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Abstract— This paper studies coordinated control of a group
of agents with a leader based on a coupled phase oscillator
model. The leader is unaffected by the other agent members
while each member is influenced by the leader and the other
members with the same coupling strengths. By using coupled
oscillators theory, it is shown that the group dynamics depends
on the motion of the leader and the coupling strengths among
all agents. Two types of collective motions occur generally,
depending on different ranges of the coupling strengths. One
is that all the member agents will move in the same direction
while the other is that all the member agents move in a way
such that the centroid of the group approaches a fixed position.
In each case, all the member agents eventually move in the
same manner if the directions of the motion are neglected.
We also present the analytical results for two special cases
of weak and strong couplings. Numerical simulations are
worked out to demonstrate the theoretical analysis. The results
suggest potential approaches to control a group motion by
steering the motion of the leader and adjusting appropriate
coupling patterns. This is of practical interest in applications
of multiagent systems.

I. INTRODUCTION

In recent years, collective motion and self-organized

behavior of swarms, agents, and particles have become

a major objective in many fields such as ecology and

theoretical biology [1], [2], physics [3]–[7], and control

engineering [8]–[23]. The studies focus on understanding

the general mechanisms and operational principles of such

coordinated cooperative phenomena as well as their poten-

tial applications in certain engineering problems such as

control of multi-robots, traffic flows. An interesting issue

in this direction is the collective behavior of swarms or

agent groups with leaders. For example, in [10], moving

reference points were viewed as virtual leaders used to

manipulate the geometry of autonomous vehicle group and

direct the motion of group. The cohesion of the members of

swarms following an edge-leader was analyzed in [11], [12].

Ref. [18] also investigated leaderless/leader coordination of

mobile autonomous agents using nearest neighbor rules.

In a recent paper [21], the collective motion of a self-

propelled particle group has been analyzed by viewing the

particle group as a coupled phase oscillator system. It was

shown that under sufficiently large coupling strength, the

particles either move in parallel or maintain the centroid of

the particle group motionless eventually. It also presented
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formation control design. However, the model of [21] did

not consider the role of a leader in the particle group.

Recently, networks of coupled identical nonlinear oscillators

were analyzed using nonlinear contraction theory in [5].

Collective dynamics of a particle group with an independent

leader was investigated using coupled oscillators theory in

[6], in which each member of the particle group is coupled

with the leader and the other members with different

coupling strengths.

In this paper, we investigate the dynamics of an agent

group with an independent leader. In the agent group, each

member is coupled with the leader and the other members

with the same coupled strengths. We show that the leader’s

dynamics will significantly influence the collective motion

of agent group. Particularly, in some coupling strength

ranges, the evolution of the agent members will eventually

be the same as that of the leader as time elapsing when

the motion directions are disregarded. We also discuss the

weak/strong coupling cases using a time-scale separation

technique. Our results suggest the possibility of controlling

the agent group by steering the motion of the leader. This

is of practical interest in applications such as control of

multi-robots or autonomous vehicles.

The paper is organized as follows. Section II presents

a coupled oscillator model of the agent group. Collective

dynamics is analyzed in Section III. Section IV gives

numerical simulations of the theoretical results. Some con-

clusions are drawn in Section V.

Notations: R represents the real number set. The formula

θ0 → θ ∗
0 (+) means θ0 > θ ∗

0 and θ0 → θ ∗
0 and the formula

θ0 → θ ∗
0 (−) denotes θ0 < θ ∗

0 and θ0 → θ ∗
0 .

II. AGENT MODEL

We consider a group of N + 1 identical agents (of unit

mass) moving in the plane at unit speed, in which an agent

indexed by 0 is assigned as the “leader” and the other agents

indexed by 1–N are referred to as “members”. The leader is

unaffected by the members while each member is influenced

by the leader and the other members. A continuous-time

kinematic model of the N +1 agents is described as follows.

ṙ0 = eiθ0 ,
θ̇0 = u,
ṙk = eiθk ,
θ̇k = K

N+1 ∑N
j=0 sin(θ j −θk), 1 ≤ k ≤ N.

(1)

In complex notation, the vector rk ∈ C ≈ R
2 (the punctured

complex plane) denotes the position of agent k and the

angle θk denotes the direction of its (unit) velocity vector
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eiθk = cosθk + isinθk,0≤ k ≤N. The term u is control input

applied to regulate the direction of the leader. Here we take

u = F(θ0)

with F(θ0) a smooth function defined in an interval I ⊆ R.

