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Abstract— The paper addresses the problem of designing a
robust filter for a class of uncertain Markovian jump nonlinear
systems described by a class of uncertain Takagi-Sugeno fuzzy
models with Markovian jumps. Based on an LMI approach,
LMI-based sufficient conditions that guarantee the L2-gain
from an exogenous input to an estimation error is less than a
prescribed value are derived. A tunnel diode circuit is used to
illustrate the effectiveness of the proposed design techniques.

I. INTRODUCTION

In practice, structures of many technological systems
are subject to random variations. These variations may
result from component and interconnection failures, pa-
rameters shifting, tracking, sudden environmental distur-
bances, abrupt variations of the operating condition, etc.
In the general sense, a variation is something that changes
the behaviour of a technological system such that the
system does no longer satisfy its purpose. In order to
avoid production deteriorations or damage to machines
and humans, variations have to be found as quickly as
possible and decisions that stop the propagation of their
effects have to be made. Stochastic differential equations
have been widely used to model a system with structures
subject to random changes. A differential equation with
Markovian jumping parameters is one of the most well
studied stochastic differential equations. The discrete and
continuous dynamic behaviours of a Markovian jumping
system are, respectively, described by a finite state Markov
chain and differential equations.

A lot of achievements have been made in jumping linear
quadratic control theory; see [1]-[16]. In [1], the problem of
jumping linear quadratic control of a class of linear systems
with discrete Markov processes which are not directly ob-
servable has been examined. Discrete-time linear quadratic
optimal control problems for infinite Markov jump para-
meter systems have been studied in [2]. Using averaging
and aggregation techniques, in [3] the control design for
large scale jump linear systems where the process admits
strong and weak interactions has been studied. In [4] and
[5], results for linear dynamical systems with Markovian
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jumping parameters have been proposed. The issue of robust
stability analysis and synthesis of Markovian jumping linear
continuous-time systems has been investigated by [6] and
[7]. Though linear Markovian jump systems have been
extensively studied [1]-[16], to the best of our knowledge,
the filter design for nonlinear Markovian jump dynamical
systems remains as an open research area. Recently, there
has been some attempt in this area. In [15], Hamilton-
Jacobi-equation-based sufficient conditions for nonlinear
Markovian jump systems to have an H∞ performance have
been derived . However, until now, it is still very difficult
to find a global solution to the HJE either analytically or
numerically.

Over the past two decades, there has been rapidly grow-
ing interest in application of fuzzy logic to control problem.
Researches have been focused on its application to industrial
processes and a number of successful results have been re-
ported in the literature. In spite of these successes, there are
many basic issues remain to be addressed. One of them is
how to achieve a systematic design that guarantees closed-
loop stability and performance. Recently, a great amount
of effort has been devoted to describing a nonlinear system
using a Takagi-Sugeno fuzzy model (see [17]-[19]). The
Takagi-sugeno fuzzy model represents a nonlinear system
by a family of local linear models which smoothly blended
together through fuzzy membership functions. Unlike con-
ventional modelling techniques which uses a single model
to describe the global behavior of a nonlinear system, fuzzy
modelling is essentially a multi-model approach in which
simple sub-models (typically linear models) are fuzzily
combined to described the global behavior of a nonlinear
system. Based on this fuzzy model, a number of systematic
model-based fuzzy control design methodologies have been
developed.

The aim of this paper is to study the problem of designing
an H∞ filter for a class of uncertain Markovian jump non-
linear systems described by TS fuzzy model. The filtering
problem can be stated as follows: given a dynamic system
with exogenous input and measured output, design a filter to
estimate an unmeasured output such that the mapping from
the exogenous input to the estimation error is minimized or
no larger than some prescribed level in terms of the H∞
norm. Based on an LMI approach, LMI-based sufficient
conditions for the filter to have an H∞ performance are
derived in terms of a family of linear matrix inequalities.

This paper is organized as follows. In Section II, system
descriptions and definitions are presented. Based on an
LMI approach, we develop a technique in Section III for
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designing a fuzzy H∞ filter that guarantees the L2-gain
of the mapping from the exogenous input noise to the
estimation error is less than a prescribed value. The validity
of this approach is demonstrated by using an illustrative
system from the literature in Section IV. Finally, in Section
V, the conclusion is drawn.

