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Abstract— We analyze a class of dynamical systems in the
presence of distributed propagation delays under an optimiza-
tion framework for rate allocation problems in communication
networks. We develop a model of the rate control system
with distributed communication delays, and derive a suffi-
cient condition for global stability under a set of reasonable
assumptions.

I. INTRODUCTION

With emerging networked control systems, control of
a distributed system in the presence of varying delays is
becoming an interesting and important issue. Examples of
such systems include a sensor network consisting of arrays
of sensors that collect and provide feedback information
for a control system, and a communication network with
many end users that individually adjust their transmission
rates based on the feedback information provided by active
queue management (AQM) schemes [3], [5], [11]. One can
think of such a system as one that consists of one or more
control agents with a collection of other agents that deliver
feedback information with varying delays. In this type
of system modeling of feedback information collected by
many individual agents experiencing heterogeneous delays
and a study of the system stability require a new framework
different from a traditional one that allows only a single
(possibly time-varying) delay. In this paper we consider a
simple network where one control agent adjusts the control
variable based on a feedback information provided by the
collection of agents with varying or distributed delays.
Although our framework can be applied to more general
settings, we use a rate control problem in a communication
network as an example to describe the framework and study
the stability of the system.

Our basic setup consists of one or more senders and mul-
tiple receivers. There is one control agent that aggregates the
traffic from the senders and acts on their behalf to assume
the responsibility of controlling the aggregate transmission
rate of the connections into the network. We assume that
these connections traverse a single bottleneck or there exists
one dominant bottleneck in the network that is shared by
the connections. This bottleneck could be, for instance, the
access link that connects a subnet or a small domain to the
Internet. A commercial device, such as PacketShaper [1],
can intercept packets from a group of connections and
perform congestion control on the aggregate traffic. An
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example of a congestion control scheme that can be used is
MulTCP that allows the control agent to mimic the behavior
of a set of Transmission Control Protocol (TCP) connections
using the aggregate traffic [9]. This type of model also
emerges naturally when a large number of connections share
a bottleneck link, where the system dynamics can be well
approximated by a deterministic process that resembles the
behavior of a single flow scaled properly [16], [17].

The stability of a rate control system with a set of
users with fixed delays has been studied in the past [2],
[4], [14]. However, they consider the case where a set of
users individually adjust their own rates based on their
utility functions and delayed feedback information, and the
feedback delay for each user is fixed. Our model in this
paper assumes that one single control agent acts as the
sole congestion control agent on behalf of all users on their
aggregate traffic. However, the feedback information expe-
riences varying delays due to the fact that the destinations
of the users may be different and hence the feedback delay
for different users may experience heterogeneous delays.

We approximate the distribution of feedback delays of the
connections using a family of gamma distributions. Our re-
sults in the presence of distributed delays with the assumed
distribution are similar to those in [15]. One interpretation of
our results is that the feedback information filtered through
a necessary averaging function is sufficient for ensuring
the stability of a rate control system with certain utility
and resource price functions under some assumptions. It
essentially tells us that the effect of distributed delay is dy-
namically equivalent to adding one or more stages of stable
low-pass filters, and the stability of original system remains
the same as that of a system with the distributed delays
replaced with an equivalent (single average) delay. These
results provide an interesting perspective for designing end
user rate control algorithms and AQM mechanisms in the
presence of distributed delays.

This paper is organized as follows. Section II describes
the optimization problem for rate control. Our main results
are presented in Section III. We conclude the paper in
Section VI.

II. BACKGROUND

In this section we briefly describe the rate control prob-
lem in the proposed optimization framework. Consider a
network with a set L of resources or links and a set I of
users. Let Cl denote the finite capacity of link l ∈ L. Each
user has a fixed route Ri, which is a non-empty subset of

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

ThA03.2

1823



L. We define a zero-one matrix A, where Ai,l = 1 if link
l is in user i’s route Ri and Ai,l = 0 otherwise. When the
throughput of user i is xi, user i receives utility Ui(xi).
This utility function could represent either the user’s true
utility or some function assigned to the user through the
selected end user algorithm. We take the latter view and
assume that the utility functions of the users are used to
select the desired rate allocation among the users. The utility
Ui(xi) is an increasing, strictly concave and continuously
differentiable function of xi over the range xi ≥ 0. The
rate control problem can be formulated as the following
optimization problem [8]:
SYSTEM(U,A,C):

maximize
∑
i∈I

Ui(xi) (1)

subject to AT x ≤ C , x ≥ 0

where C = (Cl, l ∈ L).1 The first constraint is the capacity
constraint.

