable if the
size of the collection is sufficiently large. These two results imply that
C(0) �= 0 and C(0) is well defined. We further show that if q(n)3

n2 → 0 as
n → ∞, then there is a low frequency sinusoidal disturbance of at most
unit amplitude acting on each vehicle such that the maximum errors

in spacing response increase at least as O
(√

(n2)
q(n)3

)
. A consequence

of the results presented in this paper is that the maximum of the
error in spacing and velocity of any vehicle can be made insensitive
to the size of the collection only if there is at least one vehicle in the
collection that communicates with at least O(n2/3) other vehicles in
the collection.

I. INTRODUCTION

Recent advances in a variety of technologies such as com-

munication, computation, sensing and actuation have enabled

the development and increased the possibility of deployment of

collections of Unmanned Vehicles (UVs) (or simply vehicles) for

a wide variety of tasks. UVs are central to automating driving

tasks in an Automated Highway System (AHS) [1], the dynamic

positioning of mobile offshore bases for creating a runway for

large aircrafts [2] and for information gathering in dangerous

environments [13]. There seem to be potentially many advantages

to deploying UVs in collections for certain tasks: flexibility, ease of

reconfiguration and lower cost of deploying collections of smaller

UVs as compared to deploying a larger UV being some of them.

In order to realize these potential advantages, the problem of

coordinating the motion of the collection of vehicles must be

addressed and this paper is devoted to an analysis of this problem.

It is conceivable that a collection of vehicles will be required

to maintain (or remain close to) specified discernible geometric

patterns during its motion. We call such a collection of vehicles
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as a formation if every vehicle aids in the maintenance of the

specified geometric pattern by coordinating its motion through

communication with or sensing other vehicles in the collection.

The desired motion of every vehicle in a formation is determined

by the desired motion of a few vehicles in the collection so that

the specified geometric pattern is maintained. Since vehicles in a

formation are coupled dynamically by feedback, errors in spacing

and velocity (defined as the deviation in the position and velocity

from their respective desired values) of a vehicle propagate from

one vehicle in the formation to the other.

Of recent interest in the research community is the rigid

formation of vehicles, where it is desired that the distance between

any two vehicles remain constant throughout the motion. In an

AHS, such rigid formations (referred to as a platoons) are desired

from the viewpoint of maintaining safety and enhancing the

throughput of vehicles on a section of a congested highway [9].

A rigid formation is helpful for localization in partially known

environments in the case of mobile robots [7], and in drag

reduction via close formation flight [4], [5].

An issue with the design of controllers for vehicles in a

collection is that of collective stability of the controlled motion of

vehicles. This issue arises because errors in spacing and velocity

of a vehicle propagate to others in the collection. Intuitively,

the collective stability requires the following: With a specified

controller and with the vehicles starting at their desired positions

and velocities, for any given bound, ε , is there a bound, δ ,

independent of the size of the collection, on the magnitude of

any force disturbance that can act on any vehicle, so that as

the errors propagate with the choice of controllers, they always

remain smaller than ε ? The requirement of the independence

of δ from the size of the collection captures the scalability of

the stability of motion with the specified controllers. We will

say a controller is scalable if the above requirement of collective

stability of controlled motion is met. Since no formation can ever

be rigid, we will say that an “approximately rigid formation” can

be synthesized if one can synthesize a scalable controller.

In this paper, we are interested in the synthesis of scalable

controllers which take into account an additional consideration

- that of spatial shift-invariance (i.e. controller is not dependent

on the index of the vehicle or the size of the collection). From

a practical viewpoint, such a controller will be simple to develop

and implement on every vehicle. This is important for applications

such as the Adaptive Cruise Control (ACC) System for ground

vehicles, because one will not know a priori how many vehicles

with an ACC System will be placed in succession in traffic. In

[10], [6], controllers that used the information about the index of

the vehicle in the collection were synthesized; however, for them

to achieve an approximately rigid linear formation, the control

gains had to increase with the index of the vehicle in a geometric

manner and from a practical viewpoint, this is unrealistic since

it will lead to saturation of control effort even with small errors

in spacing and velocity. For this reason and for the simplicity of

treatment, we only consider the restricted class of controllers for
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further investigation.