II. SYSTEM DESCRIPTION

The class of uncertain nonlinear system with Markovian
jumps under consideration is described by the following TS
fuzzy system model with Markovian jumps:

ẋ(t) =
∑r

i=1 µi(ν(t))
[
[Ai(η(t)) + ∆Ai(η(t))]x(t)

+[B1i
(η(t)) + ∆B1i

(η(t))]w(t)
]

z(t) =
∑r

i=1 µi(ν(t))[C1i
(η(t)) + ∆C1i

(η(t))]x(t)
y(t) =

∑r
i=1 µi(ν(t))

[
[C2i

(η(t)) + ∆C2i
(η(t))]x(t)

+[D21i
(η(t)) + ∆D21i

(η(t))]w(t)
]

(1)
where ν(t) =

[
ν1(t) · · · νϑ(t)

]
is the premise variable

that may depend on states in many cases, µi(ν(t)) denotes
the normalized time-varying fuzzy weighting functions for
each rule (i.e., µi(ν(t)) ≥ 0 and

∑r
i=1 µi(ν(t)) = 1),

ϑ is the number of fuzzy sets, x(t) ∈ �n is the state
vector; x(0) = 0, u(t) ∈ �m is the input, w(t) ∈ �p

is the disturbance which belongs to L2[0,∞), y(t) ∈
�� is the measurement, z(t) ∈ �s is the state to be
estimated, and the matrix functions Ai(η(t)), B1i

(η(t)),
C1i(η(t)), C2i(η(t)), D21i(η(t)), ∆Ai(η(t)), ∆B1i(η(t)),
∆C1i

(η(t)), ∆C2i
(η(t)) and ∆D21i

(η(t)) are of appro-
priate dimensions. {η(t))} is a continuous-time discrete-
state Markov process taking values in a finite set S =
{1, 2, · · · , s} with transition probability matrix Pr

∆=
{Pık(t)} given by

Pık(t) = Pr(η(t + ∆) = k|η(t) = ı)

=
{

λık∆ + O(∆) if ı �= k
1 + λıı∆ + O(∆) if ı = k

(2)

where ∆ > 0, and lim∆−→0
O(∆)

∆ = 0. Here λık ≥ 0 is
the transition rate from mode ı (system operating mode) to
mode k (ı �= k), and

λıı = −
s∑

k=1,k �=ı

λık. (3)

For the convenience of notations, we let µi
∆= µi(ν(t)),

η = η(t), and any matrix M(µ, ı) ∆= M(µ, η = ı). The
matrix functions ∆Ai(η), ∆B1i

(η), ∆C1i
(η), ∆C2i

(η) and
∆D21i(η) represent the time-varying uncertainties in the
system and satisfy the following Assumption.

Assumption 1:

∆Ai(η) = F (x(t), η, t)H1i(η),

∆B1i(η) = F (x(t), η, t)H2i(η),

∆C1i
(η) = F (x(t), η, t)H3i

(η),

∆C2i
(η) = F (x(t), η, t)H4i

(η),

and ∆D21i(η) = F (x(t), η, t)H5i(η)

where Hji(η), j = 1, 2, · · · , 5 are known matrices which
characterize the structure of the uncertainties. Furthermore,
there exists a positive function ρ(η) such that the following
inequality holds:

‖F (x(t), η, t)‖ ≤ ρ(η). (4)
In this paper, we consider the following full order H∞

fuzzy filter which is inferred as the weighted average of the
local models of the form:

˙̂x(t) =
∑r

i=1

∑r
j=1 µiµj

[
Âij(ı)x̂(t) + B̂i(ı)y(t)

]
ẑ(t) =

∑r
i=1 µiĈi(ı)x̂(t)

(5)
where Âij(ı), B̂i(ı) and Ĉi(ı) are filter gain matrices to be
designed.

Before ending this section, we describe the problem
under our study as follows.

Problem Formulation: Given a prescribed H∞ perfor-
mance γ > 0, design a robust H∞ fuzzy filter of the form
(5) such that the following inequality holds

E
[ ∫ Tf

0

{(
z(t) − ẑ(t)

)T (
z(t) − ẑ(t)

)

−γ2wT (t)w(t)
}

dt
]
≤ 0, x(0) = 0 (6)

where E[·] stands for the mathematical expectation, for all
Tf ≥ 0 and w(t) ∈ [0, Tf ].

