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Abstract— This paper introduces a set of characterizing
parameters for identifying patterns in lung sounds. Stochastic
analysis is performed to extract sound patterns and under-
stand the impact of noise artifacts on sound pattern recognition
and diagnosis.

I. INTRODUCTION

Respiratory sounds are physiological vital signs desig-
nated by American Society of Anesthesiologists (ASA).
They contain a rich reservoir of vital physiological and
pathological information that is of critical importance for
clinical diagnosis and management in operating rooms
(OR). Continuous monitoring of lung sounds can provide
a non-invasive and inexpensive means of diagnosing accu-
rately and promptly for many clinical conditions or even
life-threatening situations.

Assisted by standard engineering tools for signal process-
ing, the fundamental characteristics of sound waveforms can
be extracted, classified, and employed to detect specific ad-
ventitious sound patterns and analyze their pathological im-
plications. These findings have led to many publications on
computer-aided detection of asthma, fibrotic and obstructive
lung diseases, asbestosis, and heart failure. Several research
groups have investigated potential computer-assisted sound
analysis and classifications, etc., see [13], [14], [15] and
references therein.

To advance the frontier in this technology to real
operating-room applications, it is necessary to develop
individualized pattern recognition techniques. It is well
understood in the pulmonary medicine that there are no
universal sound patterns or parameter thresholds that indi-
cate a disease or medical condition. Individualized pattern
recognition that combines information from sounds and
other measurements must be established that is capable of
capturing pattern shifting in each patient. Along this direc-
tion, this team has constructed a system for continuous lung-
sound monitoring. The system contains a multiple-sensor
array consisting of several lung sound sensors on ausculta-
tion sites such as tracheal and bronchial, and one or more
noise reference sensors. The signals from these sensors are
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fed into an analog/digital data acquisition module from
the National Instruments, Inc. After signal conditioning,
scaling, and synchronization, the lung-sound signals and
noise references are inputted to a signal processing module
for noise cancellation, pattern recognition, and diagnosis.

In this paper, we introduce a new methodology of lung
sound pattern recognition. The method starts with a set
of characterizing variables that can be extracted from lung
sound waveforms. Changes in these variables will provide
information on lung sound pattern variations. The goals of
lung-sound pattern recognition and diagnosis include: (1) to
dynamically capture changes in these key parameters; and
(2) to relate these changes to potential causes. This paper
will concentrate on a development of pattern recognition
methods. The key properties of pattern recognition accuracy,
confidence levels, noise impact, noise reduction will be
analyzed.

II. ESSENTIAL CHARACTERIZING VARIABLES OF LUNG

SOUNDS

There have been many targeted studies of lung sound
analysis in relation to specific diseases. The goal of this
paper is to develop a general methodology that will facilitate
sound pattern analysis. The main features derived in this
paper can be specialized to different diagnosis requirements.

A. Typical Lung Sound Waveforms

Fig. 1 is a typical respiratory sound. For signal pro-
cessing, a ventilation or breathing cycle is divided into
three stages: Inhale (Ti), exhale (Te), and transitional pause
(T − Ti − Te). They are identified by ventilator variables
or by smoothed breathing wave profiles. For diagnosis,
the inhale and exhale waveforms contain rich information.
This information is usually perceived by an experienced
physician to detect abnormal sound patterns such as wheeze,
crackles, etc.

To facilitate computerized sound analysis, it is necessary
to identify certain variables that are relevant to medi-
cal diagnosis. These will include both time-domain and
frequency-domain characteristics. For frequency domain
analysis, a stochastic process needs to be stationary. While
the overall breathing sounds are not stationary processes,
signals that are confined in each stage are approximately sta-
tionary. Mathematically, if one extracts all inhale segments
of a breathing sound and concatenate them into a single
waveform, then this waveform is approximately stationary.
We shall denote such signal segments as y i for inhale
sounds, ye for exhale sounds, and yp for pausing sounds.
For a stationary process, one can perform frequency-domain
analysis. As shown in the bottom plot of Fig. 1.
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Fig. 1. Main Lung Sound Characteristics

B. Characterizing Variables

To understand what variables might be useful to capture
pattern changes in lung sounds, we tested some typical
normal and abnormal lung sound waveforms and their
frequency spectra during inhale and exhale. For example,
the wheeze can be clearly characterized by a substantial nar-
rowing of spectrum, shifting of center frequency (towards
low pitch in this example), and power imbalance between
inspiration and expiration.

