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Abstract— Being able to design controllers that are ro-
bust to noisy measurements is of fundamental importance
in practical applications. With this objective in mind,
the original contribution of this paper is to propose a
design technique for state feedback control of piecewise-
affine systems that is robust to bounded noise in the
measurements. More specifically, the paper gives conditions
under which a piecewise-affine state feedback controller
designed to stabilize a noise-free piecewise-affine system to
a target point still stabilizes the system when the state is
subject to norm bounded noisy measurements. It will be
shown that controllers designed using a globally quadratic
Lyapunov function are robust to noisy state measurements
and that the state trajectories of the closed-loop system will
still converge to a region around the equilibrium point in
the presence of noise. The size of this region will be related
to the norm bound on the noise.

I. INTRODUCTION

Piecewise-affine systems are multi-model systems that
offer a good modeling framework for complex dynamical
systems involving nonlinear phenomena. In fact, many non-
linearities that appear frequently in engineering systems
are either piecewise-affine (e.g., a saturated linear actuator
characteristic) or can be approximated as piecewise-affine
functions. Piecewise-affine systems are also a class of
hybrid systems, i.e, they are systems with a continuous
time-driven state and a discrete event-driven state. For
piecewise-affine systems the discrete-event state is associ-
ated with discrete modes of operation. The continuous-
time state is associated with the affine (linear with offset)
dynamics valid within each discrete mode. Piecewise-affine
systems pose challenging problems because of its switched
structure. In fact, the analysis and control of even some
simple piecewise-affine systems have been shown to be
either an NP hard problem or undecidable [1].

State and output feedback control of continuous-time
piecewise-affine systems has received increasing interest
over the past decade [2], [3], [4], [5]. The state feedback

approach presented in [3] relies on computing upper
and lower bounds to the optimal cost of the controller
obtained as the solution to the Hamilton-Jacobi-Bellman
equation. The continuous-time controller resulting from
the approach in [3] is a patched LQR that cannot be
guaranteed to avoid sliding modes at the switching and,
therefore, is not provably stabilizing. Reference [4] presents
a formulation of both state and output feedback controller
synthesis for piecewise-affine systems. The control design is
based on a piecewise-quadratic control Lyapunov function
and is formulated as an optimization problem subject to
a bilinear matrix inequality. Because of this constraint,
the problem is NP-hard and suboptimal solutions must
be sought for problems of considerable size, as the ones
occuring frequently in applications. Three local solution
algorithms were suggested in [4] to find a suboptimal
solution. Several examples demonstrated the performance
of the controllers. Inspired by the work of Hassibi and
Boyd [2], a new formulation of the piecewise-affine state
feedback synthesis problem was suggested in [5]. The
control problem was formulated as a convex optimization
program subject to an infinite number of LMI constraints
analitically parameterized by a vector. This vector can then
be sampled and a relaxation of the problem can be solved.
Alternatively, as described in [5], a concave optimization
problem can be formulated and in case there is a solution
to the concave problem it was shown that it will also be a
solution to the original state feedback problem. However,
none of previous approaches [2], [3], [4], [5] consider the
case when the state measurement is subject to noise, which
is the case typically faced in a practical application.

Based on these considerations, the contribution of this
paper is to propose a design technique for state feed-
back control of piecewise-affine systems that is robust to
bounded noise in the measurements. More specifically, the
paper presents conditions under which a state feedback
controller designed for a noise-free piecewise-affine system
still stabilizes the system when subject to norm bounded
noise. The paper starts by stating the problem assumptions
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followed by a section on the design of piecewise-affine state
feedback controllers for noise-free piecewise-affine systems.
Then, it is shown under which conditions the trajectories
of the closed-loop system converge to a region around the
closed-loop equilibrium point in the presence of noise. The
size of this region will be connected to the bound on the
norm of the noise in the measurements.

II. PROBLEM ASSUMPTIONS

It is assumed that a PWA system and a corresponding
partition of the state space with polytopic cells Ri, i ∈
I = {1, . . . , M} are given (see [6] for generating such a
partition). Following [7], [8], [2], each cell is constructed
as the intersection of a finite number (pi) of half spaces

Ri = {x | HT
i x − g̃i < 0}, (1)

where Hi = [hi1 hi2 . . . hipi ], g̃i = [g̃i1 g̃i2 . . . g̃ipi ]
T .