The synthesis of an “approximate rigid formation” is strongly

influenced by the communication pattern between the vehicles. If

the formation has the knowledge of the information of a reference

vehicle in the collection, then errors in the spacing and velocity

resulting from a disturbance acting on a vehicle can made to

attenuate as it propagates from one vehicle to another [3], [8].

To date, it is believed that the information of one vehicle must be

available to almost all the vehicles in the formation if one were

to construct approximate rigid formations. The results in [3], [8]

and even in this paper point in this direction.

The following question naturally arises and is the focus of

investigation in this paper: How does a pattern of communication

amongst vehicles affect the propagation of errors? Specifically,

with a specified pattern of communication amongst them, can an

approximately rigid formation be synthesized? If the answer to

the latter question is in the affirmative, one can employ the same

controller in each of the vehicles irrespective of the size of the

collection, i.e., one can design a “scalable” control system with

the given information flow.

The main results of this paper concerns the necessary conditions

on the information structure for the synthesis of approximately

rigid formations and are as follows: If the motion of each vehicle

can be represented as the motion of a unit mass under the action

of a control force and a disturbance and that the information flow

graph is undirected, we show that there is no “scalable” control

system if every vehicle can only communicate with at most q(n)
vehicles, where n is the size of the collection and q(n) satisfies

lim
n→∞

q(n)3

n2
= 0.

We show this result by constructing a sinusoidal disturbance of

atmost unit magnitude acting on each vehicle at an appropriately

chosen low frequency that results in a maximum error in spacing of

at least O(
√

n2

q3(n) ). A consequence of this result is that at least one

vehicle in the collection must communicate with at least O(n2/3)
other vehicles in the collection for a “scalable” controller to exist.

We also show that if the controller incorporates an integral action,

the motion of the collection is necessarily unstable for all sizes of

the collection greater than a critical value.

The paper is organized as follows: In Section II, we formulate

the problem precisely for one-dimensional formations and prove

the results stated above. In Section III, we provide corroborating

simulations. In Section IV, we summarize the results of this paper.

II. PROBLEM FORMULATION FOR A STRING OF VEHICLES

TRAVELLING IN A STRAIGHT LINE

In this section, we will consider a string of vehicles moving in

a straight line. The first vehicle, which we call reference vehicle,

executes maneuvers with bounded velocity and acceleration. The

reference vehicle is referred to as lead vehicle in the AHS

literature. For each i ≥ 2, the ith vehicle desires to maintain a

fixed following distance Li,i−1 from its predecessor. Initially, all

vehicles are assumed to be at their desired position and the velocity

of all the vehicles are identical.

A. Model of a Vehicle

We will treat every vehicle as a point mass subjected to a

controlled force, u(t) and a disturbance d(t). If x(t) is the position

of a vehicle measured from the origin of an inertial reference

frame, then one may express the Laplace transformation, X(s), of

x(t) in terms of the Laplace transformations, U(s) and D(s) of

u(t) and d(t) respectively:

X(s) =
1

s2
[U(s)+D(s)]+

sx(0)+ ẋ(0)
s2

. (1)

B. Further Assumptions and Formulation of the problem

We make the assumption that the information flow graph is undi-

rected; if a vehicle A transmits the information concerning its state

directly to a vehicle B, then vehicle B transmits the information

concerning its state directly to vehicle A. Therefore, if Si is the

set of vehicles the ith vehicle in the collection can communicate

directly with, this assumption implies that j ∈ Si ⇒ i∈ S j . If the ith

vehicle, Vi and the jth vehicle, Vj are in direct communication with

each other, we refer to the ordered pair (i, j) as a communication

link. We particularly assume that the information available to the

ith vehicle in the collection is xi(t)−x j(t)−Li j , where j ∈ Si and

Li j is the desired distance to be maintained between the ith and the

jth vehicles. We restrict the size of Si (given by |Si|) to be atmost

q(n), which may be a function of the size of the collection.

