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Abstract— In this note we present a control strategy combin-
ing continuous and discrete time control schemes to regulate
the average voltage at the load in series resonant DC-to-DC
power converters. We succeed to regulate, at a constant desired
value, the average voltage in the resistive load in spite of the
unknown load and uncertain values of the DC power supply.
The design of the discrete time part of the controller relies on
static nonlinearities satisfying a sector condition.

I. INTRODUCTION.

Along the last years DC-to-DC power conversion based
on solid state switching devices has been very important in
reducing the size of actual electronic equipment. Further,
the large number of portable electronic equipment in every
day’s life would not be possible without actual DC-to-
DC power converters based on semiconductor switching
devices. However, from the control point of view lots of
work rest to be done. This is particularly true in the case of
resonant DC-to-DC power converters which are studied in
this note. The aim of these converters is, given a DC power
supply, to produce a desired DC voltage at the load which
is different from voltage of the DC power supply. Resonant
DC-to-DC power converters are strongly nonlinear because
of the inherently discrete character of its input, generated by
means of switching power devices. The traditional method
for control design in these devices consists in linear approx-
imations based on harmonic analysis [3]. Motivated by the
obvious limitations of this method, several new approaches
have been introduced recently (see [5],[6] and references
there in). In particular, the paper [6] presents two controllers
for series resonant DC-to-DC power converters using the
hybrid flatness property of the model. Remarkable is the
fact that no approximations are used. The first controller
is intended to induce a resonant behavior in the circuit
although the average voltage at the load cannot be modified.
A complete stability and robustness analysis as well as
computation of the ripple voltage was presented in [1] for
this controller. In the second controller a new switching
surface is introduced which can be specified by means
of a design parameter represented by k. Hence, different
values of the average voltage at the load can be obtained
by selecting a different value of k. However, several issues

remain to be studied: no method is presented to compute a
priori the average voltage at the load, further this average
voltage is strongly affected by changes in both the load and
the supplied DC voltage. It is clear that these problems are
important obstacles for practical applications. In this note,
we present a discrete-time integral law which, combined
with the second controller proposed in [6], succeeds to elim-
inate the fore mentioned disadvantages, which represents
our main contribution. Its is worth mentioning that in [6]
convergence to the induced limit cycle is not proven rigor-
ously but only by means of simulations and experiments.
Further, no stability analysis is presented. Hence, we present
a modest advancement in this direction by proving that the
state is bounded when the second control scheme presented
in [6] is used. Thus, assuming asymptotic convergence to
the limit cycle induced by this controller we do prove that
use of the combined continuous-discrete time controller
achieves asymptotic convergence of the average voltage at
the load to its desired constant value. Further, the domain
of convergence can be enlarged arbitrarily by means of a
suitable choice of the controller parameters. The stability
analysis relies on the fact that use of the controller proposed
in [6] allows that, after some transient period, the average
voltage at the load and the parameter k of this controller are
related through a static nonlinearity satisfying some sector
condition. Thus, the sampling period used in the discrete-
time part of the controller must be selected large enough
to allow that such transient period has finished. It is worth
mentioning that a similar control strategy has been proposed
recently by the authors for series resonant inverters in [2].
This note is organized as follows. In section II the dynamic
model we consider is presented. Section III is devoted to
explain the system response. In section IV we present a
Lyapunov based analysis to prove that the state is bounded
when the second controller in [6] is used. In section V we
study the relation, in stationary state, between the average
voltage at the load and parameter k of controller [6]. We
present our main contribution in section VI. Finally, we
present some simulation results in section VII and some
concluding remarks in section VIII.
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II. THE DYNAMIC MODEL CONSIDERED.

