
Stochastic Power Control for Time-Varying 
Lognormal Fading Wireless Channels 

Abstract—The performance of stochastic optimal power 
control of time varying lognormal fading channels, in which 
the evolution of the dynamical channel is described by 
stochastic differential equations (SDE’s), is determined. 
Unlike the common random static models, the SDE’s 
essentially capture the spatial-temporal variations of wireless 
channels. The solution of the stochastic optimal power control 
is obtained through path-wise optimization, which is solved by 
linear programming using a predictable power control 
strategy. The algorithm can be implemented using an iterative 
numerical scheme. The performance measure is interference 
or outage probability. Numerical results indicate that the 
performance of this algorithm is close to the optimal case as 
long as the channel model does not change significantly. 

I.   INTRODUCTION 
RANSMITTER power is an important resource in 
cellular mobile radio communication systems [1].  The 
control of the transmitted power provides for an 

efficient and optimal performance of wireless 
communication systems. It can increase system capacity 
and quality of communications [2]. Co-channel interference 
caused by frequency reuse is the most restraining factor on 
the system capacity. The measure of quality usually 
employed in cellular systems design is the signal to 
interference ratio (SIR) [2]. The SIR defines the strength 
and quality of the received signal. Users only need to 
expend sufficient power for acceptable reception as 
determined by their quality of service (QoS) specifications. 

The power allocation problem has been studied 
extensively as an eigenvalue problem for non-negative 
matrices [1-5], as iterative power control (PC) algorithms 
that converge each user power to the minimum power result 
[6-9], and as optimization based approaches [10, 11]. An 
optimal control algorithm for distributed power control 
(DPC) in cellular communication systems was proposed by 
[12]. A cost is defined for each mobile that consists of a 
weighted sum of power, power update, and SIR error. 
Much of this work deals with time invariant channel 
models. In this paper, centralized power control (CPC) and 
closed loop PC schemes are used. 

Any PC scheme that attempts to follow fast fades would 
need to be highly efficient to be implemented in practice, or 
incur a power penalty due to intense signal processing and 
may require frequent communication with its assigned base 
station. Of particular interest is the work presented in [10, 
11]. In [10], a scheme whereby the statistics of the received 
SIR are used to allocate power, rather than an instantaneous 

SIR. The allocation decisions can then be made on a much 
slower time scale (following lognormal shadowing 
variations for instance). 

The majority of research has been done in this field uses 
static models for the wireless channels. In static (time-
invariant) models, all the channel parameters are random 
but remain constant throughout the observation and 
estimation phase. In dynamical (time-varying) models, the 
channel characteristics change with respect to both space 
and time [13, 14, 15].  In this paper the time-varying 
lognormal wireless channel model is described by 
stochastic differential equation (SDE), and a power control 
algorithm (PCA) called predictable power control strategy 
(PPCS) is applied [16]. The correct usage of any PCA and 
thereby the power optimization of the channel models, 
require the use of such channel models that capture both 
temporal and spatial variations in the channel. These 
models exhibit more realistic behavior of wireless 
communication systems [17]. Since very few spatial-
temporal dynamical models have so far been investigated 
with the application of any PCA, the suggested dynamical 
model and the PCA will thus provide a far more realistic 
and efficient optimal control for wireless fading channels. 

The PPCS algorithm first proposed in [16] is used to 
minimize the total transmitted power for more realistic 
dynamical lognormal channel model. The PPCS takes into 
account the presence of noise in the channel and makes use 
of time varying dynamical link for an efficient PC of 
transmitters.  Also the iterative PCA presented in [7, 9] can 
be used to determine the optimal powers iteratively. This 
helps in allowing autonomous execution at the node or link 
level, requiring minimal usage of network communication 
resources for control signaling. 

Simulation results are provided comparing the 
performance of the proposed method (i.e. PPCS) with the 
performance of no power control (NPC). 
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II.   TIME VARYING LOGNORMAL FADING 
CHANNEL MODEL 

In the real world, signals travel between mobiles and 
base stations are affected by a number of factors that are 
characterized by time-variation and time spreading [18]. 
Therefore there exist many factors that define the 
uncertainties (randomness) and the changing conditions 
with respect to time and/or space (stochastic) within the 
wireless communication channel. The static models do not 
take into account the time varying behavior of the channel 
and its statistics, therefore they do not represent a realistic 
picture of the communication medium. For this very 
important reason, it becomes essential to make use of 
stochastic dynamical channel models to investigate the true 
behavior of the wireless communication network and 
analyze the correct effectiveness of PC. 