When F(θ0) is not identical with 0, we assume that all the

equilibrium points of θ̇0 = F(θ0) are hyperbolic. K �= 0 is

a real parameter and |K| quantifies the coupling strength

among the agents. Throughout the paper, we assume that

the motion of the leader does not have finite escape time.

Since θ0 is independent of all θk while each θk depends

on θ0 for k = 1, ...,N, the dynamics of θk are in general

more complex than that concerned in [21]. In this paper,

we will analyze the dynamics of the model (1) by using

coupled oscillators theory [24].

III. DYNAMICS ANALYSIS

Observe that in model (1), the right side of the equations

does not depend on the position variable r (here we omit

the index) and r are dependent on θ . Hence, we only

need to analyze the dynamics of θ in the sequel and then

examine the dynamics of r when necessary. For the sake of

convenience, denote θ̄k = θk − θ0,k = 0,1, ...,N. Then for

k = 1, ...,N, the dynamics of θ̄k are described as follows.

˙̄θk =
K

N +1

[(
N

∑
j=1

sin θ̄ j

)
cos θ̄k−

(
1+

N

∑
j=1

cos θ̄ j

)
sin θ̄k

]

−F(θ0). (2)

Notice that (2) is similar to the general reducible phase

oscillator model in [24], where the authors presented a

reduction process and analyzed the dynamics of the model

using Lyapunov second method. Their method and results

have also been used in [21]. This paper employs similar

arguments to that of [24] to analyze the dynamics of θ̄k.

We will make use of the following notations:

ḡ =
1

N

N

∑
j=1

cos θ̄ j, h̄ =
1

N

N

∑
j=1

sin θ̄ j,

pθ̄ =
1

N

N

∑
j=1

eiθ̄ j = ḡ+ ih̄,

Pθ̄ =
1

N +1

N

∑
j=0

eiθ̄ j =
1

N +1

(
1+Nḡ+ iNh̄

)
,

R =
1

N +1

N

∑
k=0

rk.

Clearly, R is the position vector of the centroid of the group

and its derivative Ṙ = Pθ̄ eiθ0 is the moment of the group.

To analyze the dynamics of θ̄k, we first need to examine

the dynamics of θ0.

A. Dynamics of θ0

For convenience, we rewrite the equation of θ0 as

θ̇0 = F(θ0). (3)

We consider the following two cases.

If F(θ0) ≡ 0, then θ0 is a constant. So the leader keeps

moving along a straight line with a constant slope.

If F(θ0) �≡ 0, then by assumption, all the equilibrium

points of θ̇0 = F(θ0) are hyperbolic. Hence, for any initial

value θ0(t0) in I, the solution θ0 has one of the following

properties, depending on properties of F(θ0) and θ0(t0):

P1. θ0 monotonically tends to an equilibrium point
of (3);
P2. θ0 monotonically increases and approaches
the boundary of I;
P3. θ0 monotonically decreases and approaches
the boundary of I.

When the sign of F(θ0) does not change in I, either P2 or

P3 occurs. Otherwise, there exists at least one equilibrium

point of (3) in I. In this case, according to the assumption

on F(θ0), the equilibrium point is either stable or unstable.

This implies that as t → +∞, θ0 either monotonically

tends to the equilibrium point or monotonically approaches

the boundary of I. We summarize these properties in the

following four cases, where θ ∗
0 is an equilibrium point of

(3):

• θ0 ∈ P1(+) denotes that P1 occurs and θ0 → θ ∗
0 (+) as

t → +∞.
• θ0 ∈ P1(−) denotes that P1 occurs and θ0 → θ ∗

0 (−) as

t → +∞.
• θ0 ∈ P2 denotes that P2 occurs.

• θ0 ∈ P3 denotes that P3 occurs.

From this, we have the following Lemma.

Lemma 1. For any initial value θ0(t0) ∈ I, the sign of

F(θ0) is eventually constant as t → +∞. Specifically, one

has F(θ0) > 0 for θ0 ∈ P1(−) or θ0 ∈ P2 and F(θ0) < 0

for θ0 ∈ P1(+) or θ0 ∈ P3.