This section is entirely based on the results reported in
[6][5]. The electric circuit of a series resonant DC-to-DC
power converter is presented in fig. 1. The corresponding
dynamic model is given as:

L
di

dt
= −v − v0sign(i) + E(t) (1)

C
dv

dt
= i, C0

dv0

dt
= abs(i) − v0

R
(2)

where sign(·) represents the sign function defined as:

sign(x) =

{
1, x ≥ 0
−1, x < 0

(3)

abs(·) stands for the absolute value function, L and C are,
respectively, the resonant inductance and capacitance, C0 is
the filtering capacitance, R is the load resistance, i and v
are, respectively, the resonant electric current and voltage,
v0 is voltage at the load and E(t) stands for the input
voltage which can only take two discrete values {+E,−E},
where E is the constant voltage of the DC power supply.
Consider the following coordinate change:

z1 =
i

E

√
L

C
, z2 =

v

E
, z3 =

v0

E
, τ =

t√
LC

(4)

Thus, the following normalized model is obtained:

ż1 = −z2 − z3sign(z1) + δ u (5)

ż2 = z1 (6)

αż3 = abs(z1) − z3

Q
(7)

where, with some abuse of notation, the “ · ” represents
the derivative with respect to the normalized time τ . The
variable u is the normalized input variable restricted to take
only two values {−1,+1} and δ = 1 if the DC power
supply delivers its nominal voltage, i.e. E, otherwise δ �=
1. We define parameters Q = R

√
C/L and α = C0/C.

Note that Q−1 is known as the quality factor of the series
resonant converter. We stress that normal values are such
that α � 1, to keep small the ripple voltage at the load,
and Q−1 > 2.5, to ensure the circuit to oscillate [3], and
α > Q−1. Based in the flatness properties of model (5),
(6), (7) the following control law is proposed to control the
average voltage at the load:

u = sign(σ), σ = z1 − k z2, k ≥ 0 (8)

III. SYSTEM RESPONSE.

In what follows we assume that no uncertainty is present
in the supplied DC voltage E, i.e. δ = 1. We will study in
section V the case when the supplied DC voltage E is not
exactly known, i.e. δ �= 1. It is not difficult to see that use
of control law (8) in (5), (6), (7) yields a hybrid piecewise

linear system which is defined in four different regions:
1) z1 < 0, σ > 0:⎛
⎝ ż1

ż2

ż3

⎞
⎠ =

⎛
⎝ 0 −1 1

1 0 0
−1
α

0 −1
αQ

⎞
⎠

⎛
⎝ z1

z2

z3

⎞
⎠ +

⎛
⎝ 1

0
0

⎞
⎠

(9)

2) z1 > 0, σ > 0:⎛
⎝ ż1

ż2

ż3

⎞
⎠ =

⎛
⎝ 0 −1 −1

1 0 0
1
α

0 −1
αQ

⎞
⎠

⎛
⎝ z1

z2

z3

⎞
⎠ +

⎛
⎝ 1

0
0

⎞
⎠

(10)

3) z1 > 0, σ < 0:⎛
⎝ ż1

ż2

ż3

⎞
⎠ =

⎛
⎝ 0 −1 −1

1 0 0
1
α

0 −1
αQ

⎞
⎠

⎛
⎝ z1

z2

z3

⎞
⎠ −

⎛
⎝ 1

0
0

⎞
⎠

(11)

4) z1 < 0, σ < 0:⎛
⎝ ż1

ż2

ż3

⎞
⎠ =

⎛
⎝ 0 −1 1

1 0 0
−1
α

0 −1
αQ

⎞
⎠

⎛
⎝ z1

z2

z3

⎞
⎠ −

⎛
⎝ 1

0
0

⎞
⎠

(12)