Moreover, the sets Ri partition a subset of the state space
X ⊂ IRn such that ∪M

i=1Ri = X , Ri ∩ Rj = ∅, i �= j,
where Ri denotes the closure of Ri. Within each cell the
dynamics are affine of the form

ẋ(t) = Aix(t) + b̃i + Biu(t), (2)

where x(t) ∈ IRn and u(t) ∈ IRm. For system (2), we
adopt the following definition of trajectories or solutions
presented in [9].

Definition 2.1: [9] Let x(t) ∈ X be an absolutely
continuous function. Then x(t) is a trajectory of the system
(2) on [t0, tf ] if, for almost all t ∈ [t0, tf ] and Lebesgue
measurable u(t), the equation ẋ(t) = Aix(t)+ b̃i +Biu(t)

holds for x(t) ∈ Ri. �

Any two cells sharing a common facet will be called level-
1 neighboring cells. Let Ni = {level-1 neighboring cells
of Ri}. It is also assumed that vectors cij ∈ IRn and
scalars dij exist such that the facet boundary between cells
Ri and Rj is contained in the hyperplane described by
{x ∈ IRn | cT

ijx − dij = 0}, for i = 1, . . . , M , j ∈ Ni.
A parametric description of the boundaries can then be
obtained as [2]

Ri ∩Rj ⊆ {x = l̃ij + Fijs | s ∈ IRn−1} (3)

for i = 1, . . . , M , j ∈ Ni, where Fij ∈ IRn×(n−1) (full
rank) is the matrix whose columns span the null space of
cT
ij , and l̃ij ∈ IRn is given by l̃ij = cij

(
cT
ijcij

)−1
dij . For

systems whose polytopic cells are slabs, called piecewise-
affine slab systems, each Ri can be outer approximated
by a degenerate ellipsoid εi. This covering will be used to
describe the regions instead of the polytopic description.
The ellipsoidal description of piecewise-affine systems is
useful because it often requires fewer parameters than the
polytopic description and it enables to cast the synthesis
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�
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Fig. 1. Polytopic regions Ri, Rj and boundary

problem as an optimization program involving a set of
LMIs analitically parameterized by a vector. To describe
the ellipsoidal covering, it is assumed that matrices Ei and
f̃i exist such that

Ri ⊆ εi (4)

where
εi = {x| ‖Eix + f̃i‖ ≤ 1}. (5)

This covering is especially useful in the case where Ri

is a slab because in this case the matrices Ei and f̃i

are guaranteed to exist and the covering (having one
degenerate ellipsoid εi) is exact, i.e., εi ⊆ Ri and Ri ⊆ εi.
More precisely, if Ri = {x | d1 < cT

i x < d2}, then the
degenerate ellipsoid is described by Ei = 2cT

i /(d2 − d1)

and f̃i = −(d2 + d1)/(d2 − d1). Finally, it is assumed that
the control objective is to stabilize the system to a given
point xcl. With the change of coordinates z = x − xcl the
problem is transformed to the stabilization of the origin.
In these coordinates, the system dynamics (2) are

ż(t) = Aiz(t) + bi + Biu(t), (6)

where bi = b̃i + Aixcl. The parametric description of the
boundaries (3) is written as

Ri ∩Rj ⊆ {z = lij + Fijs | s ∈ IRn−1} (7)

where lij = l̃ij − xcl for i = 1, . . . , M , j ∈ Ni. The
description of the polytopic cells is

Ri = {z | HT
i z − gi < 0}, (8)
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where gi = g̃i − HT
i xcl, and the ellipsoidal covering is

described by

εi = {z| ‖Eiz + fi‖ ≤ 1}, (9)

where fi = f̃i + Eixcl.

III. LYAPUNOV-BASED CONTROLLER SYNTHESIS

The piecewise-affine state feedback input signal is pa-
rameterized by Ki and mi in the form

u = Kiz + mi, z ∈ Ri (10)

with −l0 ≤ mi ≤ l0 where l0 is a vector of upper bounds
for the entries of mi, i = 1, . . . , M . The globally quadratic
candidate control Lyapunov function is parameterized by
P = P T as

V (z) = zT Pz. (11)

The candidate control Lyapunov function (11) becomes a
Lyapunov function with decay rate α if for fixed α ≥
0, V > 0 and V̇ < −αV . Using (6) and (10), sufficient
conditions for exponential stability are P = P T > 0 and

z ∈ Ri ⇒ [(Ai + BiKi) z + (bi + Bimi)]
T Pz +

zT P [(Ai + BiKi) z + (bi + Bimi)] + αzT Pz < 0. (12)

