
Abstract—This paper establishes a framework for formal 
comparisons of several leading optimization algorithms, 
establishing guidance to practitioners for when to use or not use 
a particular method. The focus in this paper is four general 
algorithm forms: random search, simultaneous perturbation 
stochastic approximation, simulated annealing, and evolution 
strategies. We summarize the available theoretical results on 
rates of convergence for the four algorithm forms and then use 
the theoretical results to draw some preliminary conclusions on 
the relative efficiency. Our aim is to contribute towards sorting 
out some of the competing claims of efficiency and to suggest a 
structure for comparison that is more general and transferable 
than the usual problem-specific numerical studies.1

Keywords—Stochastic optimization; randomized algorithms; 
rate of convergence; random search; simultaneous 
perturbation stochastic approximation (SPSA); simulated 
annealing; evolutionary computation. 

I. INTRODUCTION 

any powerful optimization algorithms with 
embedded randomness have been developed. The 

population-based methods of evolutionary computation, for 
example, are one class among many of the available 
stochastic optimization algorithms. A user facing a 
challenging optimization problem for which a stochastic 
optimization method is appropriate meets the daunting task 
of determining which algorithm is appropriate for a given 
problem. This choice is made more difficult by some 
dubious claims that have been made about some popular 
algorithms. An inappropriate approach may lead to a large 
waste of resources, both from the view of wasted efforts in 
implementation and from the view of the resulting 
suboptimal solution to the optimization problem of interest.  

Hence, there is a need for objective analysis of the 
relative merits and shortcomings of leading approaches to 
stochastic optimization. This need has certainly been 
_____________________
This work was partially supported by the JHU/APL IRAD Program 
and U.S. Navy contract N00024-03-D-6606.

recognized by others, as illustrated, for example, in recent 
conferences on evolutionary computation, where numerous 
sessions are devoted to comparing algorithms. 
Nevertheless, virtually all comparisons have been numerical 
tests on specific problems. For example, a large fraction of 
the Schwefel (1995) book is devoted to numerical 
comparisons. Although sometimes enlightening, such 
comparisons are severely limited in the general insight they 
provide. Some comparisons for noisy evaluations of a 
simple spherical loss function are given in Arnold (2002, 
Chap. 6); however, some of the competitors were 
implemented in nonstandard forms, making the results 
difficult to interpret for an analyst using a more 
conventional implementation. Spall (2003) also has a 
number of comparisons (theoretical and numerical) for the 
cases of noise-free and noisy loss evaluations. On the other 
end of the spectrum are the “no free lunch (NFL)” theorems 
(Wolpert and Macready, 1997), which simultaneously 
consider all possible loss functions and thereby draw 
conclusions that have limited practical utility since one 
always has at least some knowledge of the nature of the loss 
function being minimized.  

Our aim in this paper is to lay a framework for a theoretical
comparison of efficiency applicable to a broad class of practical 
problems where some (incomplete) knowledge is available 
about the nature of the loss function. We will consider four 
basic algorithm forms—random search, simultaneous 
perturbation stochastic approximation (SPSA), simulated 
annealing (SAN), and the evolution strategy form of 
evolutionary computation (EC). The basic optimization 
problem corresponds to finding an optimal point θ*:

θ* = arg min ( )L
θ∈Θ

θ ,

where L(θ) is the loss function to be minimized, Θ is the 
domain over which the search will occur, and θ is a p-
dimensional vector of parameters. We are mainly interested 
in the case where θ* is a unique global minimum. 
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Although many stochastic optimization approaches other 
than the four above exist, we are restricting ourselves to the 
four general forms in order to be able to make tangible 
progress (note that there are various specific 
implementations of each of these general algorithm forms). 
These four algorithms are general-purpose optimizers with 
powerful capabilities for serious multivariate optimization 
problems.  

Central to the approach of this paper will be the known 
theoretical analysis on the rate of convergence of each of 
the candidate algorithms. Our approach will be built as 
much as possible on existing theory characterizing the rates 
of convergence for the algorithms to perform the 
comparative analysis. There appears to be no previous 
analysis putting the theoretical results on a common basis 
for performing an objective comparison.  

In Sections 2 through 5, we discuss the known 
convergence rate results on the four algorithm forms under 
consideration. Section 6 then uses these results to provide a 
theoretical framework for comparison. We demonstrate 
these results in analyzing the relative efficiency as the 
problem dimension increases. 