We also assume that the information flow graph representing the

communication pattern is connected. By connectedness, we mean

that every vehicle in the collection should be able to communicate

with every other vehicle in the collection, even if there are not

communicating directly, through a sequence of already existing

communication links. We further assume that the structure of the

control law used by each vehicle, other than the reference vehicle,

is the same. Specifically, we consider the following structure

Ui(s) = −C(s) ∑
j∈Si

(Xi(s)−Xj(s)−
Li j

s
), (2)

where C(s) is a rational scalar transfer function.

Let xre f (t) ∈ ℜ be the position of the reference vehicle at time

t. The desired position xi,des(t) is related to the position of the

reference vehicle xre f through a constant offset Li, i.e., xi,des(t)−
xre f (t)− Li ≡ 0. We define the error in spacing, ei(t) of the ith

vehicle to be the deviation of its position from the desired position,

i.e.,

ei(t) := xi(t)− xi,des(t) = xi(t)− xre f (t)−Li.

Since the desired formation corresponds to the vehicles moving as

a rigid body in a pure translational maneuver, the desired deviation

Li j := xi,des(t)− x j,des(t) is constant throughout the motion and

equals Li −L j .

Let Ei(s) be the Laplace transformation of the error in spacing,

ei(t) of the ith vehicle. Let xre f (t) be the position of the reference

vehicle at a time t and let x̄(t) := xre f (t)−xre f (0) be the displace-

ment of the reference vehicle from its initial position at the time

t. Then Xre f (s) = xre f (0)
s + X̄(s). If all the initial positions of the

vehicles were chosen to correspond to the rigid formation, then

xi(0)− xre f (0)−Li ≡ 0. With such a choice of initial conditions

and the choice of control law given in equation (2) for the plant

described by equation (1), evolution equations for the errors in

spacing can be expressed compactly as:

[In−1 +
C(s)

s2
K1]E(s) =

1

s2
D(s)+ X̃(s), (3)

where E(s) and D(s) are the respective Laplace transformations of

the vector of errors of the following vehicles and the disturbances

acting on them. The term X̃(s) is a vector of dimension n−1 and

every element of this vector is X̄(s). The term In−1 is an identity

matrix of dimension n−1 and K1 is the principal minor obtained
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by removing the first row and column of the Laplacian K of the

information flow graph defined as follows: For j �= i, Ki j = −1 if

vehicles i and j communicate directly; otherwise Ki j = 0. The ith

diagonal element is defined as Kii = −∑ j �=i Ki j . The Laplacian K
is essentially the stiffness matrix obtained by connecting springs of

unit spring constant between vehicles that communicate directly.

Fax and Murray [11] have considered a control law for the ith

vehicle of the following form, which is different from the control

law considered in this paper in equation (2):

Ui(s) = − 1

|Si|C(s) ∑
j∈Si

(Ei(s)−E j(s)) (4)

This kind of control law for a vehicle essentially averages the

feedback information from all the vehicles directly communicating

with it. With this choice of control law and the plant described by

Equation 1 the equations for errors in spacing can be written as:

Ei(s) =
1

s2
[− 1

|Si|C(s) ∑
j∈Si

(Ei(s)−E j(s))+Di(s)]+ X̄(s). (5)

The corresponding error propagation equation may be compactly

written as:

[In−1 +
C(s)

s2
L−1K1]E(s) =

1

s2
D(s)+ X̃(s), (6)

where L is the diagonal of K1.

C. Problem Formulation

The following are the objectives of the control law given by

equation (2):

1) In the absence of any disturbance on every vehicle in the

formation, it is desired that for every i ≥ 2, limt→∞ ei(t) = 0,

when the reference vehicle executes a maneuver where its

speed asymptotically reaches a constant value.

