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Abstract— This paper studies the fault detection problem
of uncertain linear systems with arbitrary uncertainty struc-
ture. With the aid of probabilistic robustness technique, an
approach is developed to determine parameters of observer-
based residual generators by incorporating probability distri-
bution of model uncertainty in the design. One advantage of
the approach is that it needs no assumptions on the structure
of model uncertainty. Examples are given to illustrate the
proposed design procedure.

I. INTRODUCTION
With the increasing requirement of modern complex

control systems on safety and reliability, model-based fault
detection and isolation (FDI) technique has attracted much
attention during the last three decades [1]-[4]. The basic
idea of model-based FDI is to generate analytical redun-
dancy with the help of a mathematical model of the su-
pervised system. The fault indicating signal, called usually
residual, is generated by comparing measured outputs with
their estimations. A number of model-based approaches,
for instance, observer-based approach, parity space scheme,
parameter estimation method, etc., have been proposed
to the FDI of linear and nonlinear systems. Applications
have been found in automobile industry, process industry,
transportation systems, aerospace and aeronautics, etc.

The performance of model-based FDI systems relies on
accurate models of the system. However, models are never
perfect. Besides the faults, in most cases the residual signal
is also influenced by disturbances, noises and even control
inputs due to existence of multiplicative model uncertainty.
Thus, the main challenge to model-based FDI approaches is
to distinguish the change of the residual signal caused by the
faults from that caused by non-fault factors. While additive
model uncertainty has been extensively treated, only a few
approaches to handle multiplicative model uncertainty have
been developed and most of them are restricted to particular
kinds of model uncertainty, such as, polytopic uncertainty,
structured norm-bounded uncertainty or LFT uncertainty
[1]-[9].

This paper aims to develop a new approach to the design
of robust FD systems for linear systems subject to mul-
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tiplicative uncertainty. It is assumed that the probabilistic
distribution of the bounded uncertainty is known in advance
but there is no restriction on the way how the uncertainty
influences system matrices.

This work is inspired by the recent development of proba-
bilistic robustness theory, which provides a new philosophy
of control system analysis and synthesis. Though the idea
of probabilistic robustness originates at the beginning of the
eighties [10], characterized by the introduction of concepts
like “probability of instability” [11], [12], it is only recently
that the probabilistic robustness theory has been intensively
investigated and developed [13]-[20]. In this framework,
based on random samples of uncertainty generated accord-
ing to its distribution, the probability of performance can
be estimated. The accuracy of the estimate can be guar-
anteed with a specified confidence level by taking enough
amount of samples. Approaches have also been developed
to solve controller synthesis problem, i.e. to find a controller
which meets specification on robustness performance in a
probabilistic sense. The approaches to controller synthesis
can be divided into two major classes: learning theory
based approach and sequential stochastic approach. The
basic idea of learning theory based approach is to take
random samples both in the uncertainty space and in the
controller parameter space. By estimating the performance
achieved by each trial (sample) of controller parameter, the
best one will be selected. In sequential stochastic approach,
the basic idea is to use the subgradient method to iteratively
update the controller parameter based on random samples
of uncertainty. While the learning theory based approach
is conceptually straightforward, its performance strongly
depends on efficient generation of samples in the controller
parameter space. The sequential approach can overcome
the difficulty of sampling controller parameters and will be
employed in this paper.

In the field of fault detection, based on probabilistic
robustness theory, [21] has developed a false alarm rate
guaranteed scheme of threshold selection for a given resid-
ual generator. A quantitative relation has been established
between the threshold and the false alarm rate. The proposed
approach builds a bridge between the conventional statisti-
cal testing based and norm-based evaluation methods.

This paper will apply probabilistic robustness theory to
the design of robust FD systems for uncertain linear time-
invariant (LTI) systems with arbitrary uncertainty structure.
After problem formulation in Section II, the suggested
solution is presented in Section III. Two examples are given

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

WeC15.3

1648



in Section IV to illustrate the proposed design procedure.

II. PROBLEM FORMULATION

A. System description

This paper studies the fault detection problem of uncer-
tain discrete LTI systems described by

x(k + 1) = A(∆)x(k) + B(∆)u(k) + Eff(k)
y(k) = C(∆)x(k) + D(∆)u(k) + Fff(k) (1)

where x ∈ Rn denotes the state vector, u ∈ Rp the
control input vector, y ∈ Rm the measured output vector,
and f ∈ Rkf the vector of faults to be detected, Ef , Ff

are known constant matrices, A(∆), B(∆), C(∆), D(∆)
are system matrices dependent on unknown but bounded
parameter vector

∆ =
[

δ1 δ2 · · · δl

]′ ∈ Rl

The way how ∆ enters into matrices A,B,C, D may be
very complex. It is assumed that the probability distribution
of ∆ is known and denoted by f∆(∆).

