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Abstract— Repetitive processes are a distinct class of two-
dimensional systems (i.e. information propagates in two inde-
pendent directions) of both systems theoretic and applications
interest. They cannot be controlled by direct extension of
existing techniques from either standard (termed 1D in the
associated literature) or two-dimensional (2D) systems theory.
Most of the currently available results for them focus on
fundamental properties such as stability, controllability etc.
Recently, however, there has been a move (prompted by the
progress in this earlier research) towards the development of a
control theory, and associated design algorithms, for the sub-
classes of so-called differential and discrete linear repetitive
processes which arise in applications such as iterative learning
control. In this paper we continue this theme by investigating
the role of proportional plus integral action in the differential
case.

I. INTRODUCTION

Repetitive processes are a distinct class of two-
dimensional (2D) systems of both systems theoretic and
applications interest. The essential unique characteristic of
such a process is a series of sweeps, termed passes, through
a set of dynamics defined over a fixed finite duration known
as the pass length. On each pass an output, termed the pass
profile, is produced which acts as a forcing function on,
and hence contributes to, the dynamics of the next pass
profile. This, in turn, leads to the unique control problem for
these processes in that the output sequence of pass profiles
generated can contain oscillations that increase in amplitude
in the pass-to-pass direction.

To introduce a formal definition, let α < +∞ denote the
pass length (assumed constant). Then in a repetitive process
the pass profile yk(t), 0 ≤ t ≤ α, generated on pass k
acts as a forcing function on, and hence contributes to, the
dynamics of the next pass profile yk+1(t), 0 ≤ t ≤ α, k ≥ 0.

Physical examples of repetitive processes include long-
wall coal cutting and metal rolling operations (see, for
example, [1]). Also in recent years applications have arisen
where adopting a repetitive process setting for analysis has
distinct advantages over alternatives. Examples of these so-
called algorithmic applications include classes of iterative
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learning control (ILC) schemes [2] and iterative algorithms
for solving nonlinear dynamic optimal control problems
based on the maximum principle [3]. In the case of ILC for
the linear dynamics case, the stability theory for differential
and discrete linear repetitive processes is the essential basis
for a rigorous stability/convergence analysis of a powerful
class of such algorithms.

Attempts to control these processes using standard (or
1D) systems theory/algorithms fail (except in a few very
restrictive special cases) precisely because such an approach
ignores their inherent 2D systems structure, i.e. information
propagation occurs from pass-to-pass and along a given
pass. In seeking a rigorous foundation on which to develop a
control theory for these processes, it is natural to attempt to
exploit structural links which exist between these processes
and other classes of 2D linear systems.

The case of 2D discrete linear systems recursive in the
positive quadrant (i, j) : i ≥ 0, j ≥ 0 (where i and j
denote the directions of information propagation) has been
the subject of much research effort over the years using, in
the main, the well known Roesser [4] and Fornasini Marche-
sini [5] state space models. A key distinguishing feature of
repetitive processes is that information propagation in one
of the independent directions, along the pass, only occurs
over a finite duration — the pass length. Moreover, in this
paper the subject is so-called differential linear repetitive
processes where the dynamics along the pass are governed
by a linear matrix differential equation. This means that
results for 2D discrete linear systems are not applicable.

The structure of linear repetitive processes means that
there is a natural way to write down control laws for them
which can be based on current pass state or output (pass
profile) feedback control and feedforward control from the
previous pass profile. For example, in the ILC application,
one such family of control laws is composed of output
feedback control action on the current pass combined with
information ‘feedforward’ from the previous pass (or trial
in the ILC context) which, of course, has already been
generated and is therefore available for use.

The requirement to provide control laws for repetitive
processes which achieve stability and/or performance, plus
the progress in answering basic systems theoretic questions
such as what is meant by controllability etc, has recently
been the subject of an increasing level of research. One
aspect of this has seen the emergence of LMI based
methods, e.g. [6], as the only currently available method
which allows control laws to be designed for stability and/or
performance as opposed to just obtaining conditions for
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stability along the pass under control action.
In this paper, we continue the development of simple

structure control laws for differential linear repetitive pro-
cesses and, in particular, the use of proportional plus integral
control action, where this problem has been considered
previously [7] for discrete linear repetitive processes. We
begin in the next section with a summary of the relevant
background. Throughout this paper, the null matrix and the
identity matrix with the required dimensions are denoted by
0 and I , respectively. Moreover, M > 0 (< 0) denotes a
real symmetric positive (negative) definite matrix.