Note that in the symmetric block matrices, we use (∗) as
an ellipsis for terms that are induced by symmetry.

III. ROBUST FUZZY H∞ FILTER DESIGN

First, let us select our desired filter as follows:

˙̂x(t) =
∑r

i=1

∑r
j=1 µiµj

[
Âij(ı, ε)x̂(t) + B̂i(ı)y(t)

]
ẑ(t) =

∑r
i=1 µiĈi(ı)x̂(t).

(7)
Before presenting our first result, we establish the following
lemma which will be used in the proof of our main result.

Lemma 1: Consider the system (1). Given a prescribed
H∞ performance γ > 0 and any positive constants δ(ı),
for ı = 1, 2, · · · , s, if there exist matrices P (ı) = PT (ı)
such that the following linear inequalities hold:

P (ı) > 0 (8)



 P (ı)Aij

cl(ı)
+(Aij

cl(ı))
T P (ı)

+
∑s

k=1 λıkP (k)


 (∗)T (∗)T

(P (ı)Bij
cl (ı))

T −γ2I (∗)T

Cij
cl (ı) 0 −I


 < 0 (9)

where i, j = 1, 2, · · · , r,

Aij
cl(ı) =

[
Ai(ı) 0

B̂i(ı)C2j (ı) Âij(ı)

]
,
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Bij
cl (ı) =

[
B̃1i(ı)

B̂i(ı)D̃21j
(ı)

]
,

Cij
cl (ı) = [C̃1i(ı) D̃12(ı)Ĉj(ı)]

with

B̃1i(ı) = [δ(ı)I I 0 B1i(ı) 0]

C̃1i
(ı) =

[γρ(ı)
δ(ı)

HT
1i

(ı)
γρ(ı)
δ(ı)

HT
4i

(ı)

√
2ℵ(ı)ρ(ı)HT

3i
(ı)

√
2ℵ(ı)CT

1i
(ı)

]T

D̃12(ı) =
[

0 0 0 −√
2ℵ(ı)I

]T

D̃21i(ı) = [0 0 δ(ı)I D21i(ı) I]

ℵ(ı) =
(
1 + ρ2(ı)

r∑
i=1

r∑
j=1

[
‖HT

2i
(ı)H2j

(ı)‖

+‖HT
5i

(ı)H5j (ı)‖
]) 1

2
,

then the inequality (6) is guaranteed.

Proof: Due to limited pages, the detail of the proof is
omitted for brevity.

The left hand side of (9) can be re-expressed as follows:

P (ı)Aij
cl(ı) + (Aij

cl(ı))
T P (ı) + γ−2P (ı)Bij

cl (ı)×
(Bij

cl (ı))
T P (ı) +

∑s
k=1 λıkP (k) + (Cij

cl (ı))
T Cij

cl (ı).
(10)

Before providing LMI-based sufficient conditions for the
system (1) to have an H∞ performance, let us partition the
matrix P (ı) given by Lemma 1 as follows:

P (ı) =
[

X(ı) Y −1(ı) − X(ı)
Y −1(ı) − X(ı) X(ı) − Y −1(ı)

]
(11)

where X(ı) = XT (ı) ∈ �n×n and Y (ı) = Y T (ı) ∈ �n×n.
Utilizing the partition above, we define the new filter’s input
and output matrices as

Bi(ı)
∆=

[
Y −1(ı) − X(ı)

]
B̂i(ı)

Ci(ı)
∆= Ĉi(ı)Y (ı).

(12)

Using these changes of variable, we have the following
theorem.

Theorem 1: Consider the system (1). Given a prescribed
H∞ performance γ > 0 and any positive constants δ(ı),
for ı = 1, 2, · · · , s, if there exist matrices X(ı) = XT (ı),
Y (ı) = Y T (ı), Bi(ı) and Ci(ı), i = 1, 2, · · · , r, satisfying
the following linear matrix inequalities:[

X(ı) I
I Y (ı)

]
> 0 (13)

X(ı) > 0 (14)
Y (ı) > 0 (15)

Ψ11ii(ı) < 0, i = 1, 2, · · · , r (16)
Ψ22ii(ı) < 0, i = 1, 2, · · · , r (17)