B. Analysis

Let[
A(∆) B(∆)
C(∆) D(∆)

]
=

[
Ao Bo

Co Do

]
+

[
Fa(∆) Fb(∆)
Fc(∆) Fd(∆)

]

where Fa, Fb, Fc, Fd are unknown ∆-dependent matrices,
Ao, Bo, Co, Do are constant matrices representing some
nominal behavior of the system. For instance, Ao, Bo,
Co, Do can be defined by[

Ao Bo

Co Do

]
=

[
A(∆̄) B(∆̄)
C(∆̄) D(∆̄)

]
(2)

where ∆̄ denotes the mean value of ∆ that can be computed
according to the probability distribution f∆(∆).

Generally speaking, a model-based FDI system is com-
posed of two parts: residual generator and residual evaluator
[1]-[4]. An observer-based residual generator can be con-
structed as [1]-[4]

x̂(k + 1) = Aox̂(k) + Bou(k) + L(y(k) − ŷ(k))
ŷ(k) = Cox̂(k) + Dou(k)
r(k) = W (y(k) − ŷ(k)) (3)

where r ∈ Rkr is the residual signal, L and W are,
respectively, the observer gain matrix and the weighting
matrix to be designed. The residual will be evaluated by
the following logic{ ‖r‖2 ≤ Jth ⇒ no fault

‖r‖2 > Jth ⇒ alarm (4)

where Jth is called threshold, which is often set as

Jth = sup
f=0, ∆

‖r‖2 (5)

The dynamics of residual generator (3) is governed by[
x(k + 1)
e(k + 1)

]
=

[
A O

Fa − LFc Ao − LCo

] [
x(k)
e(k)

]

+
[

B
Fb − LFd

]
u(k) +

[
Ef

Ef − LFf

]
f(k)

r(k) =
[

Fc Co

] [
x(k)
e(k)

]
+ Fdu(k) + Fff(k) (6)

where the estimation error e = x − x̂. As can be seen
from (6), the residual signal is influenced not only by faults
but also by control inputs u due to the existence of model
uncertainty. Moreover, the residual dynamics is internally
stable only if A(∆) is stable for any ∆. Therefore, in the
following, it is assumed that (Ao, Co) is observable and that
A(∆) is stable for any ∆.

From different viewpoints, the FD problem can be posed,
among others, as:

Problem 1: Given α > 0, find parameter L and W of
residual generator (3), so that

‖Gru‖∞ < α (7)

Problem 2: Given α > 0 and β > 0, find parameter L
and W of residual generator (3), so that

‖Gru‖∞ < α

‖Grf‖− > β (8)

The physical meaning behind Problem 1 is to attenuate
influence of non-fault factors. Problem 2 is a multi-objective
design, which considers not only the robustness of the FD
system to non-fault factors but also the sensitivity of the
FD system to faults. Note that the transfer function matrices
Gru, Grf in Problem 1 and 2 are dependent on the bounded
uncertainty ∆. Till now, solutions of these problems are
restricted to certain kinds of uncertainty structure. For
instance, norm-bounded model uncertainty has been treated
by [5], [7], [8], while LFT uncertainty has been handled by
[9].

The basic idea of this paper is to make use of the
probabilistic robustness theory to remove the assumption
on uncertainty structure. The algorithm is guaranteed to
converge to a feasible solution, if there exists one, in finite
steps with probability 1 under some mild assumptions. The
price to be paid is that it is difficult to compute the needed
iteration steps in advance.

For a better explanation of the basic idea, in this paper,
only Problem 1 is considered. We would like to remark
that an extension of the results to problems formulated from
viewpoint of Problem 2 and some other kinds of norm-based
design is possible and worthy of further efforts.

III. SOLUTION

In this section, we shall present an approach to find the
solution to Problem 1 for system (1) with arbitrary un-
certainty structure by exploring the sequential subgradient
approach. To avoid a trivial solution, the weighting matrix
W is set as an identity matrix.
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A. Formulation of the constrain as LMI

As the first step, constraint (7) is formulated as an LMI.
To this aim, the well-known bounded real lemma of discrete
linear time-invariant (LTI) systems is introduced [22].