Assume that every user adopts rate-based flow control.
Let wi(t) and xi(t) denote user i’s willingness to pay per
unit time and rate at time t, respectively.2 Now suppose that
at time t each resource l ∈ L charges a price per unit flow
of µl(t) = pl(

∑
i:l∈Ri

xi(t)), where pl(·) is an increasing
function of the total rate going through it. Consider the
system of differential equations

d

dt
xi(t) = κi

(
wi(t) − xi(t)

∑
l∈Ri

µl(t)

)
, (2)

where wi(t) = xi(t) ·U ′
i (xi(t)). For an explanation of (2),

refer to [10]. Since we assume that the utility functions of
the users are selected to decide the rate allocation amongst
the users, under (2) one can see that, in fact, both the users’
utility functions and resource price functions can be utilized
to decide the operating point of the system. Therefore, the
design of rate control algorithms is equivalent to selecting
the users’ utility functions and the price functions of the
resources in the network.

Kelly et al. [10] have shown that under some conditions
on pl(·), l ∈ L, the above system of differential equations
converges to a point that maximizes the following expres-
sion

U(x ) =
∑
i

Ui(xi) −
∑
l

∫ ∑
i:l∈Ri

xi

0

pl(y)dy . (3)

Note that the first term in (3) is the objective func-
tion in our SYSTEM(U, A, C) problem. Thus, the algo-
rithm proposed by Kelly et al. solves a relaxation of the
SY STEM(U, A, C) problem.

1All vectors are assumed to be column vectors.
2Throughout the rest of the paper we refer to the willingness to pay per

unit time as simply willingness to pay.

III. RATE CONTROL WITH FEEDBACK DELAY

We study the rate control problem in Kelly’s optimization
framework described in Section II with a single bottleneck
link.3 Specifically, we consider a system where a set of
flows that traverse a same bottleneck link is controlled
by a single rate control agent as shown in Fig. 1. The
agent adjusts the aggregate rate of the flows based on the
congestion level at the bottleneck link. The feedback from
the bottleneck link is delayed due to the link transmission
and propagation delays. These flows may have different
round-trip delays.
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Fig. 1. A network with a single control agent and many connections.

This type of model can be motivated as follows. In [16],
[17] it has been shown that when a large number of flows
share a bottleneck link, the aggregate behavior of the flows
can be well approximated by a deterministic process that
mimics the behavior of a single flow that is scaled accord-
ingly. Similarly, in [7] authors have modeled the interaction
of a set of homogeneous TCP flows with the same round-trip
delay with RED mechanism using a deterministic system
given by a delay differential equation, where the interaction
closely resembles the expected behavior of the aggregate
rate of the flows as shown in [16], [17]. Hence, our model
can be interpreted as a system where we approximate
the aggregate behavior of a large number of flows with
heterogeneous round-trip delays, using a single rate control
agent that controls the aggregate rate of the flows based
on the feedback signal provided by the bottleneck link.
Another scenario where our model is useful is when the
dominant bottleneck of flows originating within a domain
is the access link and the aggregate rate of flows into, for
example, an access link is rate controlled by the domain
(e.g., PacketShaper).

Since the rate of a user is limited in practice due to the
link capacity and receiver buffer size, we assume that the
(aggregate) rate is upper bounded by some constant Xmax.
Similarly user rates are bounded away from zero from the
fact that there is a lower bound on the transmission rate.
For instance, in the case of TCP the transmission rate of a
connection cannot be smaller than one packet size divided
by the round-trip time of the connection. We denote this

3Although there may be other links traversed by the flows sharing the
bottleneck link, we assume that they are not bottlenecks.
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lower bound on the rate by Xmin > 0. This lower bound
Xmin can be arbitrarily close to 0.