In the static case, the power loss (PL) in dB for a given 
path is given by [19]: 

0 0
0

( )[ ] : ( )[ ] 10 log ,d
PL d dB PL d dB X d d

d
   (1) 

where 0( )PL d  is average PL in dB at a reference distance 
d0 from the transmitter,  is the path-loss exponent which 
depends on the propagation medium, and X  is a zero-mean 
Gaussian distributed random variable, which represents the 
variability of PL due to numerous reflections occurring 
along the path and possibly any other uncertainty of the 
propagation environment from one observation instant to 
the next. 

In Dynamical model, the average PL becomes a random 
process denoted by 

00,
( , )

t
X t , which is a function of 

both time t and location represented by , where  = d/c, d 
is the path length, c is the speed of light, o = do/c and do is 
the reference distance. 

00,
( , )

t
X t  represents how 

much power the signal loses at a particular distance as a 
function of time [13]. The signal attenuation is defined by 

),(),( tkXetS , where / 2k c and ln 10 /10c  [14]. 

,X t  is generated by a mean-reverting version of a 
general linear SDE given by [15]: 

0

2
0

( , ) ( , ) ( ( , ) ( , ) ( , ) ( ),

( , ) ( ( )[ ]; )t

dX t t t X t dt t dW t

X t N PL d dB
   (2) 

where 
0t

W t  is the standard Brownian motion (zero 

drift, unit variance) which is assumed to be independent of 
,X t , and ( ; )N  denotes a Gaussian random variable 

with mean  and variance , and ( )[dB]PL d  is the 

average PL in dB. The parameter ,t  models the 
average time-varying PL at distance d from transmitter, 
which corresponds to ( )[dB]PL d  at d indexed by t. This 

model tracks and converges to this value as time 
progresses. The instantaneous drift ( , ) ( , ) ( , )t t X t

represents the effect of pulling the process towards ,t ,

while ,t  represents speed of adjustment towards this 

value. Finally, ,t  controls the instantaneous variance 
or volatility of the process for the instantaneous drift. The 
initial condition of ,X t can be obtained from geometric 

Brownian motion model which calculates 0 ,X t for a 
fixed t = t0 as a function of [15, 17]. 

Let
0 0

, , , , , ,
t t

t t t t . If the 

random processes 0( , )
t

t  are measurable and bounded, 

(2) has a unique solution for every 0( , )X t  given by: 

0
0

0

([ , ], )
0([ , ], ) ( , ) [ ( , ) ( , )

( , )

( , ) ( )]

t
u t

t t
t

X t e u u du
X t e

u dW u

 (3) 

where 
0

0([ , ], ) ( , )
t

t

t t u du .                                       

This model captures the temporal and spatial variations 
of the propagation environment as the random parameters 

0
,

t
t  can be used to model the time and space 

varying characteristics of the channel. It is required that the 
mean of PL process [ , ]E X t should track time and 
space variations of the average PL. For example, let 

2 / 10( , ) 1 0.15 sint T
m

t
t e

T
               (4) 

where m is the average PL and T is the observation 
interval. The variations of ,X t as a function of distance

and time are represented in Fig. 1, where t = 1400 and 

t = 225000 (these parameters are determined from 
experimental measurements).  

Fig. 1: Mean-reverting power PL as a function of t and , for a given time 
varying ,t .
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In Fig. 1, the temporal variations of the environment are 
captured by a time varying ,t  which was chosen such 
as to fluctuate around different average PL’s ( m’s), thus 
each curve corresponds to a different location.

In spatial-temporal lognormal model, besides initial 
distances, the motion of mobiles, i.e., their velocities and 
directions of motion with respect to their base stations are 
important factors to evaluate time varying power path 
losses for the links involved. This can be illustrated in a 
simple way for the case of one transmitter and one receiver. 
Consider a receiver at a distance d from a transmitter and 
moves with a certain constant velocity m  in a direction 
defined by an arbitrary constant angle n , where n  is the 
angle between the direction of motion of the mobile and the 
distance vector that starts from the transmitter towards the 
receiver as shown in Fig. 2: 

Fig. 2: A receiver (mobile) at a distance d from a transmitter (base station) 
moves with velocity m  and in direction given by n  with respect to the 
transmitter-receiver axis. 