2) In the presence of disturbances of atmost unit in magnitude,

it is desirable that there exist a constant MR > 0 such that

max{|ei(t)|, |ėi(t)|}≤MR for every size of the collection and

for every t ≥ 0.

The second objective ensures that the control law given by

equation (2) is scalable. In fact, the second objective may be

analyzed for the case when the reference vehicle is stationary,

because the collection of vehicles can be treated as an LTI system.

The problem is to determine conditions on the information flow

graph (through constraints on K1) and on the controller (through

constraints on C(s)) so that these two objectives are met.

D. Analysis

Let us analyze the first requirement: Since the speed of the ref-

erence vehicle reaches a constant value, say v f asymptotically, we

have: limt→∞ ˙̄x(t) = v f = lims→0 s2X̄(s). Therefore, we will have:

lims→0 s3X̄(s) = 0. Further, for the analysis of the requirement, we

have D(s) ≡ 0. If det[In−1 + C(s)
s2 K1] is Hurwitz, we have:

lim
s→0

sE(s) = lim
s→0

[In−1 +
C(s)

s2
K1]−1sX̃(s),

= lim
s→0

[s2In−1 +C(s)K1]−1 lim
s→0

s3X̃(s) = 0.

Therefore, the steady state error requirement is readily met if

det[In−1 + C(s)
s2 K1] is Hurwitz, i.e., if the controlled motion of

formations is stable. The second condition, in fact, concerns the

stability of the controlled motion of formations.

We will prove the main result concerning the stability of the

controlled motion by using the mechanical analogy between the

Laplacian of the information flow graph and the stiffness matrix,

which essentially provides a way to address the propagation of

errors. A route to instability in structural mechanics, for systems

that do not have a rigid body mode, is that the smallest eigenvalue

of the stiffness matrix going to zero. In the context of vehicles, the

smallest eigenvalue of the Laplacian K is zero, which corresponds

to the rigid body mode, i.e., all vehicles have the same non-trivial

displacement. A way to get a system without a rigid body mode is

to ground one of the vehicles; in our case, for the sake of analysis

of propagation of errors, there is no loss of generality in attaching

the reference vehicle to the ground, that is, we set X̄(s) = 0 from

Equation 3.

The mechanical analogy indicates the following line of proof:

1) The smallest eigen value, λ , of K1 goes to zero as n → 0.

Let v be the eigen vector of K1 corresponding to the eigen

value λ .

2) Let the inner product of vector of spacing errors with v be

the signal ev(t). Its Laplace transformation, Ev(s), is given

by:

Ev(s) = < v,E(s) > (7)

= < v, [In−1 +
C(s)

s2
K1]−1 1

s2
D(s) > (8)

=
1

s2 +λC(s)
Dv(s), (9)

where Dv(s) =< v,D(s) > and dv(t) =< v,d(t) >, the com-

ponent of the vector of disturbances acting along the eigen

vector v. The mechanical analogy indicates the examination

of ev(t) when dv(t) is a sinusoid at the first natural frequency

or close to the first natural frequency.

1) Convergence of the smallest eigenvalue of K1: Since K1

is symmetric, we will use Rayleigh’s inequality to get an upper

bound for the smallest eigenvalue, λ . For that we construct an

assumed mode, va in the following way: We keep the reference

vehicle grounded and each vehicle to be displaced by one unit.

Since, the assumed mode shape indicates the amount by which

every mass is displaced, all the elements of va are equal. From

the use of Rayleigh’s inequality, it follows that:

λ ≤ < v,K1v >

< v,Lv >
≤ qr

n−1
≤ q(n)

n−1

In the latter part of the paper, various information flow graphs are

considered, where the vehicle communication pattern is randomly

assigned subject to the constraint that every vehicle can atmost

communicate directly with a pre-specified number of vehicles. The

numerical results obtained for them corroborate with the above

bound.