Ψ11ij (ı) + Ψ11ji(ı) < 0, i < j ≤ r (18)
Ψ22ij (ı) + Ψ22ji(ı) < 0, i < j ≤ r (19)

where

Ψ11ij (ı)=







Ai(ı)Y (ı)
+Y (ı)AT

i (ı)
+λııY (ı)

+
B̃1i

(ı)B̃T
1j

(ı)

γ−2


 (∗)T (∗)T

(
C̃1i

(ı)Y (ı)
+D̃12(ı)Cj(ı)

)
−I (∗)T

J T (ı) 0 −Y(ı)



(20)

Ψ22ij (ı)=







AT
i (ı)X(ı)

+X(ı)Ai(ı)
+Bi(ı)C2j

(ı)
+ CT

2i
(ı)BT

j (ı)
+C̃T

1i
(ı)C̃1j

(ı)
+

∑s
k=1 λıkX(k)




(∗)T

B̃T
1i

(ı)X(ı) + D̃T
21i

(ı)BT
j (ı) −γ2I




(21)

with

J (ı) =
[√

λ1ıY (ı) · · ·
√

λ(i−1)ıY (ı)√
λ(i+1)ıY (ı) · · ·

√
λsıY (ı)

]

Y(ı) = diag
{

Y (1), · · · , Y (ı − 1),

Y (ı + 1), · · · , Y (s)
}

B̃1i(ı) = [δ(ı)I I 0 B1i(ı) 0]

C̃1i
(ı) =

[γρ(ı)
δ(ı)

HT
1i

(ı)
γρ(ı)
δ(ı)

HT
4i

(ı)

√
2ℵ(ı)ρ(ı)HT

3i
(ı)

√
2ℵ(ı)CT

1i
(ı)

]T

D̃12(ı) =
[

0 0 0 −√
2ℵ(ı)I

]T

D̃21i(ı) = [0 0 δ(ı)I D21i(ı) I]

ℵ(ı) =
(
1 + ρ2(ı)

r∑
i=1

r∑
j=1

[
‖HT

2i
(ı)H2j

(ı)‖

+‖HT
5i

(ı)H5j
(ı)‖

]) 1
2
,

then the prescribed H∞ performance γ > 0 is guaranteed.
Furthermore, a suitable filter is of the form (7) with

Âij(ı) =
[
Y −1(ı) − X(ı)

]−1Mij(ı)Y −1(ı)
B̂i(ı) =

[
Y −1(ı) − X(ı)

]−1Bi(ı)
Ĉi(ı) = Ci(ı)Y −1(ı)

(22)

where

Mij(ı) = −AT
i (ı) − X(ı)Ai(ı)Y (ı)

−[
Y −1(ı) − X(ı)

]
B̂i(ı)C2j

(ı)Y (ı)
−∑s

k=1 λıkY −1(k)Y (ı)
−C̃T

1i
(ı)

[
C̃1j (ı)Y (ı) + D̃12(ı)Ĉj(ı)Y (ı)

]
−γ−2

{
X(ı)B̃1i(ı) +

[
Y −1(ı) − X(ı)

]×
B̂i(ı)D̃21i(ı)

}
B̃T

1j
(ı).

(23)
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Proof: Suppose there exist X(ı) and Y (ı) such that the
inequalities (13) and (14)-(15) hold. The inequality (13)
implies that the matrix P defined in (9) is a positive definite
matrix. Using the partition (11), the controller (12) and

multiplying (9) to the left by
[

Y (ı) I
Y (ı) 0

]
and to the right

by
[

Y (ı) Y (ı)
I 0

]
, we have

[
Φ11ij (ı) 0

0 Φ22ij
(ı)

]
(24)

where

Φ11ij (ı) = Ai(ı)Y (ı) + Y (ı)AT
i (ı) + λııY (ı)

+
{[

Y (ı)C̃T
1i

(ı) + CT
i (ı)D̃T

12j
(ı)

] ×
[
Y (ı)C̃T

1i
(ı) + CT

i (ı)D̃T
12j

(ı)
]T

}
+γ−2B̃1i(ı)B̃

T
1j

(ı) + J T (ı)Y−1(ı)J (ı)
(25)

Φ22ij
(ı) = AT

i (ı)X(ı) + X(ı)Ai(ı)

+Bi(ı)C2j
(ı) + CT

2i
(ı)BT

j (ı)

+γ−2
{[

X(ı)B̃1i
(ı) + Bi(ı)D̃21j

(ı)
] ×

[
X(ı)B̃1i

(ı) + Bi(ı)D̃21j
(ı)

]T
}

+C̃T
1i

(ı)C̃1j (ı) +
s∑

k=1

λıkX(k). (26)

Note that Φ11ij
(ı) and Φ22ij

(ı) are the Schur complements
of Ψ11ij (ı) and Ψ22ij (ı). Using (16)-(19), we have (24) less
than zero. Hence, by Theorem 1, we learn that the inequality
(6) holds.