II. SIMPLE GLOBAL RANDOM SEARCH

We first establish a rate of convergence result for the 
simplest (“blind”) random search method where we 
repeatedly sample over the domain of interest, Θ ⊆ p. This 

can be done in recursive form or in “batch” (nonrecursive) 
form by simply laying down a number of points in Θ and 
taking as our estimate of θ* that value of θ yielding the 
lowest L value.  

Our primary interest is the rate of convergence. The rate 
is intended to tell the analyst how close ˆ

kθ  is likely to be to 
θ* for a given cost of search. The cost of search here will be 
expressed in terms of number of loss function evaluations. 
Knowledge of the rate is critical in practical applications as 
simply knowing that an algorithm will eventually converge 
begs the question of whether the algorithm will yield a 
practically acceptable solution in any reasonable period. To 
evaluate the rate, let us specify a “satisfactory region” S(θ*)
representing some neighborhood of θ* providing acceptable 
accuracy in our solution (e.g., S(θ*) might represent a 
hypercube about θ* with the length of each side 
representing a tolerable error in each coordinate of θ). An 
expression related to the rate of convergence of the above 
simple random search algorithm is then given by  

 P( ˆ
kθ ∈ S(θ*)) = 1 − [1 − P(θnew(k) ∈ S(θ*)]k (2.1) 

We will use this expression in Section 6 to derive a 
convenient formula for comparison of efficiency with other 
algorithms.  

III. SIMULTANEOUS PERTURBATION STOCHASTIC 
APPROXIMATION

The next algorithm we consider is SPSA. This algorithm 
is designed for continuous variable optimization problems. 
Unlike the other algorithms here, SPSA is fundamentally 
oriented to the case of noisy function measurements and 
most of the theory is in that framework. This will make for a 
difficult comparison with the other algorithms, but 
Section 6 will attempt a comparison nonetheless. The SPSA 
algorithm works by iterating from an initial guess of the 
optimal θ, where the iteration process depends on a highly 
efficient “simultaneous perturbation” approximation to the 
gradient g(θ) ≡ ∂L(θ)/∂θ .

Assume that measurements y(θ) of the loss function are 
available at any value of θ:

y(θ) = L(θ) + noise . 
It is assumed that L(θ) is a differentiable function of θ and 
that the minimum point θ* corresponds to a zero point of 
the gradient, i.e.,  

*

*

( )( ) 0.L
g

θ=θ

∂ θθ = =
∂θ

 (3.1) 

In cases where more than one point satisfies (3.1), there 
exists theory that ensures that the algorithm will converge 
to the global minimum (Maryak and Chin, 2001).  

The SPSA procedure has the general recursive stochastic 
approximation (SA) form: 

1
ˆ ˆ ˆˆ ( )k k k k ka g+θ = θ − θ , (3.2) 

where ˆˆ ( )k kg θ  is the simultaneous perturbation estimate of 

the gradient g(θ) at the iterate ˆ
kθ  based on the above-

mentioned measurements of the loss function and ak > 0 is a 
“gain” sequence. The essential basis for efficiency of SPSA 
is that only two measurements of the loss function are 
needed to estimate the p-dimensional gradient vector for 
any p; this contrasts with the standard finite difference 
method of gradient approximation, which requires 2p
measurements. 

Most relevant to the comparative analysis goals of this 
paper is the asymptotic distribution of the iterate. This was 
derived in Spall (1992), with further developments in Chin 
(1997), Spall (2000), and elsewhere. Essentially, it is 
known that under appropriate conditions, 

 kβ/2( ˆ
kθ − θ*) dist⎯⎯⎯→ N(µ, Σ)  as k ∞ ,  (3.3) 

where β > 0 depends on the choice of gain sequences (ak

and ck), µ depends on both the Hessian and the third 
derivatives of L(θ) at θ* (note that in general, µ ≠ 0 in 
contrast to many well-known asymptotic normality results 
in estimation), and Σ depends on the Hessian matrix at θ*
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and the variance of the noise in the loss measurements. 
Given the restrictions on the gain sequences to ensure 
convergence and asymptotic normality, the fastest allowable 
value for the rate of convergence of ˆ

kθ  to θ* is k−1/3. This 

contrasts with the fastest allowable rate of k−1/2 for gradient-
based algorithms such as Robbins-Monro SA.  