Remark 1. The same bound holds even for the (combinatorial)
Laplacian (L−1K1) considered by Fax and Murray [11]. We will
start by noting that the eigenvalues of L−1K1 are the same as that
of L−0.5K1L−0.5. Since L is a diagonal, positive definite matrix,
let L0.5v = w. The proof is as follows:

λ ≤ < w,L−0.5K1L−0.5w >

< w,w >
≤ < v,K1v >

< v,Lv >

≤ qr

n−1
≤ q(n)

n−1
.

The second inequality follows from the first because < v,Lv >≥<
v,v > by virtue of the information flow graph being connected and
therefore, every diagonal entry of L is greater than or equal to 1.
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Now that we have determined an upper bound on the conver-

gence of λ of K1 to 0, we shall make use of it, to analyze the

propagation of errors due to disturbances acting on the vehicles.

2) Analysis of the propagation of errors: We will focus on

showing the following: Since λ → 0 as n → ∞,

1) If C(s) does not have a pole at zero, there exists a sinusoidal

disturbance acting on each vehicle of at most unit amplitude

and of frequency proportional to
√

λ that results in ampli-

tudes of errors in spacing of the order of O
(√

(n−1)2

q(n)3

)
.

2) If C(s) has a pole at zero, then there is a critical size N∗ of

the collection such that for all n > N∗, at least one root of

the equation

1+
C(s)

s2
λ = 0

has a positive real part; in other words, the controlled motion

of the collection is unstable.

Lemma 1. If C(s) has a pole at the origin and if λ → 0 as the size
of the collection, n, goes to ∞, then there exists a critical size N∗
of the formation, such that for any size n > N∗ of the formation,
the motion of the formation will be unstable.

Proof: For the problem considered in this section, if C(s)
has l poles at zero, it can be factored as C(s) = L(s)

sl , (l > 0) for

some L(s) that does not have any poles at the origin. We can write

the closed loop characteristic equation ∆(s) as,

∆(s) := sl+2 +λL(s) = 0.

We first note that ∆(s) is Hurwitz only if L(0) �= 0. We further note

that ∆(s) is Hurwitz iff sm∆(1/s) is Hurwitz, where m is the degree

of the polynomial ∆(s). We will now analyze the root locus of

δ (s) := 1+ K
L(1/s)sl+2 ,= 1+ L̃(s)K

sl+2 , where K := 1
λ and L̃(s) = 1

L(1/s) .

Since, L̃(s) is always proper, it is clear that the root locus of δ (s)
has at least l + 2 asymptotes. Thus, as K → ∞, (l + 2) root loci

move along lines that make the following angles with the positive

real axis.

φ j =
180o +360o( j−1)

l +2
, j = 1,2, ...., l +2

Since l ≥ 1, it is clear that at least one asymptote, along which one

encounters a RHP pole, resulting in the instability of the closed

loop as K increases. Hence, if C(s) has more than a pole at origin,

it is evident that there exists a critical size N∗ of the formation,

such that for any size n > N∗ of the formation, the motion of the

formation will be unstable.

Remark 2. In the above lemma, if the C(s) does not have any
poles at origin i.e., l = 0, and if L(0) is negative, as |s| → 0, there
is at least one root of ∆(s) with positive real part. Hence, the
motion of the formation will become unstable. Hence, even for
l = 0 we require L(0) must be positive so as to avoid instability
of motion of the formation.

The following theorem addresses the main result for platoons

and it relates the propagation of errors in a platoon due to a

disturbance of at most unit magnitude acting on each vehicle.

Theorem 1.
If C(s) does not have a pole at the origin and if C(0) is positive,
then errors in spacing grow at least as O

(√
n2

q(n)3

)
; in other

words, no control law of the type considered in this paper is
scalable to arbitrarily large collections if q(n)3

(n)2 → 0 as n → ∞.

Proof:
1) Consider the transfer function that relates Ev to Dv.