II. BACKGROUND

Following [8] the state space model of a differential linear
repetitive process has the following form over 0 ≤ t ≤
α, k ≥ 0

ẋk+1(t) = Axk+1(t)+B0yk(t)+Buk+1(t)+Ew(t) (1)

yk+1(t) = Cxk+1(t)+D0yk(t)+Duk+1(t)+Fw(t)

where x ∈ R
n is the state vector, y ∈ R

m is the pass
profile (the output vector) and u ∈ R

r is the input vector.
The function w(t) denotes a known disturbance and without
the loss of the generality it is assumed that it is given by a
known equation. It is also assumed that the disturbance is
constant from pass-to-pass (i.e in the k direction) but can
evolve dynamically along the pass.

To complete the process description, it is necessary to
specify the boundary conditions, i.e. the state initial vector
on each pass and the initial pass profile. Here no loss of
generality arises from assuming xk+1(0) = dk+1, k ≥ 0,
and y0(t) = f(t), where the n × 1 vector dk+1 has known
constant entries and f(t) is an m× 1 vector whose entries
are known functions of t.

The stability theory [8] for linear constant pass length
repetitive processes is based on the following abstract model
of the underlying dynamics where Eα is a suitably chosen
Banach space with norm ||.|| and Wα is a linear subspace
of Eα

yk+1 = Lα yk + bk+1, k ≥ 0 (2)

In this model yk ∈ Eα is the pass profile on pass k, bk+1 ∈
Wα, and Lα is a bounded linear operator mapping Eα into
itself. The term Lαyk represents the contribution from pass
k to pass k+1 and bk+1 represents known initial conditions,
disturbances and control input effects.

The linear repetitive process (2) is said to be asympto-
tically stable if ∃ a real scalar δ > 0 such that, given any
initial profile y0 and any disturbance sequence {bk}k≥1 ∈
Wα bounded in norm (i.e. ||bk|| ≤ c1 for some constant
c1 ≥ 0 and ∀ k ≥ 1), the output sequence generated by the
perturbed process

yk+1 = (Lα + γ)yk + bk+1, k ≥ 0 (3)

is bounded in norm whenever ||γ|| ≤ δ. This definition is
easily shown to be equivalent to the requirement that ∃ finite

real scalars Mα > 0 and λα ∈ (0, 1) such that

||Lk
α|| ≤ Mαλk

α, k ≥ 0 (4)

(where ||.|| is also used to denote the induced operator
norm). Necessary and sufficient conditions for this last
condition are that

r(Lα) < 1 (5)

where r(·) denotes the spectral radius of its argument.
In the case of processes described by (1), stability can

be determined in the absence of the disturbance terms and
it can be shown that asymptotic stability holds if, and
only if, r(D0) < 1. Also if this property holds and the
control input sequence applied {uk}k converges strongly
to u∞ as k → ∞ then the resulting output pass profile
sequence {yk}k converges strongly to y∞ — the so-called
limit profile defined (with D = 0, E = 0 and F = 0 for
ease of presentation) over 0 ≤ t ≤ α by

ẋ∞(t) = (A + B0(Im − D0)−1C)x∞(t) + Bu∞(t)
y∞(t) = (Im − D0)−1Cx∞(t)
x∞(0) = d∞ (6)

where d∞ is the strong limit of the sequence {dk}k.
In effect, this result states that if a process is asymp-

totically stable then its repetitive dynamics can, after a
‘sufficiently large’ number of passes, be replaced by those
of a 1D differential linear system. Note, however, that this
property does not guarantee that the limit profile is stable
in the normal sense, i.e. all eigenvalues of (A + B0(Im −
D0)−1C) have strictly negative real parts — a point which
is easily illustrated by the case when A = −1, B = 0, B0 =
1 + β, C = 1, D = 0, D0 and β > 0 is a real scalar.

The reason why asymptotic stability does not guarantee
a limit profile which is ‘stable along the pass’ is due to the
finite pass length. In particular, asymptotic stability is easily
shown to be bounded-input bounded-output (BIBO) stability
with respect to the finite and fixed pass length. Also in cases
where this feature is not acceptable, the stronger concept
of stability along the pass must be used. In effect, for the
abstract model (2), this requires that (4) holds uniformly
with respect to the pass length α. One of several equivalent
statements of this is the requirement that ∃ finite real scalars
M∞ > 0 and λ∞ ∈ (0, 1) independent of α and satisfy

||Lk
α|| ≤ M∞λk

∞, ∀ α > 0, ∀ k ≥ 0 (7)

Several equivalent sets of necessary and sufficient condi-
tions for stability along the pass of processes of the form
considered here are known [8] but here it is the following
set which will be required.