Unfortunately, (3.3) is not directly usable in our 
comparative studies here since the other algorithms being 
considered here appear to have formal results for 
convergence rates only for the case of noise-free loss 
measurements. The authors are unaware of any general 
asymptotic distribution result for the noise-free case (note 
that it is not appropriate to simply let the noise level go to 
zero in (3.3) in deriving a result for the noise-free case; it is 
likely that the rate factor β will also change if an asymptotic 
distribution exists). Some partial results, however, are 
available that are related to the rate of convergence. 
Gerencsér and Vágó (2001) established that the noise-free 
SPSA algorithm has a geometric rate of convergence when 
constant gains ak = a are used. In particular, for functions 
having bounded third derivatives, they show for sufficiently 
small a,

k

ˆ
limsup 1 a.s.

k

k

∗

→∞

θ − θ
=

for some 0 < η < 1.   

IV. SIMULATED ANNEALING ALGORITHM 

The SAN method (Metropolis et al., 1953; Kirkpatrick et 
al., 1983) was originally developed for optimization over 
discrete finite sets. The Metropolis SAN method produces a 
sequence that converges in probability to the set of global 
minima of the loss function as Tk, the temperature,
converges to zero at an appropriate rate (Hajek, 1988). 

Gelfand and Mitter (1993) present a SAN method for 
continuous parameter optimization. They obtained discrete-
time recursions (which are similar to a stochastic 
approximation algorithm) for Metropolis-type SAN 
algorithms that, in the limit, optimize continuous parameter 
loss functions. Spall (2003, Sect. 8.6) summarizes this 
connection of SAN to SA in greater detail. Suppose that ˆ

kθ
is such a Metropolis-type SAN sequence for optimizing L.
To define this sequence, let qk(x, • ) be the p-dimensional 
Gaussian density function with mean x and variance 

2 2 ( )k k pb x Iσ , where 2 ( )k xσ   = { }max 1, ka xτ , τ is fixed in 

the range 0 < τ < 1/4, and ak = a/k with a > 0. (Observe that 
{ }2sup ( ), 1k x x Aσ ∈ →  as k → ∞ for any bounded set A.)

Also, let sk(x, y) = [ ]( )exp ( ) ( ) kL y L x T− − , if  L(y) > L(x),

and sk(x, y) = 1 otherwise, where ( )kT x  = 2 2 ( ) (2 )k k kb x aσ .

The function sk(x, y) is the acceptance probability, as in the 
usual Metropolis algorithm. 

Let {Wk} be an independent identically distributed (i.i.d.) 
sequence of p-dimensional standard Gaussian random 
vectors and let the sequence 0 1, ,ξ ξ  be defined by setting 

1
ˆ ˆ ˆ( )( )k k k k k k ka g b W+θ = θ − θ + ξ +   a.s.,  k > 0. (4.1) 

The reason for introducing this form for the recursion is to 
show that ˆ

kθ  converges in probability to the set of global 
minima of L.

Furthermore, like SPSA, SAN has an asymptotic 
normality result (but unlike SPSA, this result applies in the 
noise-free case). In particular, following Yin (1999), assume 
that ak = a/k, bk = (b/(kγ log (k1−γ + B0))1/2, where B0, a, and 
b are positive constants, 0 < γ < 1. Let H( *) denote the Hessian 
of L( ) evaluated at * and let Ip denote the p × p identity 
matrix. Yin (1999) showed that 

[log (k1−γ  + B0) ]1/2( ˆ
kθ − *) N(0, ) in distribution, 

where ΣH + HTΣ + (b/a)I = 0. 

V. EVOLUTIONARY COMPUTATION 
There are some results on rates of convergence for EC 

algorithms, but, unfortunately, many of the results are not 
useful in the practical characterization of the rates. Based on 
results in Rudolph (1994) and elsewhere, Spall (2003, Sect. 
10.5) and Stark and Spall (2003) discuss how it is possible 
to cast the binary bit-based GA in the framework of Markov 
chains. Unfortunately, the dimension of the transition 
matrix grows very rapidly with increases in the number of 
bits in the representation of the chromosomes in the 
algorithms and/or with increases in the number of candidate 
solutions in the population.  