Ev

Dv
(s) =

1

s2 +λC(s)
. (10)

Let C(s) = Nc
Dc

(s). Since C(s) does not have a pole at zero,

C(0) �= 0. Consider a modal disturbance d̃v(t) to be a sinu-

soid of unit amplitude and of frequency w =
√

λC(0)rad/s,
then the amplitude of the modal response ẽv(t) is given by

the magnitude of the following complex number:

1

w2 (1− C( jw)
C(0)

)
︸ ︷︷ ︸

θ(w)

.

Since θ(w) defined above has a root at zero, let |θ(w)| =
wp|θ̃(w)|, where θ̃(0) �= 0 and p ≥ 1. Therefore, the ampli-

tude ratio is
1

(
√

λC(0))p+2
| 1

θ̃(w)
|.

As λ → 0, the amplitude ratio grows to infinity as

1

|θ̃(0)|
1

(
√

λ )p+2
,

where p ≥ 1. Since p ≥ 1 as λ → 0, ev(t) grows at least as

1

|θ̃(0)|
1

(
√

λ )3
.

Since ev(t) =< v,e(t) >, we may express ev(t) as: ev =
q11e1(t)+ . . .+q1nen(t), for some q11, . . . ,q1n. Since v is an

eigenvector, we may assume without any loss of generality

that < v,v >= 1, i.e., q2
11 + q2

12 + . . . + q2
1n = 1. Each of

the errors in spacing is a sinusoid of the frequency, w =√
λL(0). Hence, e j(t) may be expressed as A jcos(wt) +

B jsin(wt); one may write ev = (∑n
j=1 q1 jA j)cos(wt) +

(∑n
j=1 q1 jB j)sin(wt). It means that either the coefficient of

cos(wt) or sin(wt) must increase as O( 1

(
√

λ )3
). Without any

loss of generality, let us say that (∑n
j=1 q1 jA j)increases in

that fashion. Since

(
n

∑
i=1

q1iAi) ≤ (∑n
i=1 |q1i|)max0<i<n+1|Ai|

⇒ max0<i<n+1|Ai| ≥ O( 1

(
√

λ )3
) 1
||v||1 .

Since v ∈ ℜn−1, it is true for finite dimensional vectors

that ||v||1 ≤ √
n−1 ||v||∞ ≤ √

n ||v||∞. Since, ||v||∞ ≤ 1, it

follows that ||v||1 ≤
√

n. Therefore, the maximum amplitude

of the errors in spacing over all the vehicles for sufficiently

large size of the formation is of O( 1

(
√

λ )3
) 1√

n = O( 1

(
√

(n)λ 3)
).

By Equation ( 10) we have, λ ≤ q(n)
n−1 . Therefore, the errors

in the spacing increase as O
(√

(n)2

q(n)3

)
. Hence, a scalable

control algorithm requires an information flow graph, where

at least one vehicle in the collection communicates directly

with at least O(n
2
3 ).

Remark 3. This theorem may be viewed as a generalization of
Theorem 2.3 in Seiler’s doctoral thesis [8]. Theorem 2.3 considers
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a string of vehicles moving in a straight line, where each vehicle
may only communicate with its neighbors.

Remark 4. If the errors were governed by the Equation ( 5), then
the propagation of errors can be analyzed as follows: Since, L =
LT and K1 = KT

1 , we find Q such that QT LQ = I;QT K1Q = Λ. The
simultaneous diagonalization of two symmetric positive definite
matrices is dealt in vibrations, where L is commonly referred to
as the mass matrix and K1 is referred to as the stiffness matrix.
Let EQ(s) = QE(s) and similarly, DQ(s) = QD(s). Then:

Q(L+K1
1

s2
C(s))QT E(s) =

1

s2
QLQT D(s)

By the orthogonality relationship, we have:

(I +Λ
1

s2
C(s))EQ(s) =

1

s2
DQ(s).

Now that the equations are decoupled, let us call the first element
of EQ(s) be Ev(s). This will enable us to write the above equation
as:

Ẽv(s) =
1
s2

1+λi
1
s2 C(s)

D̃v(s),

where Dv is the first element of DQ. But, we have shown in
Theorem 1 that for equation in above form, |ev(t)| is of O( 1√

λ
l+1 ).