Next, we will analyze the dynamics of θ̄k based on

Lemma 1. Observe that (2) includes a term −K sin θ̄k/(N +
1)−F(θ0) in its right-hand side, which comes from the

influence of the leader on every agent member, so the gov-

erning equations of θ̄k are different from what considered

in [21] and [24].

B. Change of Variables

From the definition of pθ̄ , we have

N

∑
j=1

cos θ̄ j = Nḡ,
N

∑
j=1

sin θ̄ j = Nh̄.

Inserting them into (2), we get

˙̄θk =
NKh̄
N +1

cos θ̄k −
(1+Nḡ)K

N +1
sin θ̄k −F(θ0) (4)

with k = 1, ...,N. Take the change of variables [24]

tan

[
1

2
(θ̄k −Θ)

]
=

√
1+ γ
1− γ

tan

[
1

2
(ψk −Ψ)

]
(5)

for k = 1, ...,N, which map N-dimensional state vec-

tor (θ̄1, θ̄2, ..., θ̄N) to the (N + 3)-dimensional state vector
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(γ,Θ,Ψ,ψ1, ...,ψN). In (5), Θ and Ψ are two rigid rotation

variables, γ is a dilation with 0≤ γ < 1, and ψk,k = 1, ...,N,
are new phase variables. All these variables depend on time.

Equation (5) is regarded as a way to redistribute the phase

variables θ̄k on unit circle, for more detailed implication

about the transformation we refer to [24].

From (5) and trigonometric identities, one can get two

useful formulas:

sin(θ̄k −Θ) =

√
1− γ2 sin(ψk −Ψ)

1− γ cos(ψk −Ψ)
, (6)

cos(θ̄k −Θ) =
cos(ψk −Ψ)− γ

1− γ cos(ψk −Ψ)
. (7)

Differentiating (5) with respect to time and considering (4),

(6), and (7), we can obtain for 1 ≤ k ≤ N,

−
√

1− γ2ψ̇k

+

[
K

N +1
(P− sinΘ)+ γ(F(θ0)+ Θ̇)

]
cos(ψk −Ψ)

−

[
K

N +1
(Q+ cosΘ)

√
1− γ2 +

γ̇√
1− γ2

]
sin(ψk −Ψ)

+

[
−

K
N +1

γ (P− sinΘ)−F(θ0)− Θ̇+
√

1− γ2Ψ̇
]

= 0 (8)

with

P = N(h̄cosΘ− ḡsinΘ)

=
N

∑
j=1

√
1− γ2 sin(ψ j −Ψ)

1− γ cos(ψ j −Ψ)
,

Q = N(h̄sinΘ+ ḡcosΘ)

=
N

∑
j=1

cos(ψ j −Ψ)− γ
1− γ cos(ψ j −Ψ)

.

If the three variables (γ,Θ,Ψ) satisfy following differential

equations

γ̇ = −(1− γ2)
K

N +1
(Q+ cosΘ) ,

γΨ̇ = −
√

1− γ2 K
N +1

(P− sinΘ) , (9)

γΘ̇ = −
K

N +1
(P− sinΘ)− γF(θ0),

for γ �= 0 and

0 =
N

∑
j=1

sin(ψ j −Ψ)− sinΘ,

γ̇ = −
K

N +1

[
N

∑
j=1

cos(ψ j −Ψ)+ cosΘ

]
, (10)

0 = Ψ̇− θ̇0 − Θ̇,

for γ = 0, where θ0 satisfies (3), then the identities (8)

reduce to

ψ̇k = 0, k = 1, ...,N. (11)

Thus the dynamics analysis of θ̄k are converted into

analyzing the dynamics of γ,Θ,Ψ, and ψk determined by

(3) and (9)–(11).

C. Constraints Imposed on ψk

Equation (11) means that the N new phase variables ψk
are frozen. Hence, ψk can be considered as parameters.

Under the coordinate transformation (5), the original N vari-

ables are converted into 3 new variables and N parameters.

Three constraints can be imposed on the initial values of

γ,Θ,Ψ, and ψk, k = 1, ...,N. So we impose the constraints

N

∑
k=1

cosψk = 1,
N

∑
k=1

sinψk = 0 (12)

on the initial values of ψk and hence on ψk for k = 1, ...,N.
For γ = 0, under constraints (12), one has

sinΨ+ sinΘ = 0. (13)

From this we further have

cosΨ+ cosΘ = 0 or cosΨ− cosΘ = 0.