One of the more computationally useful convergence 
rates for EC algorithms applies in a particular class of 
convex loss functions. The following theorem due to 
Rudolph (1997) is an application of a more general result 
by Rappl (1989). The theorem is the starting place for the 
specific convergence rate result that will be used for 
comparison in Section 6. 
Definition 5.1. An algorithm has a geometric rate of 

convergence if and only if E[ *
kL  − L(θ*)] = O(ηk)

where η ∈ (0, 1) defines the convergence rate. 
Theorem 5.1 (Rudolph 1997). Let  kΘ ≡ { 1

ˆ
kθ , 2

ˆ
kθ , …, 

ˆ
kNθ } be the sequence of populations of size N generated by 

some ES at generation k ( ˆ
kiθ  represents the ith estimate for 

θ from the population of N elements). If E[ *
kL − L(θ*)] < ∞

and E[ *
1kL + − L(θ*)| kΘ ] ≤ η[ *

kL  − L(θ*)]  a.s. for all k ≥ 0 
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where *
kL = min{L( 1

ˆ
kθ ), L( 2

ˆ
kθ ), …, L( ˆ

kNθ )}, then the ES  

algorithm converges a.s. geometrically fast to the optimum 
of the objective function. 

The condition E[ *
1kL + − L(θ*)| kΘ ] ≤ η[ *

kL − L(θ*)] implies 
implies that the sequence decreases monotonically on 
average. This condition is needed since in the (1, λ)-ES that 
will be considered below, the loss value of the best parent 
in the current generation may be worse than the loss value 
of the best parent of the previous generation, although on 
average this will not be the case. Rudolph (1997) shows 
that a (1, λ)-ES using selection and mutation only (where 
the mutation probability is selected from a uniformly 
distributed distribution on the unit hyperball), with certain 
classes of loss functions, satisfies the assumptions of the 
theorem. One such class is the (K, q)-strongly convex 
functions:  
Definition 5.2. Let L: Θ → 1. Then L is called (K, q)-

strongly convex on Θ if for all x, y ∈ Θ and for each α ∈ [0, 
1] the inequalities 

2

2

(1 ) ( ) (1 ) ( ) (1 )
2

(1 )
2

( )K
x y L x L y L x y

G
x y

α − α − ≤ α + − α − α + − α

α − α −≤

hold with 0 < K ≤ G ≡ Kq < ∞.
For example, every quadratic function is (K, q)-strongly 

convex if the Hessian matrix is positive definite. In the case 
of twice differentiable functions, fairly simple tests are 
available for verifying that a function is (K, q)-strongly 
convex, from Nemirovsky and Yudin (1983).  

The convergence rate result for a (1, λ)-ES using only 
selection and mutation on a (K, q)-strongly convex loss 
function is geometric with a rate of convergence η = (1 – 

2 2
, )pM qλ , where pMλ, = E[Βλ:λ] > 0 and where Βλ:λ

denotes the maximum of λ i.i.d. Beta random variables. The 
computation of Mλ,p is complicated since it depends on 
both the number of offspring λ and the problem dimension 
p. Asymptotic approximations are available. Assuming p is 
fixed and λ → ∞ then pMλ, ≈  (2 p−1log λ)1/2. To extend 

this convergence rate from a (1, λ)-ES to a (N, λ)-ES, note 
that each of the N parents generate λ/N offspring. Then the 
convergence rate for the (N, λ)-ES where offspring are only 
obtained by mutation is  

η ≤
1

2
2 log( / )1 p N

q

− λ−

for (K, q)-strongly convex functions. 

VI. COMPARATIVE ANALYSIS

A. Problem Statement and Summary of Efficiency 
   Theory for the Four Algorithms  

This section uses the specific algorithm results in 
Sections 2 to 5 above in drawing conclusions on the relative 
performance of the four algorithms. There are obviously 
many ways one can express the rate of convergence, but it is 
expected that, to the extent they are based on the theory 
outlined above, the various ways will lead to broadly 
similar conclusions. We will address the rate of 
convergence by focusing on the question:  

With some high probability 1− ρ (ρ a small number), 
how many L(⋅) function evaluations, say n, are needed to 
achieve a solution lying in some “satisfactory set” S(θ*)
containing θ*?

With the random search algorithm in Section 2, we have a 
closed form solution for use in questions of this sort while 
with the SPSA, SAN, and ES algorithms of Sections 3 
through 5, we must apply the existing asymptotic results, 
assuming that they apply to the finite-sample question 
above. For each of the four algorithms, we will outline 
below an analytical expression useful in addressing the 
question. After we have discussed the analytical 
expressions, we present a comparative analysis in a simple 
problem setting for varying p. To maintain a fair 
comparison, the algorithms here explicitly use only loss 
evaluations, no direct gradient information. 

