
QoS-based Resource Allocation in Dynamic Real-Time Systems

R. Judd, F. Drews, D. Lawrence, D. Juedes, B. Leal, J. Deshpande, and L. Welch

Abstract— Dynamic real-time systems require adaptive re-
source management to accommodate varying processing needs.
This paper addresses the problem of resource management
on a single resource for soft real-time systems (no hard
deadline requirements) consisting of tasks that have discrete
Quality of Service (QoS) settings that correspond to varying
resource requirements and varying utility. Our approach
employs a feedback architecture wherein task QoS settings
are adjusted on-line in order to maintain a desired amount
of resource slack. These adjustments are calculated based on
incremental changes in resource slack using computationally
efficient algorithms that provide nearly optimal utility with
computable performance bounds. The feedback architecture
provides robustness in the presence of additional resource load
and imperfect task resource requirement specifications.

I. INTRODUCTION

The problem of allocating resources to real-time appli-
cations has been studied in literature from different angles.
Several authors have addressed resource allocation for real-
time systems with QoS constraints [5], [9], [10], [11],
[20], [13]. In particular, Q-RAM [18], [16], [17], [12]
is an algorithmic approach to the problem of finding an
allocation of tasks to resources such that the system can
satisfy some quality of service requirements as well as
produce maximum benefit. The authors of this work do not
explicitly consider employing Q-RAM for QoS optimization
in dynamic environments.

In addition, the application of control-theoretic methods
to the design of real-time systems has recently met with
considerable success. Common challenges in real-time sys-
tem design such as nonlinear and stochastic plant mod-
els, effector limitations, unknown disturbances, and noisy
sensor data identified in [8] indicate a strong connection
with control theory and applications. The papers [2], [14]
address performance specifications, mathematical modeling,
controller design, and performance analysis for scheduling
problems in soft real-time systems. Their feedback control
architecture is realized in middleware called ControlWare
and its effectiveness for quality of service control is demon-
strated in a web server environment. Limitations of linear
systems and control methods are discussed in [1] with
remedies presented that draw from scheduling and queueing
theory. Related studies involving a variety of real-time
system applications, performance objectives, mathematical
modeling approaches, and feedback control architectures
can be found in [3], [6], [7], [15], [21], [19].

This paper addresses the problem of resource manage-
ment on a single resource for soft real-time systems (no

The authors are with the Center for Intelligent, Distributed and Depend-
able Systems, School of Electrical Engineering & Computer Science, Ohio
University Athens, OH 45701 USA

hard deadline requirements) consisting of tasks that have
discrete Quality of Service (QoS) settings that correspond
to varying resource requirements and varying utility. The
objective is to provide on-line control of the tasks’ QoS
settings so as to optimize the overall system utility while
maintaining a desired amount of resource slack.

Unlike Q-RAM, our approach makes incremental adjust-
ments to QoS settings based on incremental changes in
resource availability, thereby avoiding the calculation time
that would be incurred by recalculating the QoS settings
from scratch based on an updated aggregate resource avail-
ability. Moreover, our approach uses a feedback architecture
wherein the incremental change in resource availability is
derived from the deviation between the desired and actual
resource slack. This provides robustness in the presence
of additional resource load and imperfect task resource re-
quirement specifications. Since the complexity of the under-
lying optimization problem precludes true optimal solutions,
our controller employs computationally efficient algorithms
that provide nearly optimal utility. Specifically, true optimal
utility is achieved in many cases, lower bounds on achieved
utility can be derived, cases where suboptimal utility is
achieved can be identified, and deviations from true optimal
utility do not diverge as the algorithms sequentially process
resource availability increments. Moreover, the algorithms’
low run-time complexity make them suitable for on-line
implementation in dynamically changing environments.