And we impose a constraint on the initial values of Θ and

Ψ such that

cosΨ+ cosΘ = 0 for γ = 0. (14)

Otherwise the last two equations in (9) are singular. Thus,

we have γ̇ = 0 for γ = 0, which means that γ = 0 is an

equilibrium point of γ .

D. V -Function and Dynamics Analysis

Observe that Θ is coupled with Ψ,γ, and θ0, we choose

a V -function as follows.

V = (N +1)

[
N

∑
k=1

ln
1− γ cos(ψk −Ψ)√

1− γ2
− γ(1+ cosΘ)

]

−(N +1)(ln(1− γ)− v), (15)

where if F(θ0) ≡ 0, then v = 0; otherwise, for K > 0,

v =

⎧⎪⎪⎨
⎪⎪⎩

2θ0 if θ0 ∈ P2,
−2θ0 if θ0 ∈ P3,
(θ0 −θ ∗

0 −2)2/2 if θ0 ∈ P1(+),
(θ0 −θ ∗

0 +2)2/2 if θ0 ∈ P1(−),

(16)

and for K < 0,

v =

⎧⎪⎪⎨
⎪⎪⎩

−2θ0 if θ0 ∈ P2,
2θ0 if θ0 ∈ P3,
(θ0 −θ ∗

0 +2)2/2 if θ0 ∈ P1(+),
(θ0 −θ ∗

0 −2)2/2 if θ0 ∈ P1(−),

(17)

with θ0 being the solution of (3) and θ ∗
0 an equilibrium

point of (3).

Below we analyze the dynamics of (3) and (9) using the

derivatives of the V -function with respect to time and γ .

The derivative of the V -function with respect to time along

the solutions of (3) and (9) can be reduced to

V̇ = KG1G2 +KG3 +(N +1)G4 (18)
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with

G1 =
N

∑
k=1

γ − cos(ψk −Ψ)

1− γ cos(ψk −Ψ)

−(1− γ2)(1+ cosΘ)+1+ γ,

G2 =
N

∑
k=1

γ − cos(ψk −Ψ)

1− γ cos(ψk −Ψ)
− cosΘ,

G3 =

[
N

∑
k=1

√
1− γ2 sin(ψk −Ψ)

1− γ cos(ψk −Ψ)
− sinΘ

]2

,

G4 = v̇− γ sinΘF(θ0).

Obviously, G3 ≥ 0 for all (γ,Θ,Ψ,θ0) and G4 = 0 if

F(θ0) ≡ 0. We assert that, for all (γ,Θ,Ψ,θ0),

(i) G1 ≥ 0,G2 ≥ 0, and G1 = 0 if and only if γ =
0;
(ii) if F(θ0) �≡ 0, then G4 > 0 (resp., G4 < 0) for
K > 0 (resp., K < 0) as t is large enough.

The proof of the assertion is presented in Appendix. From

this, KV̇ > 0 for all (γ,Θ,Ψ,θ0) as t is large enough. This

implies that V eventually increases along the solutions of

(3) and (9) for K > 0 and decreases for K < 0. On the other

hand, we note that

∂V
∂γ

=
(N +1)G1

1− γ2 > 0

for 0 < γ < 1. This implies that V strictly increases with γ
and vice versa. Thus, along the solutions of (3) and (9),

• if K > 0, then γ → 1;

• if K < 0, then γ → 0.

Hence, the dynamics of (9) depend on the sign of K. We

consider two cases in the following.

For K > 0, i.e., γ → 1, from (7), we get

θ̄k → Θ+π, i.e., θk → θ0 +Θ+π, (mod(2π)) (19)

with k = 1, ...,N, which means that all the members move in

the same direction eventually. Also note that the equations

for the position of every member are the same. Hence all

members move in the same manner as t → +∞.