Lemma 1 Given α > 0 and a discrete LTI system
G(z) = (A, B,C, D). The system is stable and ‖G(z)‖∞ <
α, if and only if there exists a symmetric matrix X , such
that the following LMI holds


−X XA XB O
A′X −X O C ′

B′X O −α2I D′

O C D −I


 < 0 (9)

Based on Lemma 1, we obtain the following Lemma 2,
which builds the basis for the development of the algorithm.

Lemma 2 Given α > 0 and system (6). The system is
stable and ‖Gru(z)‖∞ < α, if there exist matrices X1, X2,
P and a scalar ε > 0, such that

V (X1, X2, P,∆)

=




−X1 + εI O X1A(∆)
∗ −X2 + εI X2Fa(∆) − PFc(∆)
∗ ∗ −X1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

O X1B(∆) O
X2Ao − PCo X2Fb(∆) − PFd(∆) O

O O F ′
c(∆)

−X2 O C ′
o

∗ −α2I F ′
d(∆)

∗ ∗ −I




≤ O (10)

Proof: (10) follows readily from lemma 1 by assuming
that

X =
[

X1 O
O X2

]
(11)

and letting P = X2L.
Remark 1 Assumption (11) will introduce some con-

servatism in the design. If a post filter R(z) instead of a
weighting matrix W is used in the residual generator (3)
[23], then a less conservative result can be achieved.

B. Preliminary of sequential subgradient approach

The sequential subgradient approach has been proved to
be efficient in finding solutions to LMI, BMI with unknown
or varying parameters and employed in robust H2, H∞
controller design. In this subsection, we briefly describe the
mechanism of this kind of solution algorithm (see [14]-[18],
[20] and the references therein).

Suppose that a solution X that satisfies the LMI
V (X, ∆) ≤ O, ∀∆ is to be searched. For certain kinds of
structured uncertainty this is a well-studied problem and can
be easily solved. However, for general uncertainty structure
(for instance, nonlinear dependency of known matrices on

∆), the solution can be obtained by (i) overbounding the
uncertainty by a structured one and then solving it, or (ii)
employing the randomization algorithm and looking for
solutions satisfying the LMIs at the samples of uncertainty.
The former may introduce conservatism by overbounding.
The latter needs to solve a large amount of LMIs simulta-
neously.

The sequential subgradient approach handles the problem
in an alternative way by [14], [15]:

• setting initial value X0 of the unknown X ,
• generating a random sample ∆k of ∆ according to the

known probability distribution of ∆,
• updating Xk based on subgradient of the convex ob-

jective function with respect to the unknown X .
It is proven that the algorithm converges in finite steps

with probability 1, i.e.

Pr{∃k0 < ∞, s.t. V (Xk, ∆) ≤ O,∀∆ and ∀k ≥ k0} = 1

if the following two conditions holds: (i) The solution set
is nonempty, and (ii) the probability that the LMI is not
satisfied for some ∆ is nonzero, as long as X is not a
feasible solution. Even if a feasible solution is not found,
a good approximately feasible candidate can be obtained
through the algorithm [15], [16].

C. Computation of subgradient

In this subsection, we apply the above introduced sequen-
tial subgradient approach to find observer gain matrix L that
satisfies (10) for arbitrary uncertainty structure.

Let the objective function be defined as

v(X1, X2, P, ∆) =
∥∥V +(X1, X2, P,∆)

∥∥
F

(12)

where V + denotes the projection of symmetric matrix V
onto the space of positive semi-definite matrix, and ‖V +‖F

denotes the Frobenius norm of matrix V +. If V ≤ 0, then
V + = O and v = 0. Otherwise, V + ≥ O and v > 0.
The function v(X1, X2, P, ∆) is a convex scalar function
of the unknowns X1, X2, P . If a set of unknown X1, X2, P
can be found such that v = 0, then a feasible solution of
(10) is found. Given a symmetric matrix V , the projection
V + can be computed via solving an eigenvalue-eigenvector
problem. Partition matrix V + as [V +

ij ], i, j = 1, · · · , 6,
corresponding to the dimensions of the blocks in (10).