The remainder of this paper is organized as follows.
Section II presents the system architecture and the model
description. Section III proposes a generic heuristic algo-
rithm and derives its theoretical properties. In addition,
a improved heuristic is presented. Section IV describes
how the algorithms can be implemented. Section V draws
conclusions and describes future work.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System Architecture

In this paper we focus on soft real-time tasks running on
a single host under the control of a QoS Manager (QM). We
plan to extend our approach to utility optimization across
hosts, to the scheduling of hard real-time tasks, and to the
allocation of resources to tasks. The task of the controller
is to optimize the tasks’ QoS settings with respect to utility
based on dynamically varying resource availability. This is
accomplished via closed-loop feedback control as shown
in Fig. 1. Herein, the parameter sd > 0 represents the
desired resource slack. There are various ways to choose
this user-defined parameter. For example, if we associate
deadlines with the real-time applications and schedule the

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

WeC18.1

1745

tasks according to the Rate Monotonic Scheduling (RMS)
algorithm, we could use sd ≈ 30%.

T1

T2

T3

Tn

ResourceController

q1

q2

q3

qn

s

Utility u

sd

Disturbances
Idle

se

Fig. 1. Feedback Approach.

The tasks expose their QoS settings as knobs that the
controller can turn to change both their resource usage
and utility. In order to calculate the resource usage for a
selected QoS setting, the controller makes use of resource
profiles that specify the estimated resource usage as a
function of QoS settings. Each task is also characterized by
a utility function that expresses the user-perceived benefit
from running the application at a certain QoS setting. The
overall utility derived from running each task at given a
QoS setting is measured by some aggregate of the individual
utility functions. The controller aims to always run the tasks
in states for which the total utility is maximized. The host
controller also monitors the actual current resource slack
s. Disturbances in the resource utilization due to changes
in the environment and dynamically arriving or terminating
tasks, as well as inaccurate resource profiles will generally
lead to an error in the predicted resource usage of the tasks.

B. Basic Model

Here, we adopt a simplified model of a dynamic real-
time system. A dynamic real-time system consists of a
single resource R, available in R ∈ R+ units, and a
collection of n independent periodic (soft real-time) tasks
T = {T1, . . . , Tn}. Both the number of tasks n and the
availability of the resource may vary over time. The period
of task Ti is denoted πi. The period is not necessarily fixed
and may undergo dynamic changes at runtime.

We introduce some notation used throughout the paper:

• We use two basic measures that represent time in our
model: The first is the point in time as denoted by
t ∈ R≥0. The second measure is the number of the
kth

i periodic interval of task Ti. The kth
i instance of

task Ti is denoted by Ti(ki).
• With each task Ti we associate a (possibly) multidi-

mensional Quality-of-Service (QoS) vector qi(ki) ∈
Qi, for interval ki, that takes values from a finite
(not necessarily numerical) set of possible choices for

QoS inputs Q. Typical examples of QoS levels in-
clude frame rate, cryptographic security, compression
method, etc.

• The utility of a task Ti is measured by function ui :
Qi → R. The value ui(qi) specifies the user-perceived
benefit from running task Ti at QoS level qi ∈ Qi.

• The total system utility u : Q1 × Q2 × · · · × Qn →
R is defined to be the sum of the task utilities, i.e.
u(q1,q2, . . . ,qn) =

∑n

i=1 ui(qi).
• A resource profile ρtot

i : Qi → N. The value ρtot
i (qi)

specifies the total amount of resources necessary to
achieve QoS level qi ∈ Qi. Each task Ti has a
minimal resource requirement which is denoted by
ρmin

i . ρadd
i (qi) denotes the amount of the resource in

addition to ρmin
i that is required to achieve QoS level

qi. We assume there exists a QoS setting qi,0 such that
ρadd

i (qi,0) = 0.

By ri(ki), we denote the actual amount of resource
consumed by Ti as measured (and monitored) by the QoS
Manager during the kth

i interval.
We define the actual resource slack of the system at time

t as

s(t) = R −

n∑
i=1

ri

(⌊
t

πi

⌋)
,

where R specifies the current maximum availability of
resource R. The error between the actual slack and the
desired slack is denoted by se.

In a dynamic environment tasks may enter, leave, or
the required resource requirements change due to the en-
vironment, or imprecise knowledge of the profiles. In our
approach, the QoS Manager will monitor se(t) during
intervals ki, and make adjustments in the tasks QoS settings
for the next interval ki + 1 in qi(ki + 1) such that some
measure of the aggregate system utility is optimized.