This expression can be recast as

z ∈ Ri ⇒
[

z

1

]T [
ĀT

i P + PĀi + αP P b̄i

(P b̄i)
T 0

][
z

1

]
< 0,

(13)
where Āi = Ai +BiKi and b̄i = bi +Bimi. If we relax the
condition z ∈ Ri in (13) by z ∈ εi and if we use expression
(9) and the S−procedure [10] yields the following sufficient
conditions for quadratic stabilization (see [5] for details)

P = P T > 0, λi < 0, i = 1, . . . , M,[
ĀT

i P + PĀi + αP + λiE
T
i Ei (·)

(P b̄i + λiE
T
i fi)

T −λi

(
1 − fT

i fi

)
]
<0 (14)

These conditions are Bilinear Matrix Inequalities (BMIs)
[11] because they involve terms with products of the
unknowns P and Ki. However, for piecewise-affine slab
systems, the following procedure can be used to make
the dependence on Ki and P be linear rather than
bilinear. The procedure involves the change of variables
Q = P−1, µi = λ−1

i and the algebraic manipulation
presented in [5] to yield

Q = QT > 0, µi < 0, i = 1, . . . , M,[
ĀiQ + QĀT

i + αQ + µib̄ib̄
T
i µib̄if

T
i + QET

i

(µib̄if
T
i + QET

i )T −µi

(
I − fif

T
i

)
]

< 0 (15)

Performing now the substitution Āi = Ai + BiKi and
introducing new variables Yi = KiQ in (15) yields

Q = QT > 0, µi < 0, i = 1, . . . , M,[
Wi + W T

i + αQ + µib̄ib̄
T
i µib̄if

T
i + QET

i

(µib̄if
T
i + QET

i )T −µi

(
I − fif

T
i

)
]

< 0, (16)

where Wi = AiQ + BiYi, b̄i = bi + Bimi. Notice that
the dependence on Q and Yi is now linear at the cost of
a bilinear dependence on mi. However, mi is typically of
much lower dimension than Yi (e.g, for single input systems
Yi has the same dimension of the state space, which can be
quite large, and mi is a scalar). The piecewise-affine state
feedback stabilization problem is now formally defined.

Definition 3.1: The piecewise-affine state feedback
problem is: for fixed α ≥ 0, i = 1, . . . , M,

find Q, Yi, mi, µi

s.t. Q = QT > 0, µi < 0, (16)

−l1 ≺ Yi ≺ l1, −l0 ≺ mi ≺ l0
Note that for fixed mi, i = 1, . . . , M , expression (16) is
an LMI and the problem is convex. Therefore, although
the problem formulated in (16) cannot be cast as one
convex program, it is an infinite set of convex problems
involving an LMI or, equivalently, an infinite number
of LMIs analitically parameterized by the vector γ =

[mT
1 mT

2 . . . mT
M ]T . Since each element mi, i = 1, . . . , M

has bounded components, γ belongs to an hypercube.
Effective meshing techniques can then be used to sample
the hypercube and solve a relaxation of problem 3.1 where
now the LMI constraints form a finite set. The following
algorithm is suggested to solve the state-feedback problem:

Algorithm # 1 – Sampling Method:
1) Define a grid for the domain of the vector γ to sample

it at N points,
2) For fixed α ≥ 0, solve the corresponding feasibility

problem 3.1 for each of the points in the grid until
a feasible point is found.

3) If step 2 is successful or if the maximum number of
iterations was reached, stop. Otherwise, increase the
grid density and go back to Step 2.

The feasibility problem from definition 3.1 can be
transformed into an optimization problem if the Q with
minimum condition number is sought as follows:

Definition 3.2: The minimum condition number
piecewise-affine state feedback problem is: for fixed
α ≥ 0, ε > 0

min k

s.t. k > 0, εI < Q < kεI

Q = QT > 0, µi < 0, (16)

−l1 ≺ Yi ≺ l1, −l0 ≺ mi ≺ l0, i = 1, . . . , M,

where , ≺ mean component-wise inequalities and l0, l1
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are given vector bounds. �

Remark 1: Usually ε is selected to be unitary. Notice also
that Algorithm # 1 can be changed to store for all grid
points the one that yields the minimum value of k. For the
same setting, the algorithm can be further improved if the
derivative of the solution with respect to γ at each point
is computed. In that case, for each selected sample point,
the next sample point should be chosen in the direction
opposite to the vector derivative. This will reduce the number
of points from the grid that need to be used, thus reducing
the computational burden of the algorithm. �

IV. STABILITY OF THE CLOSED-LOOP SYSTEM WITH

NORM BOUNDED NOISE

In this section a stability result is presented for the
closed-loop system when the measurements are subject to
norm bounded noise. It is assumed that a continuous-time
state feedback controller has been designed (for example,
by solving one of the optimization problems in definitions
3.1 or 3.2). It is also assumed that the state x of the system
is measured with additive norm bounded noise η. In other
words, the measurement is y = x + η with ‖η‖ < N ,
for some positive constant N . The control input is then
u = Kj (y − xcl)+mj = Kjzmeas+mj , where it is possibly
true that z = x−xcl ∈ Ri and zmeas ∈ Rj , j �= i because
of the noise in the state measurement. The closed-loop
system is then described by the differential equation

ż =
(
Āi + Bi∆Kij

)
z + b̄i + Bi (∆mij + Kjη) , (17)

for z(t) ∈ Ri, zmeas(t) ∈ Rj , with Āi, b̄i defined as
before and ∆Kij = Kj −Ki, ∆mij = mj −mi. The main
result of this section can now be stated. It gives conditions
under which the trajectories of the closed-loop system (17)
converge to a region around the closed-loop equilibrium
point. Furthermore, it relates the size of this region to the
bound on the norm of the noise.

Theorem 4.1: Assume the Lyapunov function (11) is
defined in X ⊆ IRn and define the condition number
χ (P ) = σmax(P )

σmin(P )
. Assume there is a solution to the

design problem from Definition 3.1 and assume that there
exists N > 0 such that the noise term η from (17)
satisfies ‖η‖ < N . Let K = maxi=1,...,M ‖Ki‖, B =

maxi=1,...,M ‖Bi‖, ∆K = maxi=1,...,M, j=1,...,M ‖∆Kij‖
and ∆m = maxi=1,...,M, j=1,...,M ‖∆mij‖. Define

µθ =
2σmax(P )B (KN + ∆m)

αθσmin(P ) − 2σmax(P )B∆K
,

and the region

Sθ = {z ∈ X | ‖z‖ ≤ µθ}

for any positive constant θ < 1. Then, the trajectories of

the closed-loop system (17) converge exponentially to the
set

Ω =
{
z ∈ X | V (z) ≤ σmax(P )µ2

θ

}

provided

∆K <
χ−1 (P )αθ

2B

Proof: Using the dynamics (17), the derivative of the
candidate Lyapunov function (11) along the trajectories
of the system is

d

dt
V (z) =

[
z

1

]T [
ĀT

i P + PĀi P b̄i

(P b̄i)
T 0

][
z

1

]
+

2zT PBi (∆Kijz + ∆mij + Kjη) (18)

for the general case z(t) ∈ Ri, zmeas(t) ∈ Rj where
possibly i �= j. However, note that by using the S-
procedure, expression (13) (or, equivalently, expression
(16)) guarantees that for z ∈ Ri[

z

1

]T [
ĀT

i P + PĀi P b̄i

(P b̄i)
T 0

] [
z

1

]
< −αzT Pz.

Therefore, for z ∈ Ri it follows that

d

dt
V (z) < −αzT Pz + 2zT PBi (∆Kijz + ∆mij + Kjη)

Noting that V (z) = zT Pz, taking norms and using the
bounds ‖η‖ < N, ‖Bi‖ ≤ B, ‖Ki‖ ≤ K, ‖∆Kij‖ ≤
∆K, ‖∆mij‖ ≤ ∆m, i, j = 1, . . . , M, yields

d

dt
V (z) < −αV (z)+2‖z‖σmax(P )B (∆K‖z‖ + ∆m + KN)

or, for any positive constant θ < 1

d

dt
V (z) < −(1 − θ)αV (z) − θαV (z) +

2‖z‖σmax(P )B (∆K‖z‖ + ∆m + KN) . (19)

Therefore, given that −V (z) = −zT Pz ≤ −σmin(P )‖z‖2,
for 0 < θ < 1 we have

d

dt
V (z) < −(1 − θ)αV (z) (20)

for z ∈ IRn \ Sθ , i.e, for

‖z‖ >
2σmax(P )B (KN + ∆m)

αθσmin(P ) − 2σmax(P )B∆K
,

provided

∆K <
χ−1 (P ) αθ

2B
.

As a result of (20), for z ∈ IRn \ Sθ ,

V (z(t)) < V (z(t0))e
−(1−θ)α(t−t0)
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Fig. 2. Circuit with nonlinear resistor

Using the relation σmin(P )‖z‖2 ≤ V (z) ≤ σmax(P )‖z‖2

we can conclude that for z ∈ IRn \ Sθ ,

‖z(t)‖ ≤ ‖z(t0)‖χ 1
2 (P )e−0.5(1−θ)α(t−t0).