At time t, the new distance from the transmitter to the 
receiver ( )d t  is given by: 

     2 2( ) ( ) 2. . . .cosm m nd t d t d t                (5) 

Therefore, the average PL at that new location is given by: 

0
0

( )( , ) ( )[ ] 10 log ( )d t
t PL d dB t

d
          (6) 

where d(t)  d0 and 0( )PL d  is average PL in dB at a 

reference distance d0 , d t  is defined in (5),  is the PL 

coefficient and ( )t  is an arbitrary function of time 
representing the temporal variations in the propagation 
environment like the appearance and disappearance of 
additional scatters. 

The next section describes a PCA that uses the previous 
time-varying channel model to achieve the minimal 
transmitted power in stochastic lognormal fading channels. 

III.   POWER CONTROL MODEL 

   A.   Stochastic Power Control Scheme 
Consider a wireless network of M transmitters and M

receivers. The measure of quality of service (QoS) in 
deterministic case can be defined through SIR as [16]: 

1( 0,.... 0) 1
min

M

M

ip p
i

p                                 (7) 

subject to   
n nn

nM

j nj nj n

p g

p g
                          (8) 

Equation (8) is equivalent to 

1

n nn
nM

j nj nj

p g

p g
                          (9) 

where : , 0 1.
1

n
n n

n

 Here pn denotes the power 

of transmitter n, gnj > 0 denotes the channel gain of 
transmitter j to the receiver assigned to transmitter n,

0n  is the required SIR and 0n  is the noise power 
level at the nth receiver, 1 n ,j M.

Using the path-wise QoS of each user with respect to the 
power signals over a time interval [0,T], the system (7) and 
(9) in dynamic case is given as:

1( 0,.... 0) 1 0

min ( )
M

TM

ip p
i

p t , subject to                                      

2

0

2 2

1
0 0

( ) ( )

( ) ( ) ( )

T

n nn

nT T
M

j nj nj

p t S t dt

p t S t dt d t dt
         (10) 

where Snj (t) is the signal attenuation coefficients from 
transmitter j to receiver assigned to transmitter n at time t,
dn(t) is the channel disturbance at the nth receiver at time t,

.  is the Euclidean norm, and 1 n M. The signal 
attenuation coefficients Snj (t) in (10) are generated using 
the SDE in (2) and the relation ( , )( , ) kX tS t e , where 

/ 2k c  and ln 10 /10c  [14]. 
PPCS is used to find the solution to (10). In wireless 

cellular networks, it is practical to observe and estimate 
channels at base stations and then communicate the 
information to the transmitters to adjust their control input 

signals 
1

( )
k

M

k
u t . Since channel experiences delays, and 

the control are not feasible continuously in time but only at 
discrete time instants, the concept of predictable strategies 
is introduced [16]. Let the channel information at any time 
t  be denoted by ( )S t , and let the control input signal for 

a transmitter at discrete time be 1 2( ); , , ,u t t t t T . At 

time 1jt , the base station observes the channel information 

1 1
( )

M

k j k
S t . Using the concept of predictable strategy, the 

base station determines the control strategy 
1

( )
M

k j k
u t  for 

the next time instant jt . The latter is communicated back to 
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the transmitters which hold these values during the time 
interval 1,j jt t . At time jt , a new set of channel 

information 
1

( )
M

k j k
S t  is observed at the base station and 

the time 1jt  control strategies 1 1
( )

M

k j k
u t  are computed 

and then communicated to the transmitters and held 
constant during the time interval 1,j jt t . Such decision 

strategies are called predictable strategies. Using the 
concept of PPCS over any time interval defined as [tk, tk+1], 
the equivalence of (10) is [16]: 

1
11( )

1
1 1 1 1 1

min ( ), subject to

( ) ( , ) ( ( , ) ( ) ( ))
i k

M
i kip t

k I k k k k k k

p t

P t G t t G t t P t t
  (11) 

where, 
1

1

2
1

2
1

1 11 1 1

1 1

1 1 1 1

( , ) : ( ) , 1 , , ,

( , ) : ( ) , 1 , , ,

( , ) ( , ), , ( , ) ,

( , ) ( ( , ) , 1 , , ,

( , ) ( ( , ), , ( , )) ,

k

k

k

k

t

ni k k nit

t

ni k k nt

I k k k k MM k k

k k ni k k M M

T
k k k k M k k

g t t S t dt n i M

t t d t dt n i M

G t t diag g t t g t t

G t t g t t n i M

t t t t t t

1 1 1 1( ) ( ( ), , ( )) ,T
k k M kP t p t p t

1( , , )Mdiag , diag (.) denotes a diagonal matrix, 
and ‘T’ stands for matrix or vector transpose.  The 
optimization in (11) is a linear programming problem in 

1M  vector of unknown’s p (tk+1). Here [tk, tk+1] denotes 
time interval of the signal such that the channel model does 
not change significantly. 