Let ρ describe some amount of resource availability. The
utility profile u∗

i : R≥0 → R of a task Ti is defined to be
the solution to the following optimization problem:

u∗
i (ρ) = max

q∈Qi

[ui(q))]

such that ρtot
i (q) ≤ ρ + ρmin

i .
The value u∗

i (ρ) is the maximum benefit achieved by
allocating ρ ∈ R≥0 amount of resource to task Ti beyond
ρmin

i . Clearly, we have that u∗
i (ρ) = 0 for ρ = 0. We

define the q∗
i (ρ) as the qi that maximize u∗

i (ρ). Note that
Rajkumar et al. have proposed a solution to this problem
[16].

For task Ti assume that ρ can be set to any discrete
value in the sequence 〈ρi,m〉. Without loss of generality,
we assume that ∆ρi,m = ρi,m+1 − ρi,m > 0. Let

∆ρmin =
n

min
i=1

[
min

m=0,1,...
[∆ρi,m]

]
and

∆ρmax =
n

max
i=1

[
max

m=0,1,...
[∆ρi,m]

]
.

1746

Moreover, let

∆u∗
i,m = u∗

i (ρi,m+1) − u∗
i (ρi,m)

and
du∗

i,m = ∆u∗
i,m/∆ρi,m.

We assume that the utility profiles u∗
i (ρi,m) are increas-

ing and concave, that is, ∆u∗
i,m > 0, and du∗

i,m+1 −
du∗

i,m < 0. Note that the utility profiles can be calculated
off-line and stored in tables.

C. Optimization Problem 1 (OP1)

Now, we can define the DQRAM optimization problem.
In the following, the desired actual resource availability is
described by Rd, which represents the available amount of
resource beyond the minimum resource requirements.

DQRAM Optimization Problem: Given utility profiles
u∗

i , i = 1, 2, . . . , n, determine QoS settings qi for all tasks
Ti such that u∗(ρ) is maximized subject to

n∑
i=1

ρadd
i (qi(ki)) ≤ Rd.

The above formulation of the optimization problem is
equivalent to the following problem formulation which we
will use in the remainder of this paper.

Optimization Problem 1 (OP1): Given utility profiles
u∗

i , i = 1, 2, . . . , n, determine for each i = 1, 2, . . . , n an
index m[i] for the sequence 〈ρi,m〉, such that the sum

U(m) =

n∑
i=1

u∗
i (ρi,m[i])

is maximized subject to constraints

ρ(m) :=
n∑

i=1

ρadd
i,m[i] ≤ Rd,

where m denotes the sequence of indices m[i], i =
1, 2 . . . , n.

Note that the problem OP1 is, in general, NP-complete.
This can be shown straightforwardly by reduction from the
subset sum problem. But as we will see, there are cases for
which the problem can be solved in polynomial time. Also,
we will present a good heuristic for the general case.

III. ALGORITHMIC APPROACHES

In this section we present and analyze an algorithm for
problem OP1. Given indices m. Let

dmax =
n

max
i=1

[
du∗

i,m[i]

]
.

Property 3.1 (P1): Suppose m is selected such that the
following equation du∗

i,m[i]−1 ≥ dmax, i = 1, 2, . . . , n, is
satisfied. That is, the slope of u∗ before each index m[i] is
greater than or equal to the slopes after. Then m is said to
satisfy P1.

Algorithm 1 QoS Optimization (A1)

Input: Rd the maximum amount of resources to
be allocated

Output: m the index of each utility profile to be
used

U the total utility achieved by this
assignment

set r = 0;
set U = 0;
set m[i] = 0, for all i;
while r ≤ Rd do

determine j such that du∗
j,m[j] ≥ du∗

i,m[i] for all i;
set r = r + ∆ρj,m[j];
set U = U + ∆u∗

j,m[j];
set m[j] + +;

end while
/** went one increment too far **/
set r = r − ∆ρj,m[j];
set U = U − ∆u∗

j,m[j];
set m[j] −−;

The first lemma establishes the complexity of the algo-
rithm A1.

Lemma 3.1: The complexity of Algorithm A1 is given
by O

(
Rd

∆ρmin

· log(n)
)

.