It is easy to verify that, for any k ≥ 0: i) the equi-
librium point of systems defined in regions 1) and 2) is
(z1, z2, z3) = (0, 1, 0), which does not belong to any of
these regions (see fig. 3), and ii) the equilibrium point
of systems defined in regions 3) and 4) is (z1, z2, z3) =
(0,−1, 0), which does not belong to any of these regions.
Hence, system evolution is always far from its equilibrium
points. Note that this is not the case when k < 0. On the
other hand, it is not difficult to show that systems given
in (9), (10), (11) and (12) are the same when k < 0,
i.e., all of them define linear exponentially stable systems.
Hence, for some initial conditions the state evolution in
each region converges to either (z1, z2, z3) = (0, 1, 0) or
(z1, z2, z3) = (0,−1, 0). Because of this, aside from some
values of k close to zero, do not exist any limit cycle for
k < 0. This represents a strong justification to use k ≥ 0
in the control law (8).
Solving the piecewise linear system in each region (k ≥ 0)
we can obtain analytically the hybrid system response by
concatenating the solution in adjacent regions. Hence, by
increasing time from zero we find that the state converges
to a limit cycle. Further, as shown in [6][5] through sim-
ulations and experiments, if L, C, C0 are kept constant
the location of this limit cycle only depends on k and Q,
i.e., the controller switching surface and the load. However,
the analytical solution depends on k and Q in a very
complicated manner and, because of that, it is very difficult
to obtain an analytical expression relating the final average
value of voltage at the load and parameters k and Q.
Hence, it is difficult to determine the value of k required
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to obtain the desired voltage at the load, even if Q is
known. On the other hand, computation of the Poincaré map
eigenvalues as done in [1] is useless to determine the limit
cycle stability properties. The main reason can be explained
as follows. According to the piecewise linear character of
the closed loop system, we have to use the boundaries of
regions 1), 2), 3) and 4) as the cross-sections required to
construct the Poincaré map [7]. Although the limit cycle
is periodic, however, for any slight deviation of the state
from the limit cycle the flight time is not constant in each
particular region as long as the limit cycle is not reached.
This is different from the situation in [1] where, due to the
combined existence of a unique cross-section z1 = 0 and
the resonant behavior of the circuit, the flight time is always
constant whether the state is located on the limit cycle or
not. The direct consequence in the present case of study
is that the resulting (linear discrete-time two-dimensional)
Poincaré map has a matrix with one eigenvalue outside
the unit circle, i.e., the limit cycle seems to be unstable.
However, as explained above, the system evolution can be
computed to find that the state does converge to the limit
cycle. In spite of this apparent contradiction none of these
results are wrong:

First we recall that, as explained above, the flight time is
not constant outside the limit cycle. If we select as initial
condition a point that does not belong to the limit cycle but
does belong to either z1 = 0 or σ = 0 and we sample with
the period of the limit cycle then we would find that the
discrete-time state does converges to one point belonging
to the limit cycle but not belonging to any of the surfaces
z1 = 0 or σ = 0. Thus, according to the Poincaré map
the discrete-time state leaves the equilibrium point defined
on either z1 = 0 or σ = 0 and goes elsewhere, i.e. the
equilibrium point is unstable, although the continuous-time
state does converges asymptotically to the limit cycle.

Although asymptotic stability of this limit cycle is not
proven, because of these difficulties, however in the next
section we succeed to prove some stability properties.

IV. BOUNDEDNESS OF THE STATE.

Consider the following positive definite, radially un-
bounded function:

V (z1, z2, z3) =
1

2
z2
1 +

1

2
z2
2 +

1

2
z2
3 (13)

whose time derivative along the trajectories of (5), (6), (7)
is given as:

V̇ = z1 [−z2 − z3sign(z1) + u] + z2z1 +

+ z3

[
abs(z1) − z3

Q

]
1/α (14)

Using (8) we can write this time derivative in each of the
fore mentioned regions as:

1) z1 < 0, σ > 0: V̇ = z1 + z3z1(1 − 1/α) − z2

3

αQ

2) z1 > 0, σ > 0: V̇ = z1 − z3z1(1 − 1/α) − z2

3

αQ

3) z1 > 0, σ < 0: V̇ = −z1 − z3z1(1 − 1/α) − z2

3

αQ

4) z1 < 0, σ < 0: V̇ = −z1 + z3z1(1 − 1/α) − z2

3

αQ

We recall that 0 < 1/α � 1, Q−1 > 2.5 and z3 ≥ 0 for a
normal operation of the circuit. According to this:

1) z1 < 0, σ > 0:

V̇ < 0, z1 �= 0 or z3 �= 0, (15)

V̇ = 0, z1 = z3 = 0

2) z1 > 0, σ > 0:

V̇ < 0, z3 >
1

1 − 1/α
> 0 (16)

3) z1 > 0, σ < 0:

V̇ < 0, z1 �= 0 or z3 �= 0, (17)

V̇ = 0, z1 = z3 = 0

4) z1 < 0, σ < 0:

V̇ < 0, z3 >
1

1 − 1/α
> 0 (18)

This means that z3 is bounded because of the radial un-
boundedness of V . On the other hand, we remark that z3 is
the response of the first order asymptotically stable linear
system:

ż3 +
1

αQ
z3 =

1

α
µ(τ) (19)

where µ(τ) = abs(z1(τ)). Hence, large values of z3 are
due to either i) large initial values of z3, hence, due to
the asymptotic stability properties of (19), z3 will decrease
to values which can be sustained by abs(z1), or ii) large
values of z1. Suppose that z3 is small and abs(z2) is so large
that we can approximate (5) by ż1 = −z2. This means that
(5) and (6) become an harmonic oscillator and, hence, large
values of z2 imply large values of z1 (in the case that both
z3 and abs(z2) are large, the approximation ż1 = −z2 may
not stand, but in such a case V̇ < 0, i.e. (15)-(18), and
the whole state would be bounded). Now, because of the
dynamics of (19), although z1 may be large whereas z3 is
small, however this is possible only during short periods
of time determined by the time constant αQ of (19), and
because of the linearity of the system in each region neither
z1 or z2 have finite scape time. This means that, excepting
short periods of time, z1 and z2 are large only if z3 is
large. Thus, recalling that V̇ < 0 if z3 is large enough, we
conclude that V̇ < 0 for

∥∥z1, z2, z3

∥∥
2

large enough, where∥∥ · ∥∥
2

represents the Euclidean norm. Thus, invoking the
radial unboundedness of V , this ensures boundedness of
the whole state.

V. DEPENDENCE OF z3 ON k AND Q.

In spite of the lack of any asymptotic stability proof, we
know that z3 converges to an oscillatory function whose
average value, z̄3, is positive. As explained in section III,
this can be seen by computing the analytical response of
the hybrid system and was also found in [6][5] through
simulations and experiments. Unfortunately, as shown in
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[6][5], this average value is affected by the load Q and
by uncertainties on the DC power supply voltage, i.e δ
defined in section II. In practice it is of prime interest to
supply a prescribed voltage at the load without any a priori
knowledge of the actual load Q and in spite of uncertainties
on the supplied DC voltage. We solve these problems in the
following section. On the other hand, controller (8) allows to
modify the average voltage at the load z̄3 by using different
values of the controller parameter k. However, we recall that
is very complicated to find an analytical relation between
z̄3 and k. Hence, in what follows we use simulations. In fig.
4a) we present some simulation results where we can see
that z̄3 is given as inverse like functions of k parameterized
by the load Q (i.e., R) which entirely lay on the first
quadrant in the z̄3 − k plane.

Remark 1: A similar conclusion can be obtained as fol-
lows. First note that the dynamics of z3 is slow compared
with the dynamics of z2 and z3 because α � 1 in (19). This
means that we can consider that z3 remains approximately
constant during the time it takes to z1 and z2 to complete a
oscillating cycle. Now note that, in general terms, for any
k > 0 the time that it takes to the system to travel though
regions 2) and 4) is larger than the time that it takes to
the system to travel through regions 1) and 3). This can be
roughly seen from the size of the space corresponding to
each region in fig. 3. Also note that in the latter regions
the energy of the whole system always decreases (see (15),
(17)). On the other hand, we can see that in regions 2)
and 4) the energy of the system increases if z3 is small.
Further because of the fore mentioned property on the time
spent by the system in each region we conclude that, for
small values of z3 the energy of the system increases,
although not monotonically, but in an oscillatory manner.
Note that: a) for larger values of k the difference between
the fore mentioned times spent in each region decreases
(see fig. 3) and, b) for large values of z3 the increment of
energy in regions 2) and 4) is smaller and smaller until it
becomes a decrement of energy. These facts mean that, for
larger values of k an equilibrium between increments and
decrements of the total energy of the system is obtained for
smaller values of z3, i.e. for larger k > 0 we have that z̄3 is
smaller. Thus, a dependence between z̄3 and k is expected
to be similar to that shown in fig. 4

In fig. 4b) we present simulation results for different
values of δ when Q is kept constant (R = 72Ω). We
can see that, similarly to results in fig. 4a), z̄3 are inverse
like functions of k, parameterized by δ, laying in the first
quadrant. This information, given in fig. 4 a) and b), is
enough to design the controller that we present in the
following section.

VI. INTEGRAL CONTROL OF z̄3 .

We assume that the closed loop system (5), (6), (7),
(8) converges asymptotically to a limit cycle such that the
average voltage at the load z̄3 is modified by the controller
parameter k, and affected by δ, according to last section.