For K < 0, i.e., γ → 0, (7) reduces to

sin(θ̄k −Θ) → sin(ψk −Ψ), cos(θ̄k −Θ) → cos(ψk −Ψ)

with k = 1, ...,N. Particularly, for γ = 0, we have

sin(θ̄k −Θ) = sin(ψk −Ψ), cos(θ̄k −Θ) = cos(ψk −Ψ).
(20)

Considering (13), (14), and after some algebraic manipula-

tions using trigonometric identities, we get

N

∑
k=1

cos θ̄k = −1,
N

∑
k=1

sin θ̄k = 0. (21)

It follows that Nḡ = −1,Nh̄ = 0, i.e., Pθ̄ = 0 which is a

balance manifold. This balance manifold is equivalent to

constraint (12) as γ = 0. Therefore, it follows that as γ → 0,

Pθ̄ → 0 which implies that the centroid of the group tends

to a fixed position as t → +∞. From (20), we further have

θ̄k = ψk +Θ−Ψ, (mod(2π))

with k = 1, ...,N, i.e.,

θk = ψk +θ0 +Θ−Ψ, (mod(2π)), k = 1, ...,N. (22)

Also from (9) and (10), it yields that θ0 + Θ−Ψ tends to

a constant C as t → +∞. Thus as as t → +∞, we have

θk = ψk +C, (mod(2π)), k = 1, ...,N,

which implies that as t → +∞, each member eventually

moves away from the centroid of the group in a fixed

direction, i.e., all members eventually move along straight

lines. So all members will move in the same manner as t →
+∞ increases if the directions of the motion are neglected.

From above analysis, we arrive at the following proposi-

tion.

Proposition 1. Consider the model (1). If K > 0, then
the members all move in the same direction eventually. If
K < 0, the members eventually move along straight lines
with the centroid of the group approaching a fixed point.
In each case, all members move in the same manner as
t → +∞ if the directions of the motion are neglected.

Proposition 1 shows that the members eventually tend to

form certain formation.

Remark 1. In the above analysis, if we impose the

following constrains on ψk instead of (12),

N

∑
k=1

cosψk = −1,
N

∑
k=1

sinψk = 0,

and

cosΨ− cosΘ = 0 for γ = 0.

on the initial values of Θ and Ψ instead of (14), the same

results can be obtained.

E. Weak/Strong Coupling Cases

Now, we consider two special cases of weak and strong

couplings. Due to the space limitation, we only present the

results here. Details can be found in [17].

First, we consider the weak coupling case, i.e., |K| is

sufficiently small. In this case, we perform a time-scale

separation between the slow dynamics in time-scale τ =
|K|(t − t0) and the fast dynamics in time-scale t. Under the

time-scale separation, γ and Ψ are slow variables, and θ0
and Θ are fast variables. Through analyzing slow and fast

dynamics, we have following conclusion.

Proposition 2. In the weak coupling case, each member
eventually moves along a fixed straight line as t → +∞.
For K > 0, all these straight lines are parallel and all
members move in the same direction eventually. For K < 0,
all members will move away from the centroid along these
lines, while leaving the centroid approaching a fixed point
as t → +∞.
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Next, we consider the strong coupling case, i.e., |K| is

large enough. In this case, a time-scale separation between

the fast dynamics in time-scale τ = |K|(t− t0) and the slow

dynamics in time-scale t is enforced. Under this time-scale

separation, θ0 is slow variable and γ,Θ, and Ψ are fast

variables. We have following conclusion.

Proposition 3. In the strong coupling case, all mem-
ber agents move in the same manner as t → +∞ if the
directions are neglected. Particularly, in the case of K > 0,
if (N + 1)F(θ0)/K tends to a constant in [−1,1] along
solutions of Eq. (3) as t → +∞, all members and the
leader eventually move in the same manner. For K < 0,
all members eventually move along straight lines and the
direction differences θk −θ j with j,k = 1, ...,N, and j �= k
are fixed as t → +∞.

IV. NUMERICAL SIMULATIONS

In this section we will demonstrate our theoretical results

by numerical simulations. We have carried out a lot of

numerical simulations. Here we display some of them. In

the numerical simulations, we choose a leader and ten

members. In the figures presented below, the arrows on the

curves indicate the directions of the motion. The values of

t in the figures indicate the time slots for simulations.

Fig. 1 presents two simulation results for position evolu-

tions of eleven agents described by (1) with F(θ0) = 0.25

and different values of K as indicated in the figures. In Figs.

