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Abstract— This paper is concerned with the problem of
defining, and computing the capacity of a continuous-time
additive Gaussian noise communication channel when the true
frequency response of the channel, and the power spectral den-
sity of the noise are not perfectly known, and the transmitted
signal is a wide-sense stationary process constrained in power.
The uncertainties of a true channel frequency response and
power spectral density of the noise are described by weighted
balls in the H

∞ space. In that way two sets are defined that
describe the set of all possible channel frequency responses,
and the set of all possible power spectral densities of the noise.
The ball radii depend on the degree of uncertainty that one
has about the true channel frequency response, and power
spectral density of the noise. The channel capacity is defined
as the max-min-min of a mutual information rate between
transmitted, and received signals, where the first minimum is
taken over the set of all possible noises, the second minimum is
taken over the set of all possible channel frequency responses,
and maximum is over the set of all possible power spectral
densities of transmitted signal with constrained power. It
is shown that such defined channel capacity, called robust
capacity, is equal to the operational capacity that represents
the theoretical maximum of all attainable rates over a given
channel.

I. INTRODUCTION

In the classical information, and communication theory,

it is assumed very often that the communication channel is

perfectly known to a transmitter and receiver. That means

that both transmitter, and receiver are perfectly aware of all

channel parameters such as the parameters of the channel

frequency or impulse response, and the statistic of the
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noise. Although this may be true for some communication

channels when it is possible to measure a channel with high

accuracy, there are many situations when the channel is

not perfectly known to the transmitter, and receiver, which

affects the performance of a communication system. Some

examples of communication systems with channel uncer-

tainty include wireless communication systems, communi-

cation networks, communication systems in the presence of

jamming.

Here, we will mention just a few papers from the large

body of the papers that were published on the topic of com-

munications under uncertainties. Some of the earliest papers

include [5], [4], [7]. Blackwell et al. [5] determined the

capacity of compound discrete memoryless channels. Blach-

man [4], and Dobrushin [7] were first to pose the channel

capacity (in presence of channel uncertainty) problem in

game theoretic framework, taking mutual information as a

pay-off function. In the seventies, Ahlswede [1] worked on

the problem of an arbitrary varying Gaussian channel when

the noise is an i.i.d. sequence, where the noise variance

varies but does not exceed a certain bound. In the eighties,

McEliece [8] considered the existence of saddle points and

optimal transmitter and jammer’s strategies for continuous

discrete time communication channels for mutual infor-

mation as a pay-off function. Hughes, and Narayan, [9],

defined several problems depending on the constraints im-

posed on the transmitted signal, and unknown interference

for Gaussian arbitrary varying channels (GAVC). Basar and

Wu [3] employed a game theoretic approach but for mean-

square error as a pay-off function. Deggavi, and Cover [6]

considered vector channels with noise covariance matrix

constraint. They proved that the worst additive noise in

the class of lag p covariance constraints is the maximum

entropy noise, i.e., the Gauss-Markov noise. For an example

of capacity of MIMO channels see also [10].

The papers that are related to our work are those of

Root and Varaiya [17], Baker and Chao [2], as well as the

work of Gallager [15]. Root and Varaiya proved the coding

theorem for the class of Gaussian channels but subject
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to white Gaussian noise. We proved that their approach

still holds under certain conditions for colored Gaussian

noise [16]. This enables the computation of the channel

capacities when the channel, noise or both are uncertain.

In [2], as opposed to our case, different constraints on the

transmitted and noise signals (energy constraints in terms

of covariance functions) are assumed, and derivation of the

capacity formula relies on the saddle point. Further, [2]

considers the channel capacity in the presence of just noise

uncertainty, while we can deal with any combination of

noise, and channel uncertainty.

The above discussion partially explains the importance

of channel uncertainty in communications. An interested

reader is referred to papers [11], [12], [13], that give an

excellent overview of the topic and represent good sources

of important references.