This is the core of the design we present below. The average
voltage z̄3 is obtained at the load after a transient period
which may take several hundreds of normalized units of
time. We propose to adjust the value of k when such
transient period has finished, i.e., we use a discrete time
control law to rule the adjustments in k. The following
discrete-time law is proposed:

k = γG(z)(z̄3 − z̄3d) (20)

where:

G(z) =
z−1T

1 − z−1
(21)

γ > 0 is a constant to be determined, z represents the
Z-transform variable and T is the sampling period which
is selected to be large enough to ensure that a stationary
response is obtained in the closed loop system (5), (6),
(7), (8). According to the previous section, selecting T
under this criterion allows us to treat the whole closed loop
dynamical system (5), (6), (7), (8) as a static nonlinearity
ϕ(k) = z̄3 having a inverse like shape. Hence, we can
use some manipulations to obtain the block diagram shown
in fig. 2, where y = k − kd, χ = e = z̄3d − z̄3 and kd

represents the value of k necessary to obtain the desired
average voltage at the load z̄3d. We can see that the static
nonlinearity χ(y) satisfies the sector condition [4]:

(χ − α y)(χ − β y) ≤ 0 (22)

for some β > α > 0, in a finite domain y ∈ [−a, b] for some
a > 0, b > 0. Consider the following Lyapunov function
candidate:

W (y(κ)) = p y2(κ) (23)

where p > 0 is a constant and κ represents the discretized
time. We can use (20), (21) to write:

y(κ + 1) = −γTe(κ) + y(κ) (24)

Using this we have the following:

W (y(κ + 1)) − W (y(κ)) = (25)

= −pe(κ)Tγ[−e(κ)Tγ + 2 y(κ)]

Now, consider some η > 0, hence:

W (y(κ + 1)) − W (y(κ)) ≤ (26)

≤ −e(κ)Tγp[−e(κ)Tγ + 2 y(κ)] + ηy2(κ)

= χ2(κ)(Tγ)2p − 2pTγ y(κ)χ(κ) + ηy2(κ)

Define p = 1
(Tγ)2 hence:

W (y(κ + 1)) − W (y(κ)) ≤ (27)

≤ χ2(κ) − 2

Tγ
χ(κ) y(κ) + ηy2(κ)

Recall the sector condition (22):

χ2(κ) − (α + β) y(κ)χ(κ) + αβ y2(κ) =

= [χ(κ) − α y(κ)][χ(κ) − β y(κ)] ≤ 0 (28)
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Suppose that

χ2(κ) − 2

Tγ
χ(κ) y(κ) + ηy2(κ) =

= χ2(κ) − (α + β) y(κ)χ(κ) + αβ y2(κ) (29)

hence:

W (y(κ + 1)) − W (y(κ)) < 0, y(κ) �= 0, χ(κ) �= 0

W (y(κ + 1)) − W (y(κ)) = 0, y(κ) = 0, χ(κ) = 0

We stress that according to the sector condition either
[χ(κ) − α y(κ)] = 0 or [χ(κ) − β y(κ)] = 0 imply both
y = 0 and e = 0 in the finite domain y ∈ [−a, b]. Thus,
asymptotic stability of the equilibrium point z̄3 = z̄3d is
ensured. On the other hand, (29) is true if and only if:

α + β =
2

Tγ
, αβ = η (30)

hence:

β2 − 2

Tγ
β + η = 0 (31)

Solving this quadratic equation:

β =
1

Tγ
+

√
1

(Tγ)2
− η (32)

α =
η

β
, 0 < η <

1

(Tγ)2

If we choose η to be closer to zero then β < 2
Tγ

will
be larger and α > 0 closer to zero. Further, if we choose
γ → 0 then 2

Tγ
→ ∞. Hence, β can be done larger and α

smaller by a suitable selection of the controller parameter
γ, i.e., the domain y ∈ [−a, b] can be enlarged arbitrarily.
This completes the proof of the following proposition.