Assumption 1: The rate belongs to a compact set
[Xmin, Xmax] ⊂ IR+.

A. Modeling Distributed Delays

Since we assume that the delays of the flows are het-
erogeneous and the control agent updates the rate based
on the feedback signal provided by the flows, the feedback
signal that the control agent sees at any given time consists
of feedback signal provided by the bottleneck at different
times over a period. We model this feedback signal delays
spread over an interval using a distribution, and the value
of the feedback signal used by the control agent is given
by the mean of the feedback signal according to the given
distribution of the delays.

Under this assumption the rate control action by the agent
can be mathematically written as the following differential
equation:4

d

dt
x(t) = κ

(
g(x(t)) −

∫ ∞

0

f(x(t − s − T ))K(s)ds

)
,(4)

where T ≥ 0 is the minimum round-trip delay of the
flows, K(·) is the kernel of the feedback delays with∫ ∞
0

K(s)ds = 1,

g(x) = x · U ′(x) and f(x) = x · p(x) . (5)

Using a change of variable θ = t−s, eq. (4) can be written
as

d

dt
x(t) = κ

(
g(x) −

∫ t

−∞
f(x(θ − T ))K(t − θ)dθ

)
.(6)

In this paper we approximate the delay distribution K(·)
using a family of generic delay kernels also known as
gamma kernels, which is expressed as follows.

K(u) =
{

αr+1ur

r! e−αu if u ≥ 0
0 otherwise

, (7)

where α > 0 is a constant, and r ≥ 0 is an integer.
The parameter r is called the order of delay kernel K

[12], and the mean delay corresponding to the K with a
given pair (α, r) is given by

E [K] =
∫ ∞

0

u
αr+1ur

r!
e−αudu =

r + 1
α

.

The kernel K(·) with r = 0 and r = 1 is called the weak
and strong kernel, respectively, and is frequently used to
model distributed delay in different disciplines [18]. The
kernel K models a whole class of delay and the case of
discrete delay can be realized by letting r and α go to ∞
simultaneously while keeping the mean delay r+1

α fixed.
We are interested in studying the global asymptotic

behavior of the model in (4) under a set of reasonable
assumptions on functions f(x) and g(x). In particular,

4From Assumption 1 we assume that when x(t) = Xmin (resp. x(t) =
Xmax), d

dt
x(t) = max{0, eq. (4)} (resp. d

dt
x(t) = min{0, eq. (4)}).
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Fig. 2. Gamma delay kernels with increasing r and hence increasing
average delay. It is possible to prioritize one feedback over other by
choosing appropriate r.

we adopt the delay kernels in (7) and apply linear chain
technique to establish the stability of the system [12]. The
basic motivation for this method is to show that the effect
of distributed delay is the same as addition of one or more
low pass filters to the system. Mathematically, this can be
described as follows: Let x(t) be a positive solution of (6).
We define

ωi(t) =
∫ t

−∞
f(x(θ−T ))Gi(t−θ)dθ, i = 0, 1, . . . , r , (8)

where Gi(u) = αi+1ui

i! e−αu, u ≥ 0.
Note that for any i ≥ 1,

d

du
Gi(u) = −αGi(u) + αGi−1(u) ,

d

du
G0(u) = −αG0(u) . (9)

Using (9) we find that x(t) :=
(x(t), ωr(t), ωr−1(t), . . . , ω0(t)) satisfies

d

dt
x(t) = κ (g(x(t)) − ωr(t))

d

dt
ωi(t) = −αωi(t) + αωi−1(t) , i = 1, . . . , r (10)

d

dt
ω0(t) = −αω0(t) + αf(x(t − T ))

By substituting t = T · s and redefining β = T · α

ν
d

dt
x(s) = g(x(s)) − ωr(s)

d

dt
ωi(s) = −βωi(s) + βωi−1(s) , i = 1, . . . , r (11)

d

dt
ω0(t) = −βω0(t) + βf(x(t − 1))

where ν = 1/T · κ. Although these equations look similar
to those studied in [6], they do not satisfy the assumptions
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required to apply the theorems in [6] due to the fact that
gain is state-dependent in typical network rate allocation
problems. Instead, we will extend the results in [6] for our
networking scenario and derive new stability criteria.