The channel capacity, called robust capacity, in the pres-

ence of channel frequency response uncertainty, and noise

uncertainty will be defined and an explicit formula for

robust capacity is derived. The problem of defining and

computing the robust capacity is alleviated by using appro-

priate uncertainty models for the channel and noise. In this

paper, a basic model borrowed from robust control theory is

used [14]. In particular, the same additive uncertainty model

of a transfer function is employed to model the uncertainty

of the channel frequency response and the uncertainty of the

power spectral density of the noise. This type of uncertainty

modeling gives an explicit formula for robust capacity that

describes how the channel capacity decreases when the

uncertainty of the channel frequency response, and power

spectral density of the noise increase. The other important

result stemming from the robust capacity formula is the

water-filling equation that shows the effect of uncertainty

on the optimal transmitted power. Finally, it is shown that

there exists a code that enables reliable transmission over

the channel with uncertainty if the code rate is less than the

robust capacity, and that the latter as defined in the paper is

equal to the operational capacity. The derived formula for

the robust capacity can be applied for any communication

channel, which is characterized by its impulse response. It

is important to notice that it can be applied for wireless

channels as well, by randomizing the parameters of a

frequency response, and then taking the expected value over

the randomness induced by the frequency response random

parameters.

II. COMMUNICATION SYSTEM MODEL

The model of communication system is depicted in Fig.

1. The transmitted signal x = {x(t);−∞ < t < +∞},

received signal y = {y(t);−∞ < t < +∞} , and noise

signal n = {n(t);−∞ < t < +∞} are wide-sense

stationary processes with power spectral densities Sx(f),

Sy(f), Sn(f), respectively. The transmitted signal x is

constrained in power, and noise n is an additive Gaussian

noise. The filter with frequency response W̃ (f) shapes the

power spectral density of the noise Sn(f).

The uncertainty in the channel frequency response

H̃(f), and overall power spectral density of the noise

Sn(f)|W̃ (f)|2 is modeled through the additive uncertainty

model of the filters H̃(f), and W̃ (f). The additive un-

certainty model of any transfer function G̃(f) is defined

by G̃(f) = Gnom(f) + ∆(f)W1(f), where Gnom(f)

represents the nominal transfer function that can be chosen

such that it reflects one’s limited knowledge or belief

regarding the transfer function G̃(f). The second term

represents a perturbation where W1(f) is a fixed known

transfer function, and ∆(f) is unknown transfer function

with ‖∆(f)‖∞ ≤ 1. The norm ‖.‖∞ is called the infinity

norm, and it is defined as ‖G̃(f)‖∞ = supf |G̃(f)|. The

set of all stable transfer functions that have a finite ‖.‖∞

norm is denoted as H∞, and it can be proven that this

space is a Banach space. All transfer functions mentioned

until now belong to this normed linear space H∞. It should

be noted that uncertainty in the frequency response of the

filter G̃(f) can be seen as a ball in the frequency domain

|G̃(f)−Gnom(f)| ≤ |W1(f)|, where the center of the ball

is the nominal transfer function Gnom(f), and the radius

is defined by |W1(f)|. Thus, the amplitude of uncertainty

varies with the frequency, and it is determined by the fixed

transfer function W1(f). The larger |W1(f)|, the larger the

uncertainty. The transfer functions Gnom(f), and W1(f)

can be determined from measured data. Based on this

uncertainty model robust capacity is defined and computed

in the following section.

III. ROBUST CAPACITY

Define the three following sets

A1 :=
{
Sx(f) ;

∫
Sx(f)df ≤ P

}

A2 :=
{

H̃(f) ∈ H∞; H̃ = Hnom + ∆1W1;

Hnom ∈ H∞, W1 ∈ H∞, ∆1 ∈ H∞,

‖∆1‖∞ ≤ 1
}
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Fig. 1. Communication model

A3 :=
{

W̃ (f) ∈ H∞; W̃ = Wnom + ∆2W2;

Wnom ∈ H∞, W2 ∈ H∞, ∆2 ∈ H∞,

‖∆2‖∞ ≤ 1
}
.

The set A1 is the set of all possible power spectral

densities of transmitted signal. The sets A2, and A3 are

the uncertainty sets that determine the set of all possible

channel frequency responses H̃(f), and the set of all

possible overall power spectral densities Sn(f)|W̃ (f)|2,

respectively. The sizes of uncertainty sets are determined

by the fact that ‖∆1‖∞, ‖∆2‖∞ ≤ 1.