This understanding leads to the following variables to
represent essential sound characteristics: Ti (inhale length),
Si (inhale strength: RMS values), Te (exhale length), Se

(exhale strength: RMS values), T (breath cycle length),
FCe (exhale center frequency), Pe (exhale total power),
PSe (exhale 90% frequency bandwidth, i.e., frequency band
that contains 90% of total power, around FCe); and similar
inhale parameters FCi, Pi, PSi.

It follows that we can define an inhale vector
vi = [Ti, Si, FCi, Pi, PSi] and exhale vector ve =
[Te, Se, FCe, Pe, PSe], or an overall vector v = [v i, ve].
Although the above variables are identified as representing
key characteristics of lung sounds, the following theoretical
development is generic and applicable if other variables are
used in vi, ve, v.

III. BASIC APPROACHES FOR SOUND PATTERNS

The main issue for sound pattern classification is to dy-
namically capture the changes of the above key parameters.
To detect sound pattern shifting (say, deviation from normal
ventilated lung sounds towards wheezing), we treat these
calculated parameters, over each breath cycle, as sequences
of random variables.

Sound pattern changes have significant implication in
their causes. Although from different motivations and back-
ground, this diagnosis problem is related to fault detection
problems, see, e.g., [4], [10], [5], [22]. A medical cause
carries certain distinctive features that are typically used by
physicians to diagnose medical conditions. For example, a
bronchial intubation is typically indicated by a combination
of diminished sound from one lung, increased sound from
another.

Diagnosis can be developed based on the following ideas
of detection algorithms, that quantify the “degree of chance”
of one specific cause. First, characteristic features of a
medical cause are translated to a region in the parameter
space, which will be called a diagnostic region. Sound
patterns will form a sampled value v of observations. The
distance between the sampled value and a given diagnostic
region Ω (defined by a cause C) provides a measure of
chance that the cause C may have occurred. The critical
task here is to evaluate this chance rigorously and compute
it efficiently.

By virtue of asymptotic normality, we can regard vk

as a sequence of normally distributed random variables.
For concreteness, we shall use the following scenario as
a typical case for derivations. There are two diagnosis sets,
Ω1 (normal breath) and Ω2 (wheezing) with Ω1 ∩ Ω2 = ∅.
In what follows, we present a confidence-region method for
pattern classification. The motivation comes from the work
of [25], [23], which is inspired by [1]. For simplicity, we
shall assume that vk is normally distributed. The justifica-
tion of it stems from a viewpoint of asymptotic normality.
Assume that vk has a distribution N(µ1, S1) if it is under
normal breath and N(µ2, S2) if is a wheezing. Our task
is to find a procedure to detect if a measured sequence is
normal or wheezing.

A. Confidence Region Approach

For an r-dimensional normal vector X ∼ N(µ, S), we
can construct an ellipsoidal confidence region as follows.
Let

U = (X − µ)′S−1(X − µ).

Then, Ellip = {U ; U ≤ c} is an ellipsoidal confidence
region for µ with specified confidence level α so that

P (U ∈ Ellip) = 1 − α.

With Vol denoting the volume of Ellip. The following
formula was derived in [2]

Vol =
π

r
2 c

r
2 |S| 12

Γ( r
2 + 1)

,

where Γ(·) is the gamma function, and |S| denotes the
determinant of S.

If X is only asymptotically normal, then the ideas in [26]
can be used to construct confidence regions. The volume
of the ellipsoid enables us to construct the confidence
region and is analytically useful. For the sound analysis we
consider, computationally it appears to be much easier to
use confidence rectangles, a natural extension to confidence
intervals; see [27].

Suppose that vk has a normal distribution under normal
breath. Since the jth component of vk also follows a normal
distribution, vk ∼ (µ1

j , σ
2
j,1) with σ2

j,1 = e′jS
1ej , if cαj,1 is

the 100(1− αj,1

2 )th percentile of a standard normal random
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variable, then

P
(∣∣∣

√
k(vk,j − µ1

j)
σj,1

∣∣∣ ≤ cαj,1

)
= 1 − αj,1.