We first make the following assumptions on the functions
g(x) and f(x) defined in (5).

Assumption 2: (i) The function g(x) as given in (12) is
strictly decreasing with g

′
(x) < 0 for all x > 0. (ii) The

function f(x) is increasing for all x > 0 (iii) Both g(x)
and f(x) are Lipschitz continuous on strictly positive real
axis.

We rewrite the system given in (11) in a form more
amenable to analysis: Define

y(t) := g(x(t)) . (12)

This allows us the following change of coordinate:

x(t) = g−1(y(t)) ⇒ d

dt
x(t) =

d
dty(t)

g′(g−1(y(t)))
(13)

where the inverse g−1(·) exists from Assumption 2. Let
κ(y(t)) := −g

′
(g−1(y(t))). Clearly, κ(y(t)) > 0 under

Assumption 2. Using this substitution in (13) we get the
following form which resembles (6) closely, except for a
state-dependent multiplicative gain κ(y(t)).

d

dt
y(t) (14)

=
κ(y(t))

ν

(∫ t

−∞
f(g−1(y(θ − T )))K(t − θ)dθ − y(t)

)

It is (14) we are interested in studying and show that there
is a close correspondence between invariance and global
stability properties of map

yn+1 = f(g−1(yn)) := F (yn) (15)

and those of (14) for fixed and periodic orbits.
Using co-ordinate transformation given by (12), the dy-

namical system in (10) can be rewritten as

d

dt
y(t) = κ(y(t)) [ωr(t) − y(t)]

d

dt
ωi(t) = −βωi(t) + βωi−1(t) , i = 1, . . . , r (16)

d

dt
ω0(t) = −βω0(t) + βF (y(t − 1))

Suppose that I = [a, b] ⊂ [Xmin, Xmax] is a closed
invariant interval under the map F in (15).

Let Y := C([−1, 0], IR+) be the Banach space of
continuous functions mapping the interval [−1, 0] to IR+,
and YI := {φ ∈ Y |φ(s) ∈ I for all s ∈ [−1, 0]} and ωr(0),
. . . , ω0(0) ∈ I .

B. Existence of a Unique Solution and Stability

Since the functions in (16) are Lipschitz continuous by
assumption, solutions do exist for all t ≥ 0 and are unique
for any initial condition beginning in invariant interval I .
Furthermore, the invariance property of the solutions stated

below (Theorem 1), ensures that they stay positive and
bounded by the initial set they start in, which is assumed
to be invariant under the map F .

We first state the invariance result that is used to establish
the stability of the system shortly.

Theorem 1: (Invariance) If initial function φ ∈ YI

and ωr(0), . . . , ω0(0) ∈ I , the corresponding solu-
tion (y(t), ωr(t), . . . , ω0(t); φ, ωr(0), . . . , ω0(0)) satisfies
y(t) := (y(t), ωr(t), . . . , ω0(t)) ∈ Ir+2 for all t ≥ 0. This
means that set I is invariant under (16).

Before proving Theorem 1 we first state a lemma that
will be used in the proof of theorem.

Lemma 1: Suppose that I is a compact interval and η :
[0,∞] → R is a continuous function with values in I . If
σ : [0,∞] → R+ is a bounded, continuous, strictly positive
function and u(t) is a solution of following equation

σ(t)u̇(t) + u(t) = η(t) , (17)

then u(t) ∈ I for all t ≥ 0.
Proof: We will prove this lemma by contradiction.

Suppose that I = [a, b] and the lemma is not true. Define

t0 = inf{t ≥ 0| ∀ (t, t′), t′ > t, ∃ t̃ such that u(t̃) 
∈ I}
First, suppose that u(t0) = b. Then, every interval (t0, t0 +
δ), δ > 0, contains a point τ such that u(τ) > b and u̇(τ) >
0. However, from (17) it follows that u̇(τ) < 0, which is a
contradiction. The case for u(t0) = a can be shown to lead
to a similar contradiction. This completes the proof.