Theorem The subgradients of v(X1, X2, P,∆) defined
by (12) and (10) with respect to X1, X2, P are

∂X1v(X1, X2, P,∆)
= −V +

11 − V +
33 + A(∆)V +

31 + V +′
31 A′(∆)

+ B(∆)V +
51 + V +′

51 B′(∆)
∂X2v(X1, X2, P,∆)
= −V +

22 − V +
44 + Fa(∆)V +

32 + AoV
+
42 + Fb(∆)V +

52

+ V +′
32 F ′

a(∆) + V +′
42 A′

o + V +′
52 F ′

b(∆)
∂P v(X1, X2, P, ∆)

= −2V +′
32 F ′

c(∆) − 2V +′
42 C ′

o − 2V +′
52 F ′

d(∆)
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if v(X1, X2, P,∆) > 0, and

∂X1v(X1, X2, P, ∆) = 0
∂X2v(X1, X2, P, ∆) = 0, ∂P v(X1, X2, P, ∆) = 0

if v(X1, X2, P,∆) = 0.
Proof: Let parameters X1, X2, P subject to small

changes δX1, δX2, δP , respectively. Then

V (X1 +δX1, X2 +δX2, P +δP, ∆) = V (X1, X2, P )+δV

where

δV = Λ1H1 + H ′
1Λ1 + Λ2H2 + H ′

2Λ2 + H3 + H ′
3

H1 =




− I
2 O A O B O

O O O O O O
O O − I

2 O O O
O O O O O O
O O O O O O
O O O O O O




H2 =




O O O O O O
O − I

2 Fa(∆) Ao Fb(∆) O
O O O O O O
O O O − I

2 O O
O O O O O O
O O O O O O




H3 =




O O O O O O
O O −δPFc −δPCo −δPFd O
O O O O O O
O O O O O O
O O O O O O
O O O O O O




Λ1 = diag{δX1, O, δX1, O,O,O}
Λ2 = diag{O, δX2, O, δX2, O,O}

Due to the differentiability of v, there is [16], [20]

v(X1 + δX1, X2 + δX2, P + δP, ∆)
=

∥∥[V (X1, X2, P ) + δV ]+
∥∥

F

= v(X1, X2, P ) +
〈
V +(X1, X2, P ), δV

〉
+ o(‖δV ‖F )

It can be derived that〈
V +(X1, X2, P ), δV

〉

=
〈
V +(X1, X2, P ), Λ1H1

〉
+

〈
V +(X1, X2, P ),H ′

1Λ1

〉

+
〈
V +(X1, X2, P ),Λ2H2

〉
+

〈
V +(X1, X2, P ),H ′

2Λ2

〉

+
〈
V +(X1, X2, P ),H3

〉
+

〈
V +(X1, X2, P ),H ′

3

〉

=
〈
H1V

+(X1, X2, P ), Λ1

〉
+

〈
V +(X1, X2, P )H ′

1, Λ1

〉

+
〈
H2V

+(X1, X2, P ), Λ2

〉
+

〈
V +(X1, X2, P )H ′

2, Λ2

〉

+
〈
V +(X1, X2, P ),H3

〉
+

〈
V +(X1, X2, P ),H ′

3

〉

Therefore

∂X1

∥∥V +(X1, X2, P )
∥∥

F
= U11 + U ′

11 + U33 + U ′
33

∂X2

∥∥V +(X1, X2, P )
∥∥

F
= Q22 + Q′

22 + Q44 + Q′
44

∂P

∥∥V +(X1, X2, P )
∥∥

F
= W22

U11 = −1
2
V +

11 + A(∆)V +
31 + B(∆)V +

51

Q22 = −1
2
V +

22 + Fa(∆)V +
32 + AoV

+
42 + Fb(∆)V +

52

U33 = −1
2
V +

33 , Q44 = −1
2
V +

44

W22 = −2V +′
32 F ′

c(∆) − 2V +′
42 C ′

o − 2V +′
52 F ′

d(∆)

The theorem is thus proven.
After obtaining the subgradients, the sequential subgradi-

ent approach introduced in the last subsection can be used
to find out the solution of Problem 1.

D. Design procedure

In summary, given α > 0, an observer-based residual
generator in the form of (3) satisfying (7) for system (1)
with arbitrary uncertainty structure can be designed as
follows:

Step 1 Set the value of ε and select an initial value of
X0

1 , X0
2 , P 0.