Thus, there will be a positive and finite time tθ
1 such that

z(tθ
1) ∈ Sθ for any positive constant θ < 1. Note that

Sθ ⊆ Ω. This can be proved by contradiction. Assume that
it is not true that Sθ ⊆ Ω. Then, there exists at least one
z0 ∈ Sθ for which zT

0 Pz0 > σmax(P )µ2
θ , a contradiction.

By the same reasoning that led to (20), V̇ ≤ 0 at the
boundary of Ω and, therefore, Ω is an invariant set for
system (17). Consequently, since z(tθ

1) ∈ Sθ ⊆ Ω, z(t) ∈ Ω

for all t ≥ tθ
1 and for all 0 < θ < 1. �

Remark 2: Note that the result in the theorem roughly
states that for feedback gain matrices whose norms do not
differ substancially for different regions in the partition of
the domain, the closed-loop trajectories converge to a region
around the equilibrium point in the presence of bounded
noise in the state measurements. Moreover, the size of the
region depends on the noise bound, which makes perfect
sense from a practical point of view. �

V. EXAMPLE

This example considers a circuit with a nonlinear
resistor taken from [2] and shown in figure 2. With time
expressed in 10−10 seconds, the inductor current in mA
and the capacitor voltage in Volts, the dynamics are[

ẋ1

ẋ2

]
=

[
−30 −20

0.05 0

] [
x1

x2

]
+

[
24

−50g(x2)

]
+

[
20

0

]
u.

Following [2], the characteristic of the nonlinear resistor
g(x2) is defined to be the piecewise-affine function shown
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Fig. 3. Nonlinear resistor characteristic.

in figure 3 which generates the polytopic regions

R1 = {x ∈ IR2 | − L < x2 < 0.2},
R2 = {x ∈ IR2 | 0.2 < x2 < 0.6},
R3 = {x ∈ IR2 | 0.6 < x2 < L},

where L = 2 × 104. The (exact) ellipsoidal covering is

E1 =
2

0.2 + L
e1, E2 =

2

0.6 − 0.2
e2, E3 =

2

L − 0.6
e3

f̃1 =
L − 0.2

L + 0.2
f̃2 = −0.6 + 0.2

0.6 − 0.2
f̃3 = −L + 0.6

L − 0.6
,

where e1 = e2 = e3 = [0 1]. Assume that the affine terms
of the control law have magnitude bounded by 0.2 so that
l0 = [0.2 0.2 0.2]T . The objective is to design a piecewise-
affine state feedback controller to stabilize the system to
the open loop equilibrium point of R3

xcl = x3
ol =

[
0.3714

0.6429

]
.

For region R3 we then must have m3 = 0. A grid of
0.1 increments in the interval [−0.2, 0.2] was selected for
each of the parameters m1, m2. Imposing the constraint
Y1 = Y2 = Y3 and using α = 1, l1 = 10−13[8 8]T ,
Algorithm # 1 yields

K1 =
[

−0.0027 −1.7647
]

, m1 = +0.1,

K2 =
[

−0.0027 −1.7647
]

, m2 = −0.1

K3 =
[

−0.0027 −1.7647
]

, m3 = +0.0,

The simulation results for the initial condition x0
1 =

0.5, x0
2 = 0.1 (inside region R1, which is the region

furthest away of the region holding the equilibrium point)
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Fig. 4. Simulation Results for x0
1 = 0.5, x0

2 = 0.1

and for measurements of x2 subject to bounded noise are
presented in figure 4. The desired set-points for the state
components are represented by the dashed lines and it is
clear from the figure that in the presence of noise the
state components converge to a region around the set-
points. Note that typically in applications the control signal
would be filtered before feeding it to the plant input. If
either a linear or a piecewise-affine filter is implemented,
the approach of this paper can still be used to analyze
closed-loop stability in the presence of bounded noise and
control signal filtering because the closed-loop system is
still piecewise-affine.

VI. CONCLUSIONS

Being able to design controllers that are robust to noisy
measurements is of fundamental importance in practical
applications. This paper proposed a design technique for
state feedback control of piecewise-affine systems that
is robust to bounded noise in the measurements. More
specifically, the paper presented conditions under which
a piecewise-affine state feedback controller designed for a
noise-free piecewise-affine system still stabilizes the system
to a region around the equilibrium point when subject
to norm bounded noise in the state measurements . The
result presented in the paper explicitly relates the size
of the region of convergence to the bound on the noise.
Simulation examples illustrate the result showing that
Lyapunov-based piecewise-affine state feedback controller
synthesis is robust to noise in the measurement of the state.
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