Theorem 1: [8] Suppose that the pair {A,B0} is control-
lable and the pair {C,A} is observable. Then the differential
linear repetitive process generated by processes of the form
(1) is stable along the pass if, and only if, (i) r(D0) < 1,
(ii) all eigenvalues of A have strictly negative real parts,
and (iii) all eigenvalues of the transfer function matrix

G(s) = C(sIn − A)−1B0 + D0 (8)
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have modulus strictly less than unity ∀ s = ıω, ω ≥ 0.
The first condition here (i.e. r(D0) < 1) is asymptotic stabi-
lity and the second condition can be interpreted physically
as the requirement that the first pass profile is uniformly
bounded with respect to the pass length. Note, however,
that these conditions are not strong enough for stability
along the pass as the following simple example considered
previously in this section, i.e. A = −1, B = 0, B0 =
1+β, C = 1, D = 0, D0, with β > 0. In particular, the limit
profile (6) in this case is unstable as 1D linear system and
G(s) = 1+β

s+1 . Hence stability along the pass requires that
β < 0. In physical terms, this means that each frequency
component of the initial profile must be attenuated from
pass-to-pass.

Consider now the problem of control law design. Then
previous work, e.g. [6], has shown that an LMI setting
allows both to test for stability along the pass and design
physically based control laws. The new results in this paper
will also use this approach for which the following result
is the basic starting point.

Theorem 2: [6] A differential linear repetitive process
described by (1) is stable along the pass if ∃ matrices Y > 0
and Z > 0 satisfying the following LMI

⎡
⎣ Y AT + AY B0Z Y CT

ZBT
0 −Z ZDT

0

CY D0Z −Z

⎤
⎦ < 0 (9)

Previous work has shown that to control these processes
based on the use of current pass information alone will
only work in very restricted special cases. Instead, control
laws must be based on current pass action augmented by
information from the previous pass profile. One such control
law is defined over 0 ≤ p ≤ α, k ≥ 0 as

uk+1(t) = K1xk+1(t) + K2yk(t) (10)

where K1 and K2 are appropriately dimensioned matrices
to be designed, and the following result (which makes use
of Theorem 2) shows how to design for closed loop stability
along the pass.

Theorem 3: [6] Suppose that a differential linear repe-
titive process described by (1) is subject to a control law
of the form (10). Then the resulting closed loop process is
stable along the pass if ∃ matrices Y > 0, Z > 0, M, and
N such that the following LMI holds⎡

⎣ Y AT + AY + NT BT + BN B0Z + BM
ZBT

0 + MT BT −Z
CY + DN D0Z + DM

Y CT + NT DT

ZDT
0 + MT DT

−Z

⎤
⎦ < 0 (11)

If this condition holds then the control law matrices K1 and
K2 are given by

K1 = NY −1, K2 = MZ−1 (12)
Note that the solution for the LMI (11) in this last result
provides only one member (a set of matrices) of the

convex subspace which constitutes its feasibility set. This is
enough to ensure stability along the pass closed loop in the
absence of any other constraints. It is, of course, possible
that adding additional constraints, such as minimization of
the condition numbers of Y and/or Z (to guard against
numerical problems which could appear in forming their
inverses) could lead to an improved solution but this is not
treated here.

III. 2D PROPORTIONAL + INTEGRAL CONTROL

The control law of the previous section requires measu-
rement of the complete current pass state vector and if this
is not possible then an observer would have to be used or
else the current pass output vector used. Moreover, there
remains the general question of how to design control laws
to give desired performance. In which context, their basic
dynamic structure immediately leads to the requirement that
the process is controlled to meet the following objectives:

• The required pass profile, or reference vector, denoted
here by yref (t) is produced as the resulting limit
profile.

• The influence of disturbances which are constant from
pass-to-pass are rejected.

• The performance on intermediate passes is acceptable
and, in particular, stable along the pass.

Control law design to meet these specifications form the
new results in this paper where, noting the obvious require-
ment to avoid controller complexity, the use of proportional
plus integral action as the control law is considered. It is also
important to stress that the above performance objectives
are by no means exhaustive and what is being undertaken
here is an examination of the feasibility of designing one
possible control law structure.