Step 2 Generate a sample of model uncertainty ∆k

according to the known probability distribution f∆(∆).
Step 3 Compute the projection V +(Xk

1 , Xk
2 , P k,∆k)

and the value of

v(Xk
1 , Xk

2 , P k, ∆k) =
∥∥V +(Xk

1 , Xk
2 , P k, ∆k)

∥∥
F

Step 4 Compute subgradients ∂X1v(Xk
1 , Xk

2 , P k,∆k),
∂X2v(Xk

1 , Xk
2 , P k, ∆k), ∂P v(Xk

1 , Xk
2 , P k, ∆k) according

to the theorem.
Step 5 Calculate the value of λk = αk

βk , where

βk =
(∥∥∂X1v(Xk

1 , Xk
2 , P k,∆k)

∥∥2

F

+
∥∥∂X2v(Xk

1 , Xk
2 , P k, ∆k)

∥∥2

F

+
∥∥∂P v(Xk

1 , Xk
2 , P k, ∆k)

∥∥2

F

)1/2

αk =
v(Xk

1 , Xk
2 , P k, ∆k)
βk

+ r

with r > 0 being the radius of a ball inside the feasible
solution set.

Step 6 If v(Xk
1 , Xk

2 , P k,∆k) = 0, let Xk+1
1 = Xk

1 ,
Xk+1

2 = Xk
2 , P k+1 = P k. Otherwise, update the variables

Xk
1 , Xk

2 , P k by

Xk+1
1 = Xk

1 − αk

βk
∂X1v(Xk

1 , Xk
2 , P k,∆k)

Xk+1
2 = Xk

2 − αk

βk
∂X2v(Xk

1 , Xk
2 , P k,∆k)

P k+1 = P k − αk

βk
∂P v(Xk

1 , Xk
2 , P k, ∆k).

Step 7 If the above algorithm converges, then the
observer gain matrix is obtained as

L = (Xk
2 )−1P k

Otherwise, set k = k + 1 and return to step 2.
Remark 2 The necessary iterations may be reduced by

using approach proposed by [18].
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Remark 3 If a feasible solution is not found for the
given α after a sufficiently large number of iterations,
the approximately feasible candidate obtained through the
algorithm can be used as initial value for starting the next
iteration with a larger α.

Remark 4 In case that probability distribution f∆(∆) of
bounded uncertainty ∆ is unavailable, a uniform distribution
can be assumed [24].

E. Residual evaluation

To evaluate the residual based on (4), the threshold Jth

needs to be determined. If a gain matrix L that satisfies (7)
is found, then Jth can be set as

Jth = α ‖u‖2

which guarantees the false alarm rate FAR defined by

FAR = Pr{‖r‖2 > Jth | f = 0}
to be zero, because ‖r‖2 ≤ ‖Gru(z)‖∞ ‖u‖2. Using the
approach developed by [21], the threshold Jth can also be
selected to guarantee the false alarm rate be under a user
defined level.

IV. EXAMPLE

In this section, two examples are given to illustrate the
proposed design procedure.

Example 1 Consider the FD problem of a system in the
form of (1) with

A =




0.7 + θ1 0 θ9 θ6

0 0.8 + θ2θ3 0 θ7

0 0 0.6 + θ4 θ8

0 0 0 0.5 + θ5




B =




0 0
0 −3.91

0.035 0
−2.53 0.31


 , Ef =




0 0
0 0
0 0
1 0




C =


 1 0 0 0

0 0 1 0
0 0 0 1


 , D = O, Ff =


 0 1

0 0
0 0




The nominal value of the parameter vector is θ1 = −0.5,
θ2 = −0.55, θ3 = 0.28, θ4 = 0.086, θ5 = −0.11, θ6 = 0.1,
θ7 = −0.042, θ8 = 0.601, θ9 = −0.29. The parameter
change is smaller than 10% of the nominal value and is of
uniform distribution. Given α = 2.5.

Select Ao according to (2) and set N = 5000, ε = 0.01,
r = 0.001. The proposed design procedure yields

X1 =




1.0075 −0.0049 0.1860 −0.0242
−0.0049 0.1928 0.0099 0.0179
0.1860 0.0099 0.2604 0.0018
−0.0242 0.0179 0.0018 0.4236




X2 =




1.3000 0.1582 0.0512 −0.1764
0.1582 0.8767 −0.1318 −0.0777
0.0512 −0.1318 1.5097 0.3835
−0.1764 −0.0777 0.3835 1.9179




P =




0.4219 −0.2738 0.1000
−0.1262 −0.1045 −0.2821
−0.0717 0.7187 0.8349
0.0523 0.1242 0.5551




Finally, an observer-based residual generator that satisfies
(7) is obtained as

x̂(k + 1) = Aox̂(k) + Bu(k) + L(y(k) − ŷ(k))
ŷ(k) = Cx̂(k)
r(k) = y(k) − ŷ(k)

with

Ao =




0.2 0 −0.29 0.1
0 0.646 0 −0.042
0 0 0.686 0.601
0 0 0 0.39




L =




0.3646 −0.2372 0.1153
−0.2180 −0.0066 −0.2536
−0.0970 0.4980 0.4776
0.0714 −0.0569 0.1943




The next example shows that a residual generator which
minimizes α can be found by iteratively using the proposed
design procedure.