Random Search. We can use (2.2) to answer the question 
above. Setting the left-hand side of (2.2) to 1 − ρ and 
supposing that there is a constant sampling probability P* = 
P(θnew(k) ∈ S(θ*)) for all k, we have 

log
log 1( )

n
P∗

ρ=
−

. (6.1) 

Although (6.1) may appear benign at first glance, this 
expression grows rapidly as p gets large due to P*

approaching 0. (A numerically stable approximation that is 
useful with small P* is given in Spall, 2003, p. 62.)  Hence, 
(6.1) shows the extreme inefficiency of simple random 
search in higher-dimensional problems as illustrated in the 
study below.  

Simultaneous Perturbation Stochastic Approximation.
As mentioned in Section 3, there is no known asymptotic 
normality result in the case of noise-free measurements of 
L(θ). Nonetheless, a conservative representation of the rate 
of convergence is available by assuming a noisy case with 
small levels of noise. Then we know from (3.4) that the 
approximate distribution of ˆ

kθ  with optimal decay rates for 

the gains ak and ck is N(θ* + µ/k1/3, Σ/k2/3). In principle, 
then, one can use this distribution to compute the 
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probabilities associated with arbitrary sets S(θ*), and these 
probabilities will be directly a function of k. In practice, due 
to the correlation in Σ, this may not be easy and so 
inequalities such as in Tong (1980, Chap. 2) can be used to 
provide bounds on P( ˆ

kθ ∈ S(θ*)) in terms of the marginal 

probabilities of the ˆ
kθ  elements.  

For purposes of insight, consider a case where the 
covariance matrix Σ is diagonal. If S(θ*) is a hypercube of 
the form 1 1 2 2[ , ] [ , ] ... [ , ]− + − + − +× × × p ps s s s s s , then P( ˆ

kθ ∈ S(θ*))

is a product of the marginal normal probabilities associated 
with each element of ˆ

kθ  lying in its respective interval 

[ , ]i is s− + , i = 1, 2, …, p. Such diagonal covariance matrices 
arise when the loss function is separable in each of the 
components of θ. Then we can find the k such that the 
product of probabilities equals 1 − ρ. To illustrate more 
specifically, suppose further that Σ = σ2I, the µ/k1/3 term in 
the mean is negligible, that S(θ*) is centered around θ*, and 
that δs ≡ i is s+ −− for all i (i.e., i is s+ −−  does not depend on 
i). Then for a specified ρ, we seek the n such that 
P( ˆ

kθ ∈ S(θ*)) = P( ˆ
kiθ ∈[ , ]− +

i is s ) 

p = 1 − ρ. From standard 
N(0, 1) distribution tables, there exists a displacement 
factor, say d(p), such that the probability contained within ±
d(p) units contains probability amount (1 − ρ)1/p; we are 
interested in the k such that 2d(p)σ/k1/3 = δs. From the fact 
that SPSA uses two L(θ*) evaluations per iteration, the 
value n to achieve the desired probability for ˆ

kθ ∈ S(θ*) is 
then

32 ( )2 d p
n

s
σ=

δ
.

Simulated Annealing. Because SAN, like SPSA, has an 
asymptotic normality result, the method above for 
characterizing the rate of convergence for SPSA may also 
be used here. Again, we shall consider the case where the 
covariance matrix is diagonal (Σ = σ2I). Assume also that 
S( *) is a hypercube of the form 

1 1 2 2[ , ] [ , ] ... [ , ]− + − + − +× × × p ps s s s s s  centered around *, and that 

δs ≡ i is s+ −− , for all i. The (positive) constant B0 is assumed 
small enough that it can be ignored. At each iteration after 
the first, SAN must evaluate L( *) only once per iteration. 
So the value n to achieve the desired probability for ˆ

kθ ∈
S( *) is 

2
1 2 ( )log d p

n
s

−γ σ=
δ

.