Proof: The values of du∗
i,m[i] can be maintained

in a heap. Then the complexity of the first line in the
while loop is simply the complexity of maintaining the
heap, or O(log(n)). Every time the loop is executed, r is
incremented by at least ∆ρmin, so the number of times
through the loop is bounded by

⌈
R

∆ρmin

⌉
Lemma 3.2: Algorithm A1 terminates with an m that

satisfies P1.

Proof: Since the algorithm adds increments of
∆u∗

i,m[i] to U in order of decreasing du∗
i,m[i], and for a

given task Ti, the values of du∗
i,m[i] are monotonically

decreasing, when A1 terminates, du∗
i,m[i]+k

< du∗
i,m[i] for

all 1 ≤ i ≤ n and k > 0. Therefore, m must satisfy P1.

Theorem 3.1: Given the sequence of indices m which
satisfies P1 and Rd = ρ(m), then these indices also solve
OP1.

Proof: The proof is by contradiction. Suppose there
exists a m′ �= m such that U(m′) > U(m) and ρ(m′) ≤
ρ(m). Clearly not all m′[i] can be less than their cor-
responding m[i]’s. Since ∆u∗

i,m[i] > 0 for all i and m,
this would only decrease U(m′) from the original value of
U(m). Let G be the set of i where m′[i] > m[i] and L be

1747

the set of i where m′[i] < m[i]. Then

U(m′) = U(m) +
∑
i∈G

m′[i]∑
j=m[i]+1

du∗
i,j∆ρi,j

−
∑
i∈L

m[i]∑
j=m′[i]+1

du∗
i,j∆ρi,j

≤ U(m) + d

⎛
⎝∑

i∈G

m′[i]∑
j=m[i]+1

∆ρi,j

−
∑
i∈L

m[i]∑
j=m′[i]+1

∆ρi,j

⎞
⎠ (1)

= U(m) + dmax (ρ(m) − ρ(m′)) ,

where dmax > 0. Since the right term of the sum in (1)
must be non-negative, we have that U(m′) ≤ U(m), hence
the contradiction

Corollary 3.1: Let m be the sequence of indices which
result from executing A1 with the rescource constraint Rd.
If ρ(m) = Rd then m solves OP1.

Proof: The result follows directly from the application
of Theorem 3.1 and Lemma 3.2.

Corollary 3.1 basically derives a sufficiency condition for
an optimal solution to OP1, i.e., a criterion to see when the
output of A1 solves OP1.

Theorem 3.2: Let the discretation of the ρi’s be equidis-
tant, that is, ∆ρmin = ∆ρmax. Then algorithm A1 will
result in a solution of OP1 for all constraints Rd > 0.

Proof: Let m be the output of A1 for input Rd. Let
R′

d = ρ(m). if Rd = R′
d then by Corollary 1 m solves OP1.

Now suppose Rd > R′
d. It is clear that R′

d+ρj,m[j]+1 > Rd

for all 1 ≤ j ≤ n since all ρj,m[j]+1 are equal. Hence, any
indices m that satisfy Rd must also satisfy constraint R′

d,
and again by Corollary 1, the output of A1 satisfies OP1.

Now we examine the case where the ρi’s are not equidis-
tant. There are cases where A1 will no longer return an m

that satisfies OP1. Before examining these situations, notice
that Lemma 3.1 did not depend on the equidistant property.
Therefore, the output m of A1 will solve OP1 whenever its
input constraint Rd = ρ(m). Clearly the number of distinct
indices m that A1 produces is equal to the sum of the size
of the sequences 〈ρi,m〉, or

N =
n∑

i=1

|〈ρi,m〉| .

That is, there are N values of Rd that are distributed in
intervals no smaller than ∆ρmin and no larger than ∆ρmax

for which algorithm A1 will optimally solve OP1. So A1
may not give the correct solution to OP1 all the time when
ρi’s are not equidistant; however, when it does not, a small
increase (decrease) in Rd will produce a correct solution. In
other words any error in A1 will not accumulate. Further,
we can bound the error by

Lemma 3.3: Let m′ be the output of A1 for some
constraint R′

d and m be the solution of OP1 for the same
constraint. Then

U(m) ≤ U(m′) + dmax · p,

p = maxj∈G ρj,m′[j], where G =
{

i| du∗
i,m′[i] = d

}
Proof: Assume ρ(m′) < R′

d, then m′ must solve OP1
for the constraint Rd = ρ(m′). Therefore U(m) cannot
exceed U(m′) by more than the maximum slope of the
utility profiles (or simply dmax) times R′

d −Rd. But R′
d −

Rd cannot exceed p, otherwise, the algorithm would have
incremented m′[j].