Example 2 The system under consideration is the vehicle
lateral dynamics which is described by the so-called bicycle
model [25]:

[
β̇
γ̇

]
=

[ −CαV +CαH

mvref

lHCαH−lV CαV

mv2
ref

− 1
lHCαH−lV CαV

Iz
− l2V CαV +l2HCαH

Izvref

] [
β
γ

]

+

[
CαV

mvref
lV CαV

Iz

]
δ∗L (13)

where β denotes vehicle side slip angle, γ yaw rate and
δ∗L steering angle, original vehicle parameters of a car have
been adopted. It is assumed that only yaw rate sensor is
used.

It is well-known that among the parameters in model (13)
the front cornering stiffness CαV and the rear cornering
stiffness CαH may vary over a large range, depending
on the road condition and driving maneuvers [25]. This
causes a strong model uncertainty in the bicycle model
(13). It is assumed that CαH = kCαV , k = 1.7278 and
CαV = Co

αV + ∆CαV , C
o

αV = 103600N/rad, ∆CαV ∈
[−b1, 0] is a random number with uniform distribution with
b1 representing the maximal size of parameter change.

Model (13) can be re-written into the form

ẋ = (A + ∆A)x + (B + ∆B)u, (14)
y =

[
0 1

]
x
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with x =
[

β γ
]′

, u = δ∗L, y = γ and

A =


 − (1+k)Co

αV

mvref

(klH−lV )Co
αV

mv2
ref

− 1
(klH−lV )Co

αV

Iz
− (l2V +kl2H)Co

αV

Izvref




∆A =

[ − 1+k
mvref

klH−lV
mv2

ref

klH−lV
Iz

− l2V +kl2H
Izvref

]
∆CαV

B =

[
Co

αV

mvref
lV Co

αV

Iz

]
, ∆B =

[
1

mvref
lV
Iz

]
∆CαV

Because the sampling period of the system is T = 0.01
second, the discretized model is

x(k + 1) = (Ad + Fa(∆CαV ))x(k)
+(Bd + Fb(∆CαV ))u(k),

y(k) =
[

0 1
]
x(k) (15)

where

Ad = eAT , Bd =
∫ T

0

eAtBdt

Fa(∆CαV ) = e(A+∆A)T − eAT

Fb(∆CαV ) =
∫ T

0

e(A+∆A)t(B + ∆B)dt −
∫ T

0

eAtBdt

Although ∆A,∆B in continuous-time model (14) depend
linearly on the uncertain parameter ∆CαV , the model
uncertainties Fa, Fb in the discretized model (15) depend
on ∆CαV nonlinearly.

For the purpose of residual generation, the following
observer is used

β̂(k + 1)
γ̂(k + 1)

= Ad
β̂(k)
γ̂(k)

+ Bdδ∗L(k) + L(γ − γ̂)

r = γ − γ̂

with L as design parameter.
Assume that ε = 0.01, r = 0.001, N = 1000. For

b1 = 30000, the minimal achievable α is 0.22 and the

resulting L =
[

0.3241
0.8874

]
, which has been verified by

30000 random samples of ∆CαV uniformly distributed
in [−30000, 0] after the design. The design procedure is
also carried out under other values of b1. The results are
omitted due to the limitation of space. We would like to
emphasize that since the selection of ε, r,N will influence
the convergence rate [16], the achieved minimal α is only
sub-optimal.

V. CONCLUSION
This paper studies the fault detection problem of uncer-

tain linear systems with arbitrary uncertainty structure. With
the aid of probabilistic robustness technique, an algorithm
is developed to determine the parameter of observer-based
residual generators. The results can be extended to handle
systems with both multiplicative uncertainty and unknown
disturbances. Future study will be focused on the multi-
objective design of observer-based fault detection systems

directly guaranteeing specified false alarm rate and miss
detection rate.
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