A 100(1 − αj,1

2 )% confidence interval for µ1
j is given by

Ij
k = (vk,j − cαj,1σj,1, vk,j + cαj,1σj,1).

Consider the n-dimensional rectangle

Ik = {µ1; µ1
j ∈ Ik,j , j ≤ n}

with Ij
k given above. Then the well-known Bonferroni’s

inequality yields that

P (µ1 ∈ Ik) ≥ 1 −
n∑

i=1

P (µ1
i �∈ Ii

k).

The procedure outlined above can also be used for construc-
tion of confidence rectangles for µ2.

B. Classification via Optimization

The method developed in this section is inspired by [25],
[23]. Consider a sample of sound observation from patients
having 2 possible (normal and wheezing) patterns. We wish
to design a decision rule so as to classify an observed
sample. With two patterns in the system, there are two types
of errors. That is, an observation actually from Ω1 being
classified as from Ω2 or vice versa. To design a decision
rule, we use the probabilities of these errors weighted by
the ‘undesirability’ of them. Then our detection procedure
is to minimize the above expected cost.

Let fi(v) be the probability density of vk having pattern
i. If the region Ωi is classified as from fi by using a decision
u, the probability of correct classification of an observation
coming from Ω1 is

P (1|1, u) =
∫

Ω1

f1(v)dv,

and the probability of misclassification of an observation in
fact coming from Ω1 as from Ω2 is

P (2|1, u) =
∫

Ω2

f1(v)dv.

Denote the cost of the misclassification by C(2|1). Then
the cost associated with the above misclassification is

L(1, u) = C(2|1)P (2|1, u).

Assuming the probabilities of the occurrence of Ω2 are
known a priori as q1 and q2, respectively, the expected cost
of misclassification of an observation that belongs to Ω1 as
from Ω2 is

L1(1, u) = q1C(2|1)P (2|1, u),

and the total expected loss from costs of misclassification
is

LT (u) = q1C(2|1)P (2|1, u) + q2C(1|2)P (1|2, u).

We aim to design a decision rule to minimize of the
expected cost LT (u) from misclassification.

With known qi and fi(v), a decision rule can be devised.
Observe that

q1C(2|1)
∫

Ω2

f1(v)dv + q2C(1|2)
∫

Ω1

f2(v)dv

=
∫

Ω2

[
q1C(2|1)f1(v) − q2C(1|2)f2(v)

]
dv

+q2C(1|2)
∫

Ω1

f2(v)dv.

The second term on the last line is a given number, and
q1C(2|1) and q2C(1|2) are nonnegative constants. Thus the
first term is minimized if Ω2 includes those points of v that
make the integrand negative and excludes those v that make
the integrand positive. Since Ω1 is the complement of Ω2,
the regions of classification should be chosen according to

Ω1 :
f1(v)
f2(v)

≥ C(1|2)q2

C(2|1)q1

Ω2 :
f1(v)
f2(v)

<
C(1|2)q2

C(2|1)q1
.

If the first inequality holds, we conclude that it is in Ω1.
Otherwise, we infer that it is in Ω2.

Note that the above discussion is free of specific distri-
bution. When the random sequence is normally distributed,
we obtain a nicer result. In this case

fi(v) =
1

(2π)n/2|S|n/2
exp

[
− 1

2
(v − µi)′S−1(v − µi)

]
.

The ratio of densities of the two normal densities is

f1(v)

f2(v)
= exp{−1

2
[(v−µ1)

′S−1(v−µ1)−(v−µ2)′S−1(v−µ2)]}.

Denoting

K̃ =
C(1|2)q2

C(2|1)q1
,

then classification rule is

−1
2

[
(v−µ1)′S−1(v−µ1)−(v−µ2)′S−1(v−µ2)

]
≥ ln K̃,

or equivalently

v′S−1(µ1 − µ2) − 1
2
(µ1 + µ2)′S−1(µ1 − µ2) ≥ ln K̃.