Now we examine the causes and possible solutions to
problems introduced into A1 when ρi’s are not equidistant.
We identify three situations where the output of A1 may
not be the solution of OP1.

Issue 1 (I1). Suppose the algorithm A1 exits with r <
Rd, and the values for dmax have been equal for the past
q > 1 times through the loop. Let

J =
{

j| du∗
j,m[j]−1 = dmax

}
K =

{
k| du∗

k,m[k] = dmax

}
then incrementing m[i] of some of the tasks i ∈ K while
decrementing the m[i] for tasks in i ∈ J may result in a
better solution.
Issue 2 (I2). The algorithm terminates when p + ∆ρj,m[j]

exceeds Rd. There may exist an k �= j, where p +
∆ρk,m[k] ≤ Rd. In this case incrementing m[k] will result
in a better solution (see Figure ??).
Issue 3 (I3). The algorithm terminates when p + ∆ρj,m[j]

exceeds Rd. Let N denote the number of times the while
loop in A1 executed, and ∆p[i] and ∆u[i], (1 ≤ i < N)
be the amounts that p and U were incremented during the
ith iteration of the loop. Note that i < N , since the last
increment is removed outside the loop. There may exist an
k �= j and an 1 ≤ l < N where

p + ∆ρk,m[k] −

l∑
i=1

∆ρ[N − i] ≤ Rd,

and

∆uk,m[k] −
l∑

i=1

∆u[N − i] > 0,

then incrementing m[k] and decrementing indices corre-
sponding to tasks that were incremented during the last n
iterations of the loop, will result in an improved solution.

To totally resolve all three issues is in general a NP-hard
problem. This is easy to see since I1 by itself is equivalent
to the knapsack problem with the weights of the knapsack
items equal to the ρi,j-values, the values of the knapsack
items equal to the u∗

i,j-values, and finally, the capacity of
the knapsack equal to the remaining slack R.

However, we can develop a good heuristics to take
advantage of the structure of the problem that will help to

1748

reduce the affects of the three issues. First, if there is more
than one task with equal du∗

i,m[i], then in the while loop
choose the one with largest ∆ρi,m[i]. Next, after exiting the
loop, examine each entry in the heap in order (except for the
top element which caused the loop to exit) to see if it can
be added, if so it is added. If the task cannot be directly
added but it can be added if ∆ρ[N − 1] is removed and
the resulting utility is increased, then make the adjustments.
Finally, we modify the algorithm for incremental evaluation.
These modifications are presented in algorithms Allocate
(A2) and Free (A3).

Algorithm A2 initially follows the logic behind A1 except
it initializes r = R0, U = U0, and m = m0. After the
first loop is exited, the heap is searched in order in the
second loop. This loop looks for two situations. First, if
incrementing the index m[j] will increase the system utility
without exceeding the constraint then it is incremented
Second, if incrementing m[j] exceeds the constraint, the
loop makes one more attempt to see if incrementing m[j]
will help. It checks if incrementing m[j] in conjunction
with decrementing the index of the last task added by the
first loop will meet the resource constraint. If so, it further
checks if this will increase the system utility. If it does it
performs the modifications to the indices.

This amazingly simple heuristic modification addresses
all three issues. When tasks have equal du∗

j,m[j] they will be
added in decreasing order of ∆ρj,m[j]. When the first loop is
exited, all the remaining tasks Ti with du∗

i,m[i] = du∗
j,m[j]

will be searched in decreasing order of ∆ρj,m[j] and added
if there is room. This addresses issues I1 by using the
largest first heuristic, which has been shown to give good
results [4]. Once all the tasks with equal du∗

i,m[i] have been
searched, the second loop continues until the end of the
heap. It will increment m[i] for tasks with slopes less than
du∗

j,m[j] that meet the constraint. This clearly addresses
issue I2 in a greedy fashion. If m[i] cannot be incremented
without exceeding the constraint, but can be if m[last]
is decremented, then these adjustments are made only if
an improvement in utility is achieved. Since the tasks are
examined in the order they appear in the heap, then I3 is
also addressed in a greedy fashion. For efficiency sake, we
examine only the case where one previously incremented
task is adjusted. This is a good rule as long as ∆ρmax and
∆ρmin are close in value.