Since ev(t) =< v,e(t) >, we may write it as

ev(t) = < L0.5v,L−0.5e(t) >

≤ ||L0.5v||2||L−0.5e(t)||2
≤ ||L−0.5e(t)||2 (vT Lv = 1)

≤ σ̄(L−0.5)||e(t)||2
≤ p

√
n−1||e(t)||∞ < p

√
n||e(t)||∞.

where, v is the first column of Q and p = σ̄(L−0.5) = 1√
mini|Si|

,

i = {1,2...n − 1}. Since we are considering information flow
graphs which are connected, p is well-defined and p ≤ 1. There-
fore, ||e(t)||∞ increases at least as O( 1√

n
1√
λ

3 ) = O(
√

n2

q3(n) ), for
considerable large collections. Hence, it is evident from here that
at least one vehicle in the connection should communicate at least
O(n2/3), for a scalable controller to exist.

III. SIMULATIONS

For the purposes of numerical simulation, we consider the

motion of collection of vehicles moving in a straight line. Each

vehicle is assumed to be a point mass. As mentioned earlier , the

control law used is as follows: Ui(s) = ∑ j∈Si
C(s)(xi − x j −Li j),

where j ∈ Si implies that there exists a communication link

between ith vehicle and jth vehicle. We consider a string of

vehicles moving in a straight line trying to maintain constant

distance amongst them. We describe the corresponding results

below:

String of Vehicles
We consider six vehicles, indexed from 1 to n. The set of vehicles

that the first vehicle communicates with directly is the second

vehicle, i.e. S1 = {2}. For i = 2, . . . ,n− 1, the set Si of vehicles

the ith vehicle communicates with directly is {i− 1, i + 1} and

Sn = {n−1}. A lag controller is used for feeding back the error

in spacing and is given by C(s) = 3s+2
0.01s+1 . Figure 1 shows the

convergence of λ to 0 as the length of the string increases. Figure

3 shows the propagation of errors in spacing in a string of six

vehicles. It shows how errors amplify in response to a sinusoidal
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Fig. 1. The variation of λ (lowest eigenvalue of K1) with n, for a string
of n vehicles with each vehicle connected to the vehicles directly behind
and ahead of it.

Fig. 2. Predecessor and follower based information flow pattern in the
string

disturbance acting on the last vehicle along the string, as we

move away from the reference vehicle (vehicle indexed 1). The

maximum error in spacing increases as n3 as the size n of the

string increases. The Figure 4 shows an example of the effect

stated in Theorem 1. This plot shows the disturbance to error gain

as a function of frequency. As predicted, the steady state as well

as the peak gain increases as N increases.The Figure 5 shows the

same effect.

The above simulations are repeated with randomly generated

information flow architectures. The convergence of λ to 0 for

various random graphs with a maximal degree constraint of 4 is

shown in Figure 6. It can be observed that though the information

flow graphs are random, the upper bound on λ of K1 seems to

hold good for all the cases even for a small size of the collection.

To illustrate the limitations in the sizes of collection that can be

considered when an integral action is included in the controller, we

consider a controller described by the following transfer function

e.g C(s) = 3s2+2s+1
s(0.01s+1) . However, this strategy will not assure the

stability of the motion of the collection of vehicles as shown in

Lemma 1. Figure 7 shows the migration of dominant pole to the

right half plane as the size of the collection of vehicles increases.

IV. CONCLUSIONS

In this paper, we have considered information flow graphs

for a collection of vehicles, where there is a constraint on the
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Fig. 3. Propagation of the errors along the string
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maximum number of vehicles in the collection every vehicle can

communicate with directly. We have related how the smallest

eigenvalue λ of a principal minor of the Laplacian of information

flow graph goes to zero. We then showed that the motion of

vehicles is unstable if the controller transfer function C(s) had

one or more poles at the origin and that it must have no zeroes

at the origin to track ramp inputs resulting from the reference

vehicle moving at a constant velocity. We further showed that

if λ → 0, there is a disturbance of sufficiently low frequency

acting on each vehicle of at most unit magnitude which results in

errors in spacing of O
(√

(n)2

q(n)3

)
.The extension of the above results

for higher dimensional formations and the problem of synthesis

of scalable control laws for maintenance of rigid formations is

currently underway and will be reported in [14].