IV. AN ILLUSTRATIVE EXAMPLE

Consider a tunnel diode circuit shown in Fig. 1 where
the tunnel diode is characterized by

iD(t) = 0.002vD(t) + αv3
D(t)

where α is the characteristic parameter. The circuit is

vv
c

C

i

R

i icL

+

−

L
D

D

Fig. 1. Tunnel diode circuit.

governed by the following state equations:

Cẋ1(t) = −0.002x1(t) − αx3
1(t) + x2(t)

Lẋ2(t) = −x1(t) − Rx2(t) + 0.1w2(t)
y(t) = Jx(t) + 0.1w1(t)

z(t) =
[

x1(t)
x2(t)

] (27)

where w(t) is the disturbance noise input, y(t) is the
measurement output, z(t) is the state to be estimated and
J is the sensor matrix. Note that the variables x1(t) and
x2(t) are the deviation variables (variables deviate from the
desired trajectories). The parameters in the circuit are given
as follows: C = 20 mF , L = 1000 mH and R = 10 Ω.
Suppose that this system is aggregated into 3 modes as
shown in Table I:

TABLE I
SYSTEM TERMINOLOGY.

Mode ı α(ı) ± ∆α(ı)

1 0.01 ±10%
2 0.02 ±10%
3 0.03 ±10%

with the nominal transition probability matrix that relates
the three operation modes

Pık =


 0.67 0.17 0.16

0.30 0.47 0.23
0.26 0.10 0.64


 .

With these parameters, (27) can be rewritten as

ẋ1(t) = −0.1x1(t) −
(

[α(ı)+∆α(ı)]
C x2

1(t)
)
· x1(t)

+50x2(t)
ẋ2(t) = −x1(t) − 10x2(t) + 0.1w2(t)
y(t) = Jx(t) + 0.1w1(t)

z(t) =
[

x1(t)
x2(t)

]
.

(28)
For the sake of simplicity, we will use as few rules as

possible. Assuming that |x1(t)| ≤ 3, the nonlinear network
system (28) can be approximated by the following TS fuzzy
model:

ẋ(t) =
r∑

i=1

µi

[
(Ai(ı) + ∆Ai(ı)]x(t) + B1(ı)w(t)

]
,

z(t) = C1(ı)x(t),
y(t) = C2(ı)x(t) + D21(ı)w(t)

where µi is the normalized time-varying fuzzy weighting
functions for each rule, i = 1, 2, where

A1(1) =
[ −0.1 50

−1 −10

]
, A2(1) =

[ −4.6 50
−1 −10

]
,

A1(2) =
[ −0.1 50

−1 −10

]
, A2(2) =

[ −9.1 50
−1 −10

]
,
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A1(3) =
[ −0.1 50

−1 −10

]
, A2(3) =

[ −13.6 50
−1 −10

]
,

B11(ı) = B12(ı) =
[

0 0
0 0.1

]
,

C11(ı) = C12(ı) =
[

1 0
0 1

]
,

C21(ı) = C22(ı) = J, D211(ı) = D212(ı) =
[

0.1 0
]
,

∆A1(ı) = F (x(t), ı, t)H11(ı)

and A2(ı) = F (x(t), ı, t)H12(ı).

Now, by assuming that ‖F (x(t), ı, t)‖ ≤ ρ(ı) = 1, we have

H11(1) =
[

0 0
0 0

]
, H12(1) =

[ −0.45 0
0 0

]
,

H11(2) =
[

0 0
0 0

]
, H12(2) =

[ −0.9 0
0 0

]
,

H11(3) =
[

0 0
0 0

]
and H12(3) =

[ −1.35 0
0 0

]
.