Define for pass k and ‘position’ t ∈ [0, α] along this pass
the so-called total tracking error χk(t) as

χk(t) =
k∑

j=0

(yj(t) − yref (t)) (13)

Then it follows immediately that

χk+1(t) = χk(t) + yk+1(t) − yref (t) (14)

or, on using (1),

χk+1(t) = χk(t) + Cxk+1(t) + Duk+1(t)
+ D0yk(t) + Fw(t) − yref (t)

(15)

Also introduce the so-called extended pass profile vector as

zk(t) =
[

yk(t)
χk(t)

]
(16)

Then use of the second equation of (1) together with (15)
yields the following state space model of the so-called
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augmented linear repetitive process

ẋk+1(t) = Axk+1(t) + [B0 0 ] zk(t) (17)

+Buk+1(t) + Ew(t)

zk+1(t) =
[

C
C

]
xk+1(t) +

[
D0 0
D0 I

]
zk(t)

+
[

0
−I

]
yref (t) +

[
D
D

]
uk+1(t)

+
[

F
F

]
w(t)

Suppose that as k → ∞, xk(t) → x∞(t), uk(t) → u∞(t)
and yk(t) → yref (t), χk(t) → χ∞(t), (hence zk(t) →
z∞(t)). Then from (17) we obtain

ẋ∞(t) = Ax∞(t) + [B0 0 ] z∞(t) (18)

+Bu∞(t) + Ew(t)

z∞(t) =
[

C
C

]
x∞(t) +

[
D0 0
D0 I

]
z∞(t)

+
[

D
D

]
u∞(t) +

[
0
−I

]
yref (t)

+
[

F
F

]
w(t)

Now define the following incremental vectors

ẑk(t) = zk(t) − z∞(t) (19)

ûk(t) = uk(t) − u∞(t)
x̂k(t) = xk(t) − x∞(t)

Then subtracting (18) from (17) and using (19) yields

˙̂xk+1(t) = Ax̂k+1(t) + B̂0ẑk(t) + Bûk+1(t)
ẑk+1(t) = Ĉx̂k+1(t) + D̂0ẑk(t) + D̂ûk+1(t) (20)

where

B̂0 =
[

B0 0
]
, Ĉ =

[
C
C

]

D̂0 =
[

D0 0
D0 I

]
, D̂ =

[
D
D

]

and hence the disturbance term w(t) is completely deco-
upled from the process dynamics. The only problem in the
above analysis is that (20) is asymptotically unstable (this
property is determined by the eigenvalues of the matrix D̂0

and some of these are equal to unity) and hence unstable
along the pass. Consequently the result is only achievable
if we can find a control law to ensure this property. Here
we consider the control law defined by

ûk+1(t) = Kxx̂k+1(t) + Kz ẑk(t) (21)

= Kxx̂k+1(t) + Kz1ŷk(t) + Kz2χ̂k(t)

=
[

Kx Kz1 Kz2

]
⎡
⎣ x̂k+1(t)

ŷk(t)
χ̂k(t)

⎤
⎦

which is the differential linear repetitive process version of
the classical proportional plus integral control action. (In the

case of the integral action, this arises from the total tracking
error contribution which is formed by summing across the
passes.)

Now have the following result which shows how to
design this control law to ensure that (20) is stable along
the pass.

Theorem 4: Suppose that the model of (20) is subject to
a control law of the form (21). Then the resulting closed
loop process is stable along the pass if there exist matrices
Ŷ > 0, Ẑ > 0, M̂ and N̂ such that the following LMI
holds

⎡
⎣ Ŷ AT + AŶ + N̂T BT + BN̂ B̂0Ẑ + BM̂

ẐB̂T
0 + M̂T BT −Ẑ

ĈŶ + D̂N̂ D̂0Ẑ + D̂M̂

Ŷ ĈT + N̂T D̂T

ẐD̂T
0 + M̂T D̂T

−Ẑ

⎤
⎦ < 0

(22)

If this condition holds, the control law matrices Kx and Kz

are given by

Kx = N̂ Ŷ −1, Kz = M̂Ẑ−1 (23)
Proof: Simply note that (20) is of the form (1) (with

w(t) = 0) and hence Theorem 3 can be applied to the
closed loop process state space model.