IV. APPLICATIONS TO LUNG SOUND PATTERN

ANALYSIS: ASTHMA DETECTION

This section presents some illustrated examples that
demonstrate the utility of the method introduced in this
paper. To provide flexibility in evaluating our method,
extensive simulation has been performed.
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A. Basic Sound Patterns

To evaluate the approaches described in the previous
section, patient data were collected. The data were collected
through a sophisticated Human Patient Simulator (HPS),
manufactured by METI, Inc. Three electronic stethoscopes
are used simultaneously to measure lung sounds and refer-
ence noise. Noises are generated by conversations, music,
and instrumentation. Noise levels are controlled by music
volumes and conversation loudness. To further evaluate
noise impact, a variety of noises with different characteris-
tics (such as waveforms, frequency centers, and bandwidths)
are added to measured signals before signal processing.
These noises are either collected from operating rooms or
generated by computer.

We shall start with basic sound patterns. Under relatively
quiet conditions (limited conversation and music turned
off), breath sounds are collected under the following four
scenarios: (1) A 20-year old healthy soldier with good
body weight; (2) A 20-year old soldier with pre-existing
asthma; (3) A 40-year old obese truck driver who is a
smoker but has no pre-existing respiratory disease; (4) A
40-year old obese truck driver who is a smoker and has
pre-existing asthma. Breath sounds are recorded and then
we extract its parameters for each cycle: inhale length,
inhale RMS, exhale length, exhale RMS, frequency center,
frequency bandwidth, etc. An initial observation from the
sound waveforms and spectra reveal that wheeze is reflected
in the time-domain by a shortened inhale length and power
(RMS times length), and in the frequency-domain by a
shifted center and narrowed frequency spread. Fig. 2 shows
these parameter data points.

It is noted from the data points that a difference between
the patterns of normal and wheeze sounds exists. We
performed basic statistical analysis by calculating the means
(µ) and standard deviations (σ) of the data points. The
rectangles in Fig. 2 shows 2σ confidence rectangles for the
normal breath and wheeze. These regions will be used as
the baseline regions for pattern recognition.

B. Noise Impact on Sound Characteristics

The system includes several noise sources with different
characterizations. There are two types of noises that influ-
ence sound pattern recognitions.

1) Inherent Noises: These include a diversified noise
sourses that affect lung sounds. Noise sources pass
through several different transmission channels to
influence the lung-sound sensor and reference sensor.
The structure and parameter values of these channels
are not known to the identification algorithms. Since
the noise reference sensor is placed in vicinity to the
lung sensor, sound coupling may occur during data
acquisition. These noises may have bias, resulting in
drifts in parameter mean values.

2) Sensor Noise: These noises do not affect actual lung
sounds. They are random noises from sensor measure-
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Fig. 2. 2 σ Confidence Regions for Pattern Recognition

ments. They are usually zero mean, and often gaussian
distributed.

We shall start with an illustration of noise impact on lung
sound patterns. Fig. 3 illustrates data points under low noise,
moderate noise and high noise levels. Under a low noise
level, data points are clustered for both normal breath and
wheeze, indicating a potential in achieving a high level of
confidence in distinguishing wheeze from normal patterns.
When noise levels increase, parameter patterns become
intervened, leading to a more difficult pattern recognition
problem.

A more quantitative analysis on parameter vector distri-
butions is shown in Fig. 4. It is noted that when noise level
increases sound patterns have larger deviations and have
a pattern shifting as well. As discussed before, inherent
noises result in pattern shifting which cannot be eliminated
by stochastic averaging. Reduction of impact from inherent
noises must be done by noise cancellation techniques, which
will be discussed later. On the other hand, increased sensor
noises result in larger deviations. Averaging can be used
when the size of data samples becomes larger.

Fig. 5 presents the results of a simple sequential algo-
rithm of stochastic averaging. The algorithm computes the
average values of the available parameter data points. The
algorithm is recursified to reduce computational burden. It
can be seen that although stochastic averaging is effective
in reducing the impact of zero-mean noises, pattern shift-
ing due to inherent noises cannot be effectively reduced.
Consequently, sound patterns move away from the baseline
diagnostic regions, represented by the rectangles in the
plots.

C. Noise Reduction by Time-Shared Adaptive Noise Can-
cellation

To reduce the impact of inherent noises on accuracy of
sound pattern recognition, we apply the method of time-
shared adaptive noise cancellation introduced in [19], [28].