The incremental nature of the A2 and A3 algorithms are
evident. However, A2 must begin with an m0 that satisfies
P1. This is easily done by recording the amount of resource
allocated during the second loop. This amount of resource
is called a loan. If A2 returns with a loan, we simply call
A3 to free the loan first and then call A2. The resulting
m from A3 will satisfy P1, since allocations are freed in
exactly the opposite order that they are allocated in.

Lemma 3.4: The complexity of Algorithm A2 is given
by O

([(
Rd−R0

∆ρmin

)
+ n

]
log(n)

)
and A3 is given by

O
((

Rd−R0

∆ρmin

)
log(n)

)

Algorithm 2 Allocate (A2)

Input: Rd the maximum amount of resources to
be allocated

R0 the current resource allocation
(it is assumed R0 < Rd)

U0 the current system utility
m0 the current index of each utility profile

(it is assumed that m0 satisfies P1)
Output: m the index of each utility profile to be

used
U the total utility achieved by this

assignment
loan the amount of resource on loan

set r = R0;
set U = U0;
set m[i] = m0[i], for all i;
set j = 0;
while r ≤ Rd do

set last = j;
set j = index of the top tasks in Hmax;
set r = r + ∆ρj,m[j];
set U = U + ∆u∗

j,m[j];
set m[j] + +;
add task j back into Hmax;

end while
/** went one increment too far **/
set r = r − ∆ρj,m[j];
set U = U − ∆u∗

j,m[j];
set m[j] −−;
/** see if we can fit a task that does not have the greatest
derivative **/
remove top element from heap Hmax;
set loan = 0;
while r < Rd and Hmax is not empty do

set j = index of the top task in Hmax;
if r = r + ∆ρj,m[j] < Rd then

set loan = loan + ∆ρj,m[j];
set r = r + ∆ρj,m[j];
set U = U + ∆u∗

j,m[j];
set m[j] + +;

else if p + ∆ρj,m[j] − ∆ρlast,m[last] < Rd and
∆u∗

k,m[k] − ∆u∗
last,m[last] > 0 then

set loan = loan + ∆ρj,m[j] − ∆ρlast,m[last];
set r = r + ∆ρj,m[j] − ∆ρlast,m[last];
set U = U + ∆u∗

j,m[j] − ∆u∗
last,m[last];

set m[j] + +;
set m[last] −−;

end if
end while

1749

Algorithm 3 Free (A3)

Input: R the maximum amount of resources to
be allocated

R0 the current resource allocation
(it is assumed R0 < Rd)

U0 the current system utility
m0 the current index of each utility profile

(it is assumed that m0 satisfies P1)
Output: m the index of each utility profile to be

used
U the total utility achieved by this

assignment
loan the amount of resource on loan

set r = R0;
set U = U0;
set m[i] = m0[i], for all i;
while r > R do

set last = j;
set j = index of the top tasks in Hmin;
set r = r − ∆ρj,m[j];
set U = U − ∆u∗

j,m[j];
set m[j] + +;
add task j back into Hmin;

end while

Proof: This is a direct result of Lemma 3.1 and the
observation that the second loop in A2 is executed exactly
n times.

Theorem 3.3: If Algorithm A2 terminates with loan = 0
and Rd = ρ(m), then m solves OP1.

Proof: Since loan = 0, then the second loop did not
change m. Under this condition, m is calculated in the same
way as in Algorithm A1. Hence, by Theorem 3.1, m solves
OP1.

Since we free the loan before calling A2, any errors not
resolved by the second loop cannot accumulate. Therefore,
like A1, A2 will return exact solutions to OP1 for at least N
values of Rd and these values occur at intervals no farther
than ∆ρmax apart. Further, it is obvious that any allocation
made in the second loop of A2 only improves the system
utility. So the output of A2 is equal or better than A1.
Finally, if Rd − R0 	 Rd, the execution time of A2 is
significant faster than A1.