Definition 3.1: The robust capacity of a continuous time

additive Gaussian channel, when a transmitted signal x is

subject to the power constraint
∫

Sx(f)df ≤ P , where the

channel frequency response uncertainty is defined through

the set A2, and where the uncertainty of the power spectral

density of the noise is determined by A3, is defined by

CR := sup
Sx∈A1

inf
H̃∈A2

inf
W̃∈A3

1

2

∫ ∞

∞

log

(
1 +

Sx|H̃ |2

Sn|W̃ |2

)
df. (1)

Clearly, the robust capacity definition is a variant of the

Shannon capacity for additive Gaussian continuous time

channels, subject to input power and frequency constraints

[15], [17].

Theorem 3.2: Consider an additive uncertainty

description of H̃(f) and W̃ (f), and suppose that
(|Hnom(f)|+|W1(f)|)2

Sn(|Wnom(f)|−|W2(f)|)2 is bounded, integrable, and that

|Hnom(f)| �= |W1(f)|, and |Wnom(f)| �= |W2(f)|. Then

the following hold.

1) The robust capacity of an additive Gaussian continu-

ous time channel with additive uncertainty employed

to model the channel frequency response uncertainty,

and the uncertainty of the power spectral density of

the noise is given parametrically by

CR =
1

2

∫
log

(
ν∗(|Hnom| − |W1|)

2

Sn(|Wnom| + |W2|)2

)
df, (2)

where ν∗ is a Lagrange multiplier found via∫ (
ν∗ −

Sn(|Wnom| + |W2|)
2

(|Hnom| − |W1|)2

)
df = P, (3)

subject to the condition

ν∗(|Hnom| − |W1|)
2 − Sn(|Wnom| + |W2|)

2 > 0

ν∗ > 0, (4)

in which the integrations in (2), and (3) are over the

frequency interval over which the condition (4) holds.

2) The infimum over the noise uncertainty in (1) is

achieved at

∆∗
2 = exp[−j arg(W2) + j arg(Wnom)]

‖∆∗
2‖∞ = 1,

and the resulting mutual information rate after mini-

mization is given by

inf

∫
log

(
1 +

Sx|H̃ |2

Sn|Wnom + ∆2W2|2

)
df

=

∫
log

(
1 +

Sx|H̃|2

Sn(|Wnom| + |W2|)2

)
df,

where the infimum is over ‖∆2‖∞ ≤ 1.

3) The infimum over the channel frequency uncertainty

in (1) is achieved at

∆∗
1 = exp[−j arg(W1) + j arg(Hnom) + jπ]

‖∆∗
1‖∞ = 1,

and the resulting mutual information rate after mini-

mization is given by

inf

∫
log

(
1 +

Sx|Hnom + ∆1W1|
2

Sn(|Wnom| + |W2|)2

)
df

=

∫
log

(
1 +

Sx(|Hnom| − |W1|)
2

Sn(|Wnom| + |W2|)2

)
df,

where the infimum is over ‖∆1‖∞ ≤ 1.

4) The supremum over A1 yields the water-filling equa-

tion

S∗
x

+
Sn(|Wnom| + |W2|)

2

(|Hnom| − |W1|)2
= ν∗. (5)

Proof. The condition that (|Hnom(f)|+|W1(f)|)2

Sn(f)(|Wnom(f)|−|W2(f)|)2 is

bounded, and integrable is necessary to provide the exis-

tence of the integral in (1) for each H̃ ∈ A2, and each

W̃ ∈ A3 (see Lemma 8.5.7, [15], page 423). Further, the
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infimum over the set A2 is obtained as follows. It is possible

to prove that

inf
H̃∈A2

1

2

∫
log

(
1 +

Sx(f)|H̃(f)|2

Sn(f)|W̃ (f)|2

)
df

≥
1

2

∫
log

(
1 +

Sx(f)(|Hnom(f)| − |W1(f)|)2

Sn(f)|W̃ (f)|2

)
df, (6)

as well as the opposite inequality implying that (6) holds

with equality. The infimum over A3 is resolved in a similar

manner. The problem of finding the supremum is exactly

the same as in the case without uncertainty [15]. So, by

applying the calculus of variation the capacity formula

(2) is obtained accompanied by the modified water-filling

formula (5) and power constraint (3). ν∗ is a positive

Lagrange multiplier, and is obtained as a solution of (3).

The integrations in previous formulas are defined over the

frequencies for which (4) holds.

The formula (2) shows how the channel frequency re-

sponse uncertainty, and noise uncertainty affect the capacity

of the communication channel. To understand this point

better assume that the noise n is a white Gaussian noise

with Sn(f) = 1W/Hz over all frequencies such that the

overall power spectral density of the noise is |W̃ |2. It can be

seen that the capacity depends on the two fixed, and known

transfer functions W1(f), and W2(f), first determining the

size of the channel frequency response uncertainty set, and

second determining the size of the noise uncertainty set.