1(a)–(c), each curve indicates a trajectory of the motion of

an agent and the trajectories of the leader are the same as

shown in Fig. 1(a). Figs. 1(a) and (b) show the motion of the

agents with K > 0 and K < 0, respectively. The trajectories

in the similar shapes in Figs. 1(a) and (b) indicate that all the

members almost move in the same manner if the direction of

motion is neglected. Fig. 1(a) also shows that the members

and the leader move in the same manner, as predicted in

Proposition 3 because of (N +1)F(θ0)/K ≡ 0.275 for all t
in this case. From Fig. 1(b), it can be seen that the agent

members are split into two subgroups whose motions are

indicated by the dashed and the solid lines, respectively, and

that the curvatures of the lines become smaller and smaller

with t increasing. This shows that the directions of motion

of the member agents change more and more slowly. This

agrees with the analytical result of Proposition 1. Fig. 1(c)

is an enlargement of the box at the center of Fig. 1(b), in

which we only remained the trajectories of the leader and

the weighted centroid for the sake of clarity. From Fig. 1(c),

we can see that the trajectory of the weighted centroid of the

group appears to be a point. This agrees with the analytical

result of Proposition 1 that for K1 < 0, the position of the

weighted centroid of the group approaches a fixed point

eventually.

Figs. 2(a) and (b) simulate the position evolutions of

eleven agents described by (1) with F(θ0) = 0.25 and

|K| = 0.01. The trajectories of the leader are the same as

shown in Fig. 1(a). It can be seen that the trajectories are

almost straight lines as t is large enough. This agree with the

−40 −20 0 20 40 55
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48

the leader 

K=10, t=2×103s.

(a)
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× 102

× 102

K=−5, t=5×103s.

(b)

−100 −50 0 50 100
−100

−50

0

50

100

the leader 

the center 

K=−5, t=5×103s.

(c)

Fig. 1. Phase diagrams of the position dynamics of the agents with
F(θ0) = 0.25 and different values of K. The abscissa axis and the ordinate
axis represent the first and the second components of the position vector
r, respectively, in (a)–(c).

analytical results of Proposition 2 that in the weak coupling

case, each member eventually moves along a fixed straight

line as t → +∞.

V. CONCLUSIONS

We have considered cooperative control problem of a

group of agents with a leader. Analytic results show that

the motion of all member agents depends on the motion of

the leader and the coupling strengths. In general, two types

of collective motion occur, depending on different ranges

of the coupling strengths. One is that all members move

in the same direction and the other is that all members

move leaving the centroid of the group approaching a fixed

position. In each case, all member agents move in the same

manner eventually. In the special case of weak couplings,

all members will move along lines. In another special case
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(b)

Fig. 2. Phase diagrams of the position dynamics of the particles with
F(θ0) = 0.25 and |K| = 0.01. The abscissa axis and the ordinate axis
represent the first and the second components of the position vector r,
respectively, in (a) and (b).

of strong couplings, the members and the leader move in

the same manner as time increasing in certain range of the

coupling strengths. Numerical simulations agree with the

results of this paper very well. These results show that it is

possible to control the agent group by steering the motion

of the leader. This is of practical interest in applications

such as control of multi-robots or autonomous vehicles.

APPENDIX

Proof of the assertion:

First we prove (i). We only show G1 ≥ 0. G2 ≥ 0 can be

established similarly. For γ = 0, from (12) and (13), we get

G1 = 0. Since

∂G1

∂γ
=

N

∑
k=1

1− cos2(ψk −Ψ)

(1− γ cos(ψk −Ψ))2 +2γ(1+ cosΘ)+1 > 0

for all (Θ,Ψ,θ0), G1 strictly increases in γ. Therefore, G1 ≥
0 for all (γ,Θ,Ψ,θ0) and the equality holds if and only if

γ = 0.

Now we prove (ii). We only show the case of K > 0. The

case of K < 0 can be done similarly. For K > 0, we have

G4 = v̇− γ sinΘF(θ0)

=

⎧⎪⎪⎨
⎪⎪⎩

(2− γ sinΘ)F(θ0) if θ0 ∈ P2,
(−2− γ sinΘ)F(θ0) if θ0 ∈ P3,
(θ0 −θ ∗

0 −2− γ sinΘ)F(θ0) if θ0 ∈ P1(+),
(θ0 −θ ∗

0 +2− γ sinΘ)F(θ0) if θ0 ∈ P1(−).

According to Lemma 1, G4 > 0 always holds as t is large

enough. �
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