IV. IMPLEMENTATION ASPECTS

The implementation of the controller is straightforward.
The controller described in this paper is invoked at any of
the following events: (1) Task arrival, (2) Task completion,
and (3) The end of every task period.

The controller maintains a state for each task which is the
current value of the index m[i] for the task and the desired
value for the index which is denoted by n[i]. At the end of
a period, the controller determines slack error by querying
the available resource, subtracting the amount of resource

reserved for future task periods by previous invocations of
the controller, and finally subtracted the desired slack. This
yields the excess resource to be allocated

sx = s −

(
n∑

i=1

ρi,n[i] − ρi,m[i]

)
− sd.

If sx is positive, the previous loan is freed, and then
Rd = R0 + loan + sx is allocated. the current values of
n[i] for each task are used to initialize m0 in allocated,
and ultimately the output of allocate m updates these same
n[i]’s. Similarly, if sx is negative, Rd = R0 − sx amount is
freed the n[i]’s are updated.

At the beginning of each period, the task checks its n[i].
If n[i] �= m[i], the task updates its QoS setting to qn[i], sets
m[i] = n[i], and starts its next invocation.

When a new task Tnew arrives, the controller temporarily
assigns its index m[new] to its maximum allowed value.
The excess resource is calculated as follows

sx = s −

(
n∑

i=1

ρi,n[i] − ρi,m[i]

)
− sd − ρtot

new (q∗
new) ,

where q∗
new is the QoS level for task Tnew for m[new].

Any loan is freed from the original tasks and then Rd =
R0 − (sx − loan) is freed from all tasks including the
new one. If free terminates with m = 0, and Rd has not
been achieved then there is not enough resources to add the
tasks and it is rejected. Otherwise, the output m of free is
assigned to the n[i]′s of all tasks. then all of the original
tasks complete their current period and have updated their
QoS settings to accomodate the new tasks, the new task is
launched.

Finally, when task Tl ends, the excess resource is calcu-
lated as follows

sx = s −

(
n∑

i=1

ρi,n[i] − ρi,m[i]

)
− sd + ρtot

e (q∗
e) ,

where q∗
e is the QoS level for task Te for m[e]. The previous

loan is freed and then Rd = R0 + loan + sx is allocated.

V. SIMULATION RESULTS

The feedback architecture depicted in Fig. 1 was simu-
lated with 50 soft real-time tasks with utility profiles u∗

i (ρ),
i = 1, ..., 50 as defined in Section II-B and a desired slack
set-point sd = 10%. In addition, a random disturbance
representing additional demand on resource utilization was
included. At a given instant, the total resource utilization
consisted of the aggregate resource utilization of the 50
tasks under QoS Manager control plus the disturbance.
The actual slack was then 100% less the total resource
utilization. The QoS Manager (controller) was implemented
as described in the preceding section for the case where
completed periods were the only type of event. Figure 2
shows excellent tracking of the desired slack in the presence
of a significant disturbance affecting resource utilization.

1750

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Event Index

S
la

ck
 (

%
)

an
d

D
is

tu
rb

an
ce

 (
%

)

Slack
Disturbance

Fig. 2. Actual Slack (Solid) and Processor Utilization Disturbance
(Dashed) vs. Event Index

VI. CONCLUSIONS AND FUTURE WORK

Extending the work of Q-RAM, we have presented a
control-theoretic approach to the problem of optimizing
utility with respect to QoS settings of soft real-time tasks
competing for a single resource. Our approach employs a
feedback architecture to make incremental adjustment in
order to provide set-point tracking of desired resource slack,
near optimal utility using computationally efficient algo-
rithms, and improved robustness with respect to additional
resource load and imperfect task profiles. In future work
we intend to extend the theory in the following ways. (1)
Handle multiple instances of the same resource (such as
multiple hosts or multiple networks). (2) Handle multiple
resource types (both hosts and networks, for instance).
(3) Handle hard real-time tasks, for single and multiple
instances of a resource, and for multiple resource types.
(4) Handle the problem of moving tasks from one resource
to another to ensure schedulability and optimize utility.

REFERENCES

[1] T. Abdelzaher, Y. Lu, R. Zhang, and D. Henriksson. Practical
application of control theory to web services. In Proceedings of
the 2004 American Control Conference, pages 1992 – 1997, 2004.