From (2), one could conjecture that the channel capacity

decreases when the size of uncertainty sets W1(f), and

W2(f) increase. This is an intuitive result because the

channel capacity should be determined by the worst case

channel and noise. This follows from the definition of the

channel capacity which determines a single code that should

be good for each channel, and the noise from uncertainty

sets. Thus, a single code should be good for the worst

channel, and the noise, as well. But, it cannot be guaranteed

that the code, which is good for the worst channel, and the

noise will also be good for the rest of the channels, and

noises. That’s why the robust channel capacity could be

less than the channel capacity of the worst channel.

Here, we make some comments on the relations between

|Hnom|, and |W1(f)|, and between |Wnom|, and |W2(f)|.

It is reasonable to assume that in practical cases, |Hnom| ≥

|W1(f)|, and |Wnom| ≥ |W2(f)|, because the uncertainty

could represent the errors in channel, and noise estimations.

Thus, the second term in logarithm could go to zero,

implying zero capacity, just if the channel and/or noise

estimation are very poor.

IV. CHANNEL CODING AND CONVERSE TO

CHANNEL CODING THEOREM

In this section, it is shown that under certain conditions

the coding theorem, and its converse hold for the set of

communication channels with uncertainties defined by sets

A2, and A3. It means that there exists a code, whose code

rate R is less than the robust capacity CR given by (2), for

which the error probability is arbitrary small over the sets

A2, and A3. This result is obtained in [16], by combining

two approaches found in [15], and [17].

First define the frequency response of the equivalent

communication channel by G(f) =

(
Sx(f)|H̃(f)|2

Sn(f)|W̃ (f)|2

)1/2

,

and denote its inverse Fourier transform by g(t). Fur-

ther define two sets A and B as follows A :=

{G(f); H̃(f) ∈ A2, W̃ (f) ∈ A3}, B := {g(t); G(f) ∈

A, g(t) satisfies 1),2),3)} where

1) g(t) has finite duration δ,

2) g(t) is square integrable (g(t) ∈ L2),

3)
∫ −α

−∞ |G(f)|2df +
∫ +∞

α |G(f)|2df → 0 when α →

+∞.

The set of all g(t) that satisfy these conditions is condition-

ally compact set in L2 (see [17]), and this enables the proof

of coding theorem, and its converse. Note that the condition

1) can be relaxed (see Lemma 4 [18]). Now, the definition

of the code for the set of channels B is given as well as the

definition of the attainable rate R, and operational capacity

C. The channel code (M, ε, T ) for the set of communication

channels B is defined as the set of M distinct time-functions

{x1(t), ..., xM (t)}, in the interval −T/2 ≤ t ≤ T/2, and

the set of M disjoint sets {D1, ..., DM} of the space of a

received signal y such that

1

T

∫ T/2

−T/2

xk(t)dt ≤ P

for each k, and such that the error probability for each code-

word is Pr
(
y ∈ Dc

k|xk(t) sent
)
≤ ε, k = 1, ..., M , for all

g(t) ∈ B. The positive constant R is called attainable coding

rate if there exists a sequence of codes {(M, εn, Tn)},

M = exp[TnR], such that when n → +∞, then Tn → +∞,

and εn → 0 uniformly for all g(t) ∈ B. Here εn is the

codeword probability of error as previously defined, and

Tn is a codeword time duration. The operational capacity

C represents the supremum of all attainable rates R [17].
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Theorem 4.1: The operational capacity C for the set of

communication channels B is given by (2), and is equal to

robust capacity CR.

Proof. The proof follows from [15], and [17]. For details

see [16].

V. EXAMPLES

A. Noise Uncertainty

In the first example, we assume that channel is completely

known, |W1| = 0, and Sn = 1W/Hz. The noise uncertainty

set is defined by W̃ (f) =
ξp(f)

j2πf/β+1 , where ξp(f) = ξ +

∆2(f)δξ, ξ = α/β, 0 ≤ δ < 1, and Wnom(f) = ξ
j2πf/β+1 .