∆A1(ı) =

[
−

(
α(ı)
C · x2

1(t)
)

0
0 0

]
∆= F (x(t), ı, t)H11(ı)

A2(ı) =

[
−

(
α(ı)
C · x2

1(t)
)

0
0 0

]
∆= F (x(t), ı, t)H12(ı).

Note that the plot of the membership function Rules 1 and
2 is given in Fig. 2. Using the LMI optimization algorithm

1

0

1

2 

M  (x  )

M  (x  )

x 

1

1

1
 −3  3

Fig. 2. Membership functions for the two fuzzy set.

and Theorem 1 with γ = 1, J = [1 0] and δ(1) = δ(2) =
δ(3) = 1, we obtain

Â11(1) =
[ −50.5324 −1.7600

−9.7924 −0.5462

]
,

Â12(1) =
[ −50.5324 −1.7600

−9.7924 −0.5462

]
,

Â21(1) =
[ −53.3639 −1.8542

−19.4469 −0.3911

]
,

Â22(1) =
[ −53.3639 −1.8542

−19.4469 −0.3911

]
,

B̂1(1) =
[

0.2743
−0.9846

]
, B̂2(1) =

[
0.3067
−1.2423

]
,

Ĉ1(1) =
[ −35.3553 −1.1213

]
,

Ĉ2(1) =
[ −35.3553 0.1110

]
,

Â11(2) =
[ −52.3064 −2.3475

−3.8388 −0.5670

]
,

Â12(2) =
[ −52.3064 −2.3475

−3.8388 −0.5670

]
,

Â21(2) =
[ −58.4742 −2.4526

−25.9706 −0.1006

]
,

Â22(2) =
[ −58.4742 −2.4526

−25.9706 −0.1006

]
,

B̂1(2) =
[

0.4488
−1.6417

]
, B̂2(2) =

[
0.0851
−0.5918

]
,

Ĉ1(2) =
[ −35.3553 −0.1998

]
,

Ĉ2(2) =
[ −35.3553 −0.2554

]
,

Â11(3) =
[ −53.3336 −2.8124

−0.7319 −0.7547

]
,

Â12(3) =
[ −53.3336 −2.8124

−0.7319 −0.7547

]
,

Â21(3) =
[ −63.4126 −3.1736

−22.7881 −0.0209

]
,

Â22(3) =
[ −63.4126 −3.1736

−22.7881 −0.0209

]
,

B̂1(3) =
[

0.7630
−2.9262

]
, B̂2(3) =

[
0.0795
−0.7686

]
,

Ĉ1(3) =
[ −35.3553 −1.6653

]
,

Ĉ2(3) =
[ −35.3553 0.2665

]
.

The resulting fuzzy filter is

˙̂x(t) =
∑2

i=1

∑2
j=1 µiµjÂij(ı)x̂(t)

+
∑2

i=1 µiB̂i(ı)y(t)
ẑ(t) =

∑2
i=1 µiĈi(ı)x̂(t)

(29)

where

µ1 = M1(x1(t)) and µ2 = M2(x1(t)).
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Remark 1: Figure 3 shows the result of the changing
between modes during the simulation with the initial mode
2. The disturbance input signal, w(t), which was used
during the simulation is the rectangular signal (magnitude
0.9 and frequency 1 Hz). The simulation results for the
ratio of the filter error energy to the disturbance input noise
energy obtained by using the H∞ fuzzy filter are depicted in
Figure 4. After 15 seconds, the ratio of the filter error energy
to the disturbance input noise energy tends to a constant
value which is about 0.11. Thus, γ =

√
0.11 = 0.332 which

is less than the prescribed value 1.
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Fig. 3. The result of the changing between modes during the simulation
with the initial mode 2.
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Fig. 4. The ratio of the filter error energy to the disturbance noise energy:
Tf
0 (z(t)−ẑ(t))T (z(t)−ẑ(t))dt

Tf
0 wT (t)w(t)dt

.

V. CONCLUSION

This paper has proposed a technique for designing an
H∞ filter for a class of fuzzy Markovian jump dynamic
systems that guarantees the L2-gain from an exogenous
input to an estimation error is less then a prescribed value.
Based on an LMI approach, LMI-based sufficient conditions
for the filter to have an H∞ performance are established.
The effectiveness of the proposed design methodology is
demonstrated through a tunnel diode circuit.
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