[2] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu. Feedback
performance control in software systems. IEEE Control Systems
Magazine, 23(3):74–90, June 2003.

[3] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analyis of a
reservation-based feedback scheduler. In Proceeding of the Real-
Time Systems Symposium, 2002.

[4] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz.
Scheduling Computer and Manufacturing Processes. Springer Hei-
delberg, New York, 2001.

[5] A. Burns. The meaning and role of value in scheduling flexible real-
time systems. Journal of Systems Architecture, 46:305–325, 2000.

[6] G. Buttazzo and L. Abeni. Workload management through elas-
tic scheduling. Special Issue of Real-Time Systems Journal on
Control-Theoretic Approaches to Real-Time Computing, 23(1/2):7–
24, July/September, 2002.

[7] A. Cervin, J. Eker, B. Bernhardsson, and K. Erzin. Feedback-
feedforward scheduling of control tasks. Special Issue of Real-
Time Systems Journal on Control-Theoretic Approaches to Real-Time
Computing, 23(1/2):25–53, July/September, 2002.

[8] J. Hellerstein. Challenges in control engineering of computing
systems. In Proceedings of the 2004 American Control Conference,
pages 1970 – 1979, 2004.

[9] M. Humphrey, S. Brandt, G. Nutt, and T. Berk. The DQM
architecture: Middleware for application -centered QoS resource
management. In Proceedings of the IEEE Workshop on Middleware
for Distributed Real-Time Systems and Services, pages . 97–104,
1997.

[10] D. Karr, C. Rodrigues, J. Loyall, and R. Schantz. Controlling
quality-of-service in a distributed video application by an adaptive
middleware framework. In Proceedings of ACM Multimedia, 2001.

[11] Y. Krishnamurth, V. Kachroo, D. Karr, C. Rodrigues, J. Loyall,
R. Schantz, and D. Schmidt. Integration of QoS-enabled dis-
tributed object computing middleware for developing next-generation
distributed applications. In Proceedings of the ACM SIGPLAN
Workshop on Optimization of Middleware and Distributed Systems,
2001.

[12] C. Lee and D. Siewiorek. On quality of service optimization with
discrete qos options. In In Proceedings of the Fifth IEEE Real-Time
Technology and Applications Symposium (RTAS ’99), pages 276–286,
1999.

[13] J. Loyall, P. Rubel, R. Schantz, M. Atighetchi, and J. Zinky. Emerg-
ing patterns in adaptive, distributed real-time, embedded middleware.
In Proceedings of the 9th Conference on Pattern Language of
Programs, 2002.

[14] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback control real-time
scheduling: Framework, modeling and algorithms. Special issue of
Real-Time Systems Journal on Control-Theoretic Approaches to Real-
Time Computing, 23(1/2):85–126, 2002.

[15] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and
J. Bigus. Using control theory to achieve service level objectives
in performance management. Special issue of Real-Time Systems
Journal on Control-Theoretic Approaches to Real-Time Computing,
23(1/2):127–141, 2002.

[16] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A qos-based
resource allocations model. In Proceedings of the IEEE Real-Time
Systems Symposium, 1997.

[17] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. Practical solu-
tions for qos-based resource allocation problems. In In Proceedings
of the IEEE Real-Time Systems Symposium, pages 315–326, 1998.

[18] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A scalable
solution to the multi-resource QoS problem. In Proceedings of the
20th IEEE Real-Time Systems Symposium, pages 315–326, 1999.

[19] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson. Design
and evaluation of load control in web server systems. In Proceedings
of the 2004 American Control Conference, pages 1980 – 1985, 2004.

[20] B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B. Yanamula,
R. Brucks, and E. Huh. DynBench: A dynamic benchmark suite
for distributed real-time systems. In Proceedings of the Parallel and
Distributed Processing: IPPS/SPDP Workshops, pages 1335–1349,
1999.

[21] V. Vahia, A. Goel, J. Walpole, and M. Shor. Using dynamic
optimization for control of real rate CPU resource management. In
Proceedings of the 42nd IEEE Conference on Decision and Control,
pages 6547 – 6552, 2003.

1751

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