Proposition 1: Assume that the closed loop system (5),
(6), (7), (8) achieves asymptotic convergence of the average
voltage at the load, z̄3, to ϕ(k), i.e. an inverse like function
of parameter k. Let z̄3d and kd be, respectively, the desired
value of the average voltage at the load and the value of
the controller parameter k necessary to achieve z̄3 = z̄3d.
Let kd be computed using the discrete-time adjusting rule
(20), (21) where the sampling period T is selected according
to the reasoning presented in the paragraph after (21) and
γ > 0 is a constant chosen in such a way that given a
constant 0 < η < 1

(Tγ)2 there exist two positive constants
α and β, α < β satisfying (32) and the sector condition (22)
in some finite domain y ∈ [−a, b], for some a > 0, b > 0.
Then z̄3 converges to z̄3d in the domain y ∈ [−a, b] and
the whole state [z1, z2, z3]

T remains bounded. Further, the
domain y ∈ [−a, b] can be enlarged arbitrarily by choosing
the controller parameter γ → 0.

Remark 2: Note that this control strategy achieves z̄3 →
z̄3d without exact information about the resistive load and in
spite of uncertainties on the voltage of the DC power supply.
On the other hand, although asymptotic convergence z̄3 →
ϕ(k) means that z̄3 = ϕ(k) is true only after an infinite

period of time, however sector condition (22) introduces
nice robustness properties that allow to activate the discrete-
time adjusting rule (20), (21) just after a finite period of
time.

Remark 3: We stress that although choosing γ → 0
enlarges the domain y ∈ [−a, b], however such a selection
of γ degrades progressively the closed loop performance.
Note, however, that this is a common feature in controllers
claiming semiglobal asymptotic stability.

VII. SIMULATION RESULTS.

In simulations we used the numerical values proposed
in [6], i.e.: E = 48[V], L = 1.5 × 10−3[H], C =
10.6 × 10−9[F], R = 72[Ω], i.e., Q−1 = 5.2247 and C0 =
1×10−6[F], i.e., α = 94.34. In all simulations we used the
hybrid control law presented in proposition 1. Controller
parameters were chosen to be γ = 95 × 10−5, T = 400,
i.e, β < 5.26, α > 0. We stress that the corresponding
sampling period in the original time coordinates, t, is
1.595×10−3[sec]. The desired average voltage was chosen
to be z̄3d = 0.35, i.e., the desired average voltage at the load
in original coordinates is v̄0d = 16.8[V]. We used k(0) = 1
as the initial condition of the discrete-time system (20), (21).
In fig. 5 we present simulations for three different cases: a)
R = 72[Ω], E = 48[V], b) R = 35[Ω], E = 48[V], and
c) R = 72[Ω], E = 35[V], i.e. δ = 0.729. As we can see
convergence of the average value of v0 to v̄0d (represented
by a horizontal line) is obtained in all cases. We stress that
this convergence is obtained without any knowledge of the
resistive load and in spite of uncertainty in the voltage of
the DC power supply. We also show, in fig. 5, the time
evolution of parameter k. Note that different values of this
parameter are necessary to compensate different loads and
uncertainties in the supplied DC voltage.

VIII. CONCLUSIONS.

We have presented a strategy which combines continuous
and discrete time control schemes for series resonant DC-
to-DC power converters. The continuous time part of the
controller was proposed recently and is based on flatness
ideas. The discrete time part of the controller consists of a
discrete time integral law. The latter is intended to adjust
the unique parameter of the flatness based controller in
such a way that the average voltage at the load converges
to a preestablished constant desired value. We succeed
to do this even if there are uncertainties in the constant
supplied DC voltage and without any information on the
actual resistive load. Existence of a limit cycle and its
asymptotically stability has been shown through simulations
and experiments in previous papers. Although we do not
prove either the asymptotic stability of this limit cycle,
however we do prove boundedness of the whole state.
On the other hand, assuming asymptotic stability of the
limit cycle we do prove asymptotic convergence, in a finite
domain, of the average voltage at the load to its desired
value when the combined control scheme is used. Further,
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this finite domain can be arbitrarily enlarged by means of
suitable selection of the controller parameters.
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Fig. 1. Series resonant DC-to-DC power converter.
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Fig. 2. a) Block diagram of the control strategy used to adjust k, b)
Static nonlinearity.
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R = 10Ω, b) z̄3 as a function of k: (1) δ = 1.3, (2) δ = 1, (3) δ = 0.7.
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