To show how (21) can be actually employed, first note
that

ûk+1(t) = uk+1(t) − u∞(t) (24)

= Kxx̂k+1(t) + Kz

[
yk(t) − yref (t)
χk(t) − χ∞(t)

]

or, using the original variables,

uk+1(t) = Kx

(
xk+1(t) − x∞(t)

)
(25)

+Kz1

(
yk(t) − yref (t)

)

+Kz2

(
χk(t) − χ∞(t)

)
+ u∞(t)

This control law can also be applied to the process in
non-incremental form, i.e. as

uk+1(t) = Kxxk+1(t) + Kz1yk(t) + Kz2χk(t) (26)

Then from (24) it is straightforward to see that

−Kxx∞(t)−Kz1yref (t)−Kz2χ∞(t) + u∞(t) = 0 (27)

Consequently on any pass it is not required to know
information which is generated on future passes, i.e. χ∞(t)
and u∞(t), which considerably simplifies the effort required
to construct the control law output to be applied to the
process since there is no need to pre-compute these two
terms.
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Fig. 1. The disturbance w(t)

Numerical example

To illustrate the new results developed in this paper,
consider the special case of (1) defined by

A =

⎡
⎣ 0.01 0 −0.11

0 0.98 −0.21
0.08 0.16 −0.61

⎤
⎦, B0 =

⎡
⎣ 0.96

−0.05
−0.82

⎤
⎦

B =

⎡
⎣ −1.0 −1.91

−0.07 2.59
0 0.88

⎤
⎦, E =

⎡
⎣ 1.34

−0.4
−0.51

⎤
⎦

C =
[

1.28 −0.5 0
]
, D0 =

[ −1.04
]

D =
[ −0.41 0.62

]
, F =

[
1.09

]
with pass length α = 50. This process is asymptotically
unstable (and hence unstable along the pass) since |D0| =
1.04. The disturbance has been generated using the follo-
wing formula expressed in terms of the following MATLAB
code

dww=14*pi/(alpha-1);
W = sin(-7*pi:dww:7*pi)

+ (rand(1,alpha)-0.5)/5 + 1.4;

and shown in Figure 1.
The boundary conditions are

dk+1 =

⎡
⎣ 0.23

0.57
−0.99

⎤
⎦ , k ≥ 0

f(t) = 1, 0 ≤ t ≤ α

and the reference signal is yref (t) = −5, 0 ≤ t ≤ α.
The LMI of Theorem 4 in this case is solved by

Ŷ =

⎡
⎣ 1.3798 0.1134 −0.3927

0.1134 0.6123 0.0709
−0.3927 0.0709 0.9628

⎤
⎦

N̂ =
[

2.4415 −1.4602 −0.9755
−0.9905 −0.4808 0.1790

]

Ẑ =
[

0.3959 0.0793
0.0793 0.6243

]
, M̂ =

[ −0.2069 0.2094
0.1679 −0.0257

]
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Fig. 2. The output of the closed loop repetitive process

and hence the control law matrices are given by

Kx =
[

1.9971 −2.7551 0.0041
−0.6758 −0.6553 −0.0415

]

Kz1 =
[ −0.6053

0.4436

]
, Kz2 =

[
0.4123
−0.0974

]

Figure 2 shows the response of the resulting closed loop
process. This confirms that the design objectives have been
satisfied, i.e. close loop stability along the pass, the required
limit profile is achieved and the influences of the disturbance
have been decoupled.

IV. CONCLUSIONS

This paper has developed new results on the control of
differential linear repetitive processes. These consist of the
structure and design of proportional plus integral based
control action which results in a closed loop stable process
which can also reject disturbances which are constant from
pass to pass. The importance of these results is that they
show that previously known stabilization design based on
an LMI setting do extend to allow the design of the control
law to also meet performance specifications. Moreover, the
control law itself only involves proportional plus integral
action on available signals with consequent benefits in terms
of actual implementation. These results are the first in the
general area and there are many aspects to be addressed
before their true potential can be established.

Note again that this paper only deals with disturbances
which are constant from pass-to-pass and this reduces
the general applicability of the new results developed. At
present, it is not clear how (if at all) complete decoupling
of disturbances which do not satisfy this assumption can
be achieved. One practically relevant alternative is to seek
to attenuate the effects of such disturbances to a prescribed
degree using, for example, H∞, H2, or mixed H2/H∞
techniques. In which context some significant first results
in this direction can be found in [9].
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