Evolution Strategy. As discussed in Section 5, the rate-of-

convergence results for algorithms of the evolutionary 
computation type are not as well developed as for the other 
three algorithms of this paper. Theorem 5.1 gives a general 
bound on E[L( ˆ

kθ ) − L(θ*)] for application of a (N, λ)-ES 

form of EC algorithm to (K, q)-strongly convex functions. A 
more explicit form of the bound is available for the (1, λ)-
ES. Unfortunately, even in the optimistic case of an explicit 
numerical bound on E[L( ˆ

kθ ) − L(θ*)], we cannot readily 

translate the bound into a probability calculation for ˆ
kθ ∈

S(θ*), as used above. So, in order to make some reasonable 
comparison, let us suppose that we can associate a set S(θ*)
with a given deviation from L(θ*), i.e., S(θ*) = {θ: L( ˆ

kθ ) −
L(θ*) ≤ ε} for some prespecified tolerance ε > 0 (note that 
S(θ*) is a function of ε). As presented in Rudolph (1997), 
E[L( ˆ

kθ ) − L(θ)] ≤ ηk for sufficiently large k, where η is the 
convergence rate in Section 5. Then by Markov’s 
inequality, 

 1 − P( ˆ
kθ ∈ S(θ*)) ≤

ˆ[ ( ) ( )]kE L L ∗θ − θ
ε

≤
kη

ε
, (6.2) 

indicating that P( ˆ
kθ ∈ S(θ*)) is bounded below by the ES 

bounds mentioned in Section 5. For EC algorithms in 
general (and ES in particular), there are λ evaluations of the 
loss function for each generation k so that n = λk, where 

 k = log log(1/ )
2log 1 log( / )2 N

pq

ρ − ε

− λ
. (6.3) 

B. Application of Convergence Rate Expressions for 
   Varying p 

We now apply the results above to demonstrate relative 
efficiency for varying p for random search, SPSA, SAN and 
ES. Let Θ = [0, 1]p (the p-dimensional hypercube with 
minimum and maximum θ values of 0 and 1 for each 
component). We want to guarantee with probability 0.90 
that each element of θ is within 0.04 units of the optimal. 
Let the (unknown) optimal θ, θ*, lie in (0.04, 0.96)p. The 
individual components of θ* are *

iθ . Hence,  

* * *
1 1

* *
2 2

* *

( ) [ 0.04, 0.04]

[ 0.04, 0.04]

... [ 0.04, 0.04]

θ θ − θ +

× θ − θ +

× × θ − θ + ⊂ Θp p

S =  

Table I is a summary of relative efficiency for the setting 
above for p = 2, 5, and 10; the efficiency is normalized so 
that all algorithms perform equally at p = 1, as described 
below. The numbers in Table I are the ratios of the number 
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of loss measurements for the given algorithm over the 
number for the best algorithm at the specified p; the 
highlighted values 1.0 indicate the best algorithm for each 
of the values of p. To establish a fair basis for comparison, 
we fixed the various parameters in the expressions above 
(e.g., σ in SPSA and SAN, λ for the ES, etc.) so that the 
algorithms produced identical efficiency results for p = 1 
(requiring n = 28 measurements to achieve the objective 
outlined above). We then use these parameter settings as p
increases. Of course, in practice, algorithm parameters are 
typically tuned for each new problem, including changes in 
p. Rather, they point towards general efficiency trends as a 
function of problem dimension in the absence of problem-
specific tuning. 

For the random sampling algorithm, suppose uniform 
sampling on Θ is used to generate θnew(k)  for all k. Then, 
P* = 0.08p . For SPSA, we fix σ such that the same number 
of function measurements in the p = 1 case (n = 28) is used 
for both random search and SPSA (so δs = 0.08 and σ = 
0.0586). Likewise, for SAN, we fix σ to achieve the same 
objective (so δs = 0.08 and σ = 0.031390). Also, for 
convenience, take γ = 1/2. To compare the (N, λ)-ES 
algorithm with the random search, SPSA, and SAN 
algorithms, it is assumed that the loss function is restricted 
to the (K, q)-strongly convex functions discussed in Section 
5. Also let λ = 14, N = 7, ε = 8.3, q = 4, and ρ = 0.1. The 
variables were constrained here so that for p = 1, we have 
the same n (= 28) as realized for the other algorithms. 
Table I summarizes the performance comparison results.

Table I illustrates the explosive growth in the relative 
(and absolute) number of loss evaluations needed as p
increases for the random search algorithm. The other 
algorithms perform more comparably, but there are still 
some non-negligible differences. For example, at p = 5, 
SAN will take 2.2 times more loss measurements than 
SPSA to achieve the objective of having ˆ

kθ  inside S(θ*)
with probability 0.90. Of course, as p increases, all 
algorithms take more measurements; the table only shows 
relative numbers of function evaluations (considered more 
reliable than absolute numbers).  

The performance for ES is quite good. The restriction to 
strongly convex loss functions (from (