The performance measure is interference or outage 
probability. It is defined as the probability that a randomly 
chosen link will fail due to excessive interference [2]. 
Therefore, smaller outage probability implies larger 
capacity of the wireless network. A link with received SIR 

rcvd  less than or equal to SIR threshold th  is considered a 

communication failure. The outage probability rcvdF  is 

expressed as ( ) Pr{ }th rcvd thF , where rcvdF  is 

the distribution of rcvd .

B. Iterative Power Control Scheme 
Since PC only occurs at discrete time instants using 

PPCS, the iterative algorithm described in [7, 9] can be 
used to determine the optimal transmitted powers. Define 

1
1 1 1( , ) * ( , )* ( , )k k I k k k kF t t G t t G t t  and 

1
1 1 1( , ) * ( , )* ( )k k I k k ku t t G t t t , where 

1 1 1 2 2 1 1
1

11 1 22 1 1

( ) ( ) ( )
( , ) , , ,

( , ) ( , ) ( , )
k k M M k

k k
k k k k MM k k

t t t
u t t

G t t G t t G t t

and 1
1

1

( , )
( , ) ,

( , )
i ij k k

k k
ii k k

G t t
Fij t t

G t t
1 , .i j M  Then the 

constraint in (11) can be rewritten as: 

1 1 1( ( , )) ( ) ( , )k k k k kI F t t P t u t t              (12) 

The matrix 1( , )k kF t t  has nonnegative elements and is 
irreducible. The existence of a feasible power vector 

1( )kP t  > 0 satisfying (12) is equivalent to 
1( , ) 1

k kF t t ,

where 
1( , )k kF t t  is the maximum modulus eigenvalue of 

1( , )k kF t t . The power vector 
* 1

1 1 1( ) ( ( , )) ( , )k k k k kP t I F t t u t t  is the optimal power 
vector satisfying (11), and the iteration 

1
1 1 1 1( ) ( , ) ( ) ( , )n n

k k k k k kP t F t t P t u t t         (13) 

converges to *
1( )kP t  when 

1( , ) 1
k kF t t , where n is the 

number of iterations. Equation (13) can be written as: 

1
1 1 1 1

11

( ) ( , ) ( ) ( , )
( , )

M
n ni

i k ij k k j k i k k
jii k k

P t G t t P t t t
G t t

(14) 

and also can be written as: 

1
1 1

1
( ) ( )

( , )
n ni

i k i kn
rcvd k k

P t P t
t t

             (15) 

where i = 1, …, M, and n is the number of iterations. It is 
shown in [7, 9] that the iterative power control in (14) and 
(15) converges to the optimal (minimal) power vector. 

IV.   NUMERICAL RESULTS 
In this section, we give two numerical examples to 

determine the outage probability for the proposed PCA. In 
the first example the performance of PPCS is compared 
with the performance of NPC. In the second example the 
performance of PPCS is determined for two different 
velocities. In this model, it is assumed that only mobiles 
(transmitters) are movable while base stations (receivers) 
are fixed at one place throughout the time of simulation. 

The cellular model has the following features:  
Number of transmitters and receivers is M = 24. 
Initial distances of all mobiles with respect to their own 
base stations dii are generated as uniformly 
independent identically distributed (i.i.d.) random 
variables (r.v.’s) in [10 – 100] meters. 
Cross initial distances of all mobiles with respect to 
other base stations ,ijd i j , are generated as 
uniformly i.i.d. r.v.’s in [250 - 550] meters. 
The angle ij between the direction of motion of mobile 
j and the distance vector passes through base station i
and the mobile j are generated as uniformly i.i.d. r.v.’s 
in [0 – 180] degrees.  
The average velocities of mobiles are generated as 
uniformly i.i.d. r.v.’s in [40 – 100] km/hr. 
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All mobiles move at sinusoidal variable speeds around 
the average speeds during the simulation period.  
PL exponent is 3.5. 
Initial reference distance from each of the transmitters 
is 10 m. 
PL at the initial reference distance is 67 dB. 

t = 1400 and t = 225000 for the SDE’s. 