This lemma is essentially based on [6]. A similar lemma
can be also found in [13] which proves the bounds in
quantitative manner. We now proceed with the proof of
Theorem 1.

Proof: (Theorem 1) Apply Lemma 1 to d
dtω0(t) =

−βω0(t) + βF (y(t − 1)). Clearly, if ω0(0) ∈ I and initial
function φ ∈ YI , then ω0(t) ∈ I for all 0 ≤ t ≤ 1. By
applying Lemma 1 to d

dtω1(t) = −βω1(t) + βω0(t), we
can argue that ω1(t) ∈ I for all 0 ≤ t ≤ 1. Following
this recursive argument, we can show that ωi(t) ∈ I for
i = 1, . . . , r and y(t) belong to I for al 0 ≤ t ≤ 1. Now
by an induction argument on time the same can be argued
for all t ≥ 0.

Next theorem considers the case where the map F has an
attracting fixed point y∗ with immediate basin of attraction
J0 : Fny0 → y∗ with y0 ∈ J0. More specifically, suppose
that there is a sequence of closed intervalsJk, k = 0, 1, . . .,
such that F (Jk) ⊂ int(Jk+1) ⊂ Jk+1 ⊂ int(Jk) for
all k = 0, 1, . . ., and ∩∞

k=1Jk = {y∗}. Let YJ0 =
C([−1, 0], J0).

Theorem 2: (Stability) If ν > 0, initial function
φ ∈ YJ0 and ωr(0), . . . , ω0(0) ∈ I then
limt→∞(y(t), ωr(t), . . . , ω0(t); φ, ωr(0), . . . , ω0(0)) =
(y∗, . . . , y∗).
Before proving the theorem we first introduce the following
lemma.
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Lemma 2: Fix k = 0, 1, . . .. Suppose that L is an open
interval that satisfies Jk+1 ⊂ L ⊂ Jk. Consider the eq. (17)
with η(t) ∈ F (Jk) for all t ≥ 0. Let u(t) be the solution of
(17) with u(0) = u0 ∈ Jk. Then, there exists a finite time
t0 = t0(u0, L) such that u(t) ∈ L for all t ≥ t0.

Proof: If there exists a time t0 such that u(t0) ∈ Jk+1,
then Lemma 1 implies that u(t) ∈ Jk+1 for all t ≥ t0 and
Lemma 2 follows. Now suppose that u(t) 
∈ Jk+1 for all
t ≥ 0. First, suppose that u(t) > supJk+1 for all t ≥ 0.
Then, (17) tells us that u̇(t) < 0 for all t ≥ 0, and since u(t)
is bounded from below by supJk+1, u(t) converges to some
limit u∗ such that u(t) → u∗ as t → ∞. If u∗ = supJk+1,
then the lemma follow since there exists some finite t0 such
that u(t0) ∈ L since Jk+1 ⊂ L. If u∗ > supJk+1, then
from (17) there exists some positive constant ε such that
u̇(t) = (−u(t) + η(t))/σ(t) ≤ −ε for all sufficiently large
t. This implies that u(t) ↓ −∞ as t → ∞, which contradicts
the assumption that u(t) > supJk+1 for all t ≥ 0. The other
case, u(t) < inf Jk+1 can be treated in a similar manner.

We now proceed with the proof of Theorem 2.
Proof: (Theorem 2) Since Lemma 2 is true for all k =

0, 1, . . ., from the last equation in (16) we can first find
a finite t′1 such that for all t ≥ t′1, ω0(t) ∈ J1. Then,
successively applying the same argument to the equations

d

dt
ωi(t) = −βωi(t) + βωi−1(t)

for i = 1, 2, . . ., and then finally to

d

dt
y(t) = κ(t)[ωr(t) − y(t)],

we can establish that ωi(t) ∈ J1 and y(t) ∈ J1 for all t ≥ t1
for some finite t1. Now, by an induction argument for each
k = 2, 3, . . ., one can find a sequence of tk, k = 1, 2, . . .,
such that, for all t ≥ tk, y(t) ∈ Jk and ωi(t) ∈ Jk, i =
0, 1, . . . , r. Now the theorem follows from the assumption
that ∩∞

k=1Jk = {y∗}.