Location proximity between the lung and reference sen-
sors allows us to represent noises from many sources
approximately by a lumped noise near the reference sensor,
such as d in Fig. 6.
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Fig. 4. Histograms of Sample Points of Sound Parameters

If we view the measurement y2 from the reference sensor
as a virtual noise source, we basically replace distributed
noise sources d (which are impossible to describe accurately
and separately) in a lumped noise source y2, as shown in
Fig. 7. The problem of noise cancellation is now reduced
to identification of the virtual noise channel G (in terms of
the system in Fig. 6, G is the inverse of C3 followed by
C2). Indeed, if we can estimate the noise channel G, then
the noise-free lung sound y can be approximately extracted
as

ŷ = y1 − Ĝy2

During the time from the end of exhale and the beginning
of inhale, there is a pause interval in which lung sounds are
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very small. In other words, in that interval the lung sound,
denoted by y, is nearly zero. While the overall breathing
sounds are not stationary processes, signals that are confined
in each stage are approximately stationary. It is shown in
[28] that to reduce estimation errors on channel dynamics,
it is highly desirable to reduce correlations between lung
sound and noise. It is observed that due to diminishing lung
sounds during the pause interval, the correlation between
the sound, denoted by yp, and noise in the pause interval
is much smaller than that for inhale and exhale processes,
leading to our time-shared adaptive noise cancellation algo-
rithm.

The measured lung sound y1 during the pause stage is
essentially the output of the noise channel in that interval.
As a result, we can use input/output pair (y2 and y1)
to identify G in this interval. This will not require any
assumption on independence of y and y2. This idea leads
to the following lung sound/noise separation algorithms.

• Initial Channel Identification:
During a pause stage, the measured y2 (virtual input)
and y1 (output) are used to identify the noise chan-
nel G(θ), using a recursive algorithm. The estimated
model will be denoted by G(θ̂0).

• Step 1: Inhale and Exhale Stages
At the k-th breathing cycle (k = 0, 1, 2, . . .), during the
Ti (inhale) and Te (exhale) stages, the estimated noise
channel model G(θ̂k) is used to extract the original
lung sound via y = y1 − G(θ̂k)y2.

• Step 2: Transitional Pause Stage
During the pause stage of the k-th breathing cycle,
the estimated noise channel model is updated by using
the new data from measured y2 (virtual input) and y1

(output). The channel model G( θ̂k) is used as the initial
condition and the model is updated by a recursive
algorithm (the RLS estimation in this paper), leading
to an updated model G(θ̂k+1).

• Recursive Steps:
In the (k+1)-th breathing cycle, go to Step 1 with the
newly updated channel model G( θ̂k+1). These steps
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are then repeated from cycle to cycle.
This cycle-to-cycle recursion will be computationally

very efficient since models are updated by using only new
measurements and no past data need to be remembered.
Also, by gradually discarding old data via, say, exponential
discarding data windows, one can in fact track time-varying
channel characteristics, that can be used in continuous
monitoring and diagnosis of breath sounds.

We identify the noise-transmission channels with the
time-shared identification method. We use a 30-th order
moving average regression model structure to identify the
channel. While the lung sound is significantly corrupted by
the noise, its envelope profile still retains an indication of
its inhale, exhale, and pause stages. This profile information
is used to divide each breathing cycle into the phases for
identification or noise cancellation. During the identification
phase (pause stage), a recursive least-squares identification
algorithm is used to update the parameters in the regres-
sion model. During the noise-cancellation phase (inhale or
exhale stages), the estimated regression model is used to
derive noise estimates, which are then subtracted from the
signal measured by the lung sensor. The process is then
repeated in the next breathing cycle. We now show the
effectiveness of noise cancellation on sound patterns. Due
to reduction by the above noise cancellation techniques, the
level of inherent noises is greatly reduced. Combined with
stochastic averaging, sound patterns are more coherent for
diagnosis. This is illustrated in Fig. 8.

V. CONCLUDING REMARKS

Sound pattern recognition in respiratory medicine can be
viewed as a stochastic decision process in which parameter
sequences that characterize sound features are to be ana-
lyzed for medical diagnosis. This paper introduces a method
that combines noise cancellation and stochastic pattern
recognition to enhance accuracy of diagnosis. Wheeze is
used as an example to illustrate the utility of this method.
Applications of this method to detect other respiratory
diseases require further detailed analysis that incorporate
medical knowledge into this process. This direction is
currently under investigation.
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