'sn  are independent random variables with zero 
mean and variance = 4*10-8.

A. Example 1 
In this numerical example, the performance of the 

proposed PCA will be compared with the performance of 
no power control (NPC) at all (fixed transmitted power). 

Using the above cellular model features, the mean 
reverting PL X (t, ), velocity and distance as a function of 
time for one of the mobiles chosen at random is shown in 
Fig. 3.  

Fig. 3: Mean-reverting PL X (t, ) for a mobile in Example 1. The mobile 
starting at 50 meters from its base station with angle of 135 degree and 
sinusoidal speed with average 80 km/hr (22.2 m/s). 

The SIR threshold th  is varied from five to thirty five in 
steps of five, and for each value of th  the outage 
probability is computed every 15 millisecond for 5 seconds. 
The outage probability is computed using Monte-Carlo 
simulations. The outage probability graphs of this example 
for both the PC and NPC cases are shown in Fig. 4a and 4b
respectively. Fig. 4 shows how the outage probability 
changes with respect to SIR threshold ( )th  and time. As 
the th  increases, the outage probability also increases. This 
is obvious since we expect more users to fail as th

increases. The outage probability is also changing with 
respect to time. This is because the mobiles are moving in 
different directions with different velocities. At any time, 
some mobiles are moving towards their own base stations 
and others are moving away from their own base stations. 

                               (a) 

(b) 

Fig. 4: Outage probability for dynamical lognormal fading model in 
Example 1. (a) Using PPCS algorithm. (b) Using no power control (NPC). 

The average outage probability over all time intervals is 
shown in Fig. 5. The outage probability is drawn versus 

th , which varies from 5 to 20 dB. The performance of 
PPCS is compared with the performance of NPC. Results 
show that the PPCS algorithm outperforms the reference 
algorithm by an order of magnitude. At outage probability 
below 0.2, SIR gains in excess of 10 dB may be achieved. 
The objective of PPCS algorithm is to minimize the total 
transmitted power such that the SIR of all users is achieved. 

Fig. 5: Average outage probability for dynamical lognormal fading model 
in Example 1. Performance comparison. 
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   B.    Example 2
In this example, the effect of velocity on the performance 

of dynamical wireless network will be determined. All the 
parameters in this example are the same as the ones in the 
previous example except the velocities of mobiles. All 
mobiles are assumed to have the same average velocity of 
60 km/hr for case 1 and 120 km/hr for case 2.  

The outage probability for different velocities (60 km/hr 
and 120 km/hr) is calculated and the average outage 
probability over all time intervals is shown in Fig. 6. The 
performance of PPCS at 60 km/hr is better than the one at 
120 km/hr. The increase in velocity affects the value of the 
PL in the spatial-temporal model. An increase in the 
velocity of a mobile causes an increase in the PL. Also 
there are faster changes in the dynamical wireless channel 
at 120 km/hr than at 60 km/hr. Therefore, higher velocities 
reflect higher values of probability of outage.

Fig. 6: Average outage probability for dynamical lognormal fading model 
in Example 2. Different velocities comparison. 

V.   CONCLUSIONS 
PPCS power control scheme as developed in [16] is 

applied to dynamical lognormal wireless communication 
channel models. More realistic time-varying wireless 
channel models are used. The dynamics of the channel are 
depicted by SDE’s, which essentially capture the spatial-
temporal variations of wireless fading communication 
networks. The optimization problem is solved by linear 
programming. Iterative algorithms can be used to solve for 
the optimization problem. The performance measure is 
interference or outage probability. Numerical results 
presented for this algorithm show that there are potentially 
large gains to be achieved by using PC. Gains in excess of 
10 dB in interference reduction may be achieved. This 
would correspond to capacity gains in the order of 4 
compared to systems using fixed transmitter power. 
Velocities of mobiles affect the performance of wireless 
systems. Higher speeds result in higher outage probabilities 
and therefore lower performance. The numerical results 
presented for lognormal fading indicate that the 
performance of this algorithm is close to the optimal case as 
long as the channel model does not change significantly. 
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