IV. APPLICATION

Consider the rate control problem with N homogeneous
users. We assume that utility function of the users is of the
form in ([15]) and the price function used at the resource
is of ([15]). Then, the end user algorithm is given by

ẋ(N)(t)

= k
(
x(N)(t)U

′
a(t) − x(N)(t − T ) · p(N · x(N)(t − T ))

)

= k

(
1

x(N)(t)a
− x(N)(t − T )

(
N · x(N)(t − T )

C

)b
)

,(18)

where a superscript (N) is used to denote the dependence
on N . The underlying discrete-time difference equation is

given by

y
(N)
n+1 =

(
N

C

)b

y
− b+1

a
n := F (N)(y(N)

n )

1(
x

(N)
n+1

)a = x(N)
n

(
N · x(N)

n

C

)b

, x(N)
n > 0

x
(N)
n+1 =

(
(C/N)b

x
(N)
n

b+1

) 1
a

(19)

From (19) the fixed point x(N)∗ is
(

C
N

) b
a+b+1 , and the eigen-

value is given by λ(N)(x(N)∗) = − b+1
a and is independent

of N . Therefore, the stability of the system does not depend
on the number of users in the system. This can also be
explained using the price elasticity of demand. Since, given
a utility function of the form in ([15]) for some a > 0, the
price elasticity of demand is constant for all x > 0, one
would expect the stability of the system to be independent
of the operating point, i.e., the fixed point, and capacity,
but only on the choices of the utility and price functions
that determine the responsiveness of the users and resource,
respectively.

In the case of instability when a < b + 1, however,
depending on the feedback delay T , the rate can oscillate
around the fixed point. Clearly, the upper bound on the
solution is given by the self-imposed limit C

N of the users
to avoid any capacity mismatch. According to Theorem [15]

the lower bound will be given by F (C/N) =
(

N
C

) 1
a .

Hence, link can see a wide fluctuation from full to very low
utilization irrespective of the number of users. Note that this
lower bound increases with a as one would expect.

V. NUMERICAL SIMULATIONS

We take a flow (same as N homogenous flows, where N
is an i arbitrary positive integer) with their utility functions
of the form given by ([15]) with a = 3 and price function
as in ([15]) with b = 5, and the link capacity C is set to
10. It is clear that for these values of a and b rate control
algorithm is unstable since 5+1

3 = 2 > 1. The optimal rates
for both users in the absence of delay will be given by

x∗ =
((

2
5

)5
) 1

9
= 1.6637. Their self imposed upper rate

limit will be C/2 = 2.5. The lower limit on the solution
according to the period two orbit of map F will be given

by F (2/5) =
(

2
5

) 1
3 = 0.7368.

Fig. 3(a) shows the rate waveform for a delay of 50
time unit and exhibits stable because of the way we have
chosen the parameters a and b. Basic effect of providing
feedback based on distributed delay is addition of low
pass filters in the control loop. The number of these low
pass filters depends on the particular gamma delay kernel
parameter r. In Figure 3(b) and Fig. 3(c) we are showing
the wave of system with one and two stages of additional
low pass filters due to different choices of gamma delay
kernel parameter r. What we want to show that stability
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reimans unaffected by the introduction of these filters and
basic stability is determined by the original choice of utility
and price functions. Clearly, the output of filters (shown in
blue and green) approach zero as rate algorithm settles to
optimal value (shown in red).

VI. CONCLUSION

We have shown that the dynamical stability of a rate con-
trol mechanism between users and a resource is determined
by the interaction of underlying utility and price functions
even in the case when delay is distributed. In particular,
we demonstrated that the net effect of distributed nature of
delay is an addition of one or more stages of stable low
pass filters in the dynamical loop when delay distribution
is modeled using Gamma distribution. We also proved that
the stability of a rate control system is not affected by
the distributed nature of delay and only depends on the
functional form of the utility and resource price functions.
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Fig. 3. (a) Rate waveform without any filters, (b) Rate waveform with
one stage of low pass filter, and (c) Rate wavefor with two stage of low
pass filters
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