Thus, |W̃ (f) − Wnom(f)| = | ∆2(f)δξ
j2πf/β+1 | ≤ | δξ

j2πf/β+1 |

= |W2(f)|, and the uncertainty set is the ball in frequency

domain centered at |Wnom(f)|, and with radius W2(f).

The radius, i.e., the size of uncertainty set is determined

by parameter δ. The channel is modelled as a second order

transfer function H(s) =
ω2

n

s2+2ξωns+ω2
n

, s = jω = j2πf .

The parameters are chosen as follows, α = 1, β =

1000 rad/s, ξ = 0.3, and P = 0.01W . Fig. 2 shows

that the robust capacity indeed decreases with the size of

uncertainty set determined by δ, where the slope is larger

for small uncertainty. Fig. 3, shows the optimal power

spectral density of transmitted signal S∗
x
(f) for different

values of δ. It seems that the transmitter tries to fight against

uncertainty by reducing the bandwidth, and in the same time

by regrouping the power towards the lower frequencies.

B. Channel - Noise Uncertainty

To illustrate the effect of the channel, and noise uncer-

tainty on the capacity, we consider the following example.

The channel is modelled by a second order transfer function

H(s) =
ω2

n

s2+2ξωns+ω2
n

, s = jω = j2πf , where it is assumed

that the damping ratio ξ is unknown (ξ can take values

between 0, and 1), whose value is within certain interval,

ξlow ≤ ξ ≤ ξup. This set will be roughly approximated

by using the following procedure. We choose the natural

frequency to be ωn = 900 rad/s, nominal damping ratio

ξnom = 0.3, and 0.25 ≤ ξ ≤ 0.4. Further, the size of

uncertainty set is defined by |W1| = |Hnom|−|Hlow|, where

Hlow(s) =
ω2

n

s2+2ξupωns+ω2
n

, Hnom(s) =
ω2

n

s2+2ξnomωns+ω2
n

.

The values of ξlow = 0.25, and ξup = 0.4 are deliberately

chosen such that |Hnom| + |W1| is a good approximation

of Hup(s) =
ω2

n

s2+2ξlowωns+ω2
n

. Thus, the frequency response

uncertainty set is roughly described by |Hnom|±|W1|. But,

|W1| = |Hnom| − |Hlow| implies |Hlow| = |Hnom| − |W1|.

Fig. 2. Robust capacity - noise uncertainty

That means that the robust capacity is determined by

the transfer function Hlow. In the same way, two other

uncertainty sets are modeled, for ξlow = 0.2, and ξup = 0.5,

and ξlow = 0.18, and ξup = 0.6, where the rest of the

parameters keep their previous values. The uncertainty sets

are identified by the range of the damping ratios, ∆ξ =

ξup − ξlow, ∆ξ = 0.15, ∆ξ = 0.30, ∆ξ = 0.42, for the

first, second, and third uncertainty set, respectively. Notation

∆ξ = 0 stands for the nominal channel model. The noise

uncertainty set is the same as in the case of single noise

uncertainty. The power is constrained to P =0.01 W. Fig.

4 depicts the effect of noise uncertainty for different sizes

of channel frequency response uncertainty sets. Similarly

to the previous example, the channel uncertainty tends to

affect the capacity more for lower values of uncertainty.

For instance, the distance between the curves ∆ξ = 0, and

∆ξ = 0.15 is larger than the distance between the curves

∆ξ = 0.15, and ∆ξ = 0.30. Fig. 5 reveals that, at least for

this set of parameters (P =0.01 W, δ =0.1, ωn = 900 rad/s,

α = 1, β = 1000 rad/s), and fixed noise uncertainty, the

channel uncertainty has a little effect on the optimal power

spectral density S∗
x
(f).

VI. CONCLUSION

This paper considers the capacity problem of a con-

tinuous time additive Gaussian noise channels when the

true frequency response of the channel, and power spectral

density of the noise is not completely known. The channel

capacity, called robust capacity, is defined as the max-min-

min of a mutual information rate between the transmitted,

and received signals, and explicitly computed. Also, a

modified water-filling equation is derived showing how the
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Fig. 3. Optimal psd - noise uncertainty

Fig. 4. Robust capacity - channel-noise uncertainty

Fig. 5. Optimal psd - channel-noise uncertainty

optimal transmitted power changes with the uncertainty. It

is shown that the robust capacity as introduced in the paper

is equal to the operational capacity, i.e., the channel coding

theorem, and its converse hold.
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