V. ACKNOWLEDGEMENTS

The authors thank the National Science Foundation for its

support. The authors thank Shankar Coimbatore and Dr. Peter

Seiler for their comments. The authors also thank Professor

S.P.Bhattarcharya for discussions concerning this paper, especially

Lemma 1.

REFERENCES

[1] D. Swaroop and J. K. Hedrick, String Stability of interconnected
systems IEEE Transactions on Automatic Control, vol 41 , pp. 349-
357, March 1996.

[2] Aniruddha G. Pant, Mesh stability of formations of Unmanned Aerial
vehicles, Ph.D Thesis, University of California, Berkeley, 2002.

[3] D. V. A. H. G. Swaroop, String Stability of interconnected systems:
An application to platooning in automated highway systems, Ph.D.
Thesis, University of California, Berkeley, 1994.

[4] Singh, Sahjendra N., Rong Zhang, Phil Chandler, and Siva Banda,
Decentralized Adaptive Close Formation Control of UAVs, AIAA
2001-0106, 39th AIAA Aerospace Sciences Meeting & Exhibit,
Reno, NV, Jan. 2001.

[5] Pachter, Meir, John J. DAzzo, and Andrew W. Proud, Tight Formation
Flight Control, AIAA Journal of Guidance, Control and Dynamics,
Vol. 24, No. 2, MarchApril 2001.

[6] Khatir M., and E.J. Davison, Bounded Stability and Eventual String
Stability of a Large Platoon of Vehicles using Non-Identical Con-
trollers, 2004 IEEE Control and Decision Conference, Paradise
Island, Dec. 2004, to appear.

[7] Tolga Eren, Brian D. O. Anderson, A. Stephen Morse, Walter
Whiteley, and Peter N. Belhumeur. Operations on rigid formations
of autonomous agents. Communications in Information and Systems,
2004. to appear.

[8] Peter Joseph Seiler, Coordinated control of Unmanned Aerial Vehi-
cles, Ph.D Thesis, Department of Mechanical Engineering, University
of California, Berkeley, 2001.

[9] Bobby Rao and Pravin Varaiya. ”Flow benefits of autonomous
intelligent cruise control in mixed manual and automated traffic”
Transportation Research Record, No. 1408, 1993, 35-43.

[10] Swaroop, D., Hedrick, J.K., Chien, C.C. and Ioannou, P.A.,“A Com-
parison of Spacing and Headway Control Laws for Automatically
Controlled Vehicles, ” Vehicle System Dynamics Journal, Vol. 23,
No. 8, pp. 597-625, 1994.

[11] J. A. Fax and R.M.Murray, Information Flow and cooperative control
of vehicle formations, Proceedings of the IFAC World Congress,
Barcelona, Spain, pp. 2360-2365, July, 2002.

[12] P. J. Seiler, Aniruddha Pant and J. K. Hedrick, Preliminary Inves-
tigation of Mesh stability for Linear Systems, IMECE99/DSC-7B-1,
1999.

[13] Aniruddha Pant, Pete Seiler, T. John Koo, Karl Hedrick, Mesh Stabil-
ity of Unmanned Aerial Vehicle Clusters, Proceedings of American
Control Conference, 2001.

[14] Sai Krishna Yadlapalli, “Information flow graphs and their influence
on the stability of motion of vehicles in a rigid formation,” M.
S. Thesis, Department of Mechanical Engineering, Texas A&M
University, to be submitted in Fall 2004.

1858


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ArialNarrow-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Oblique
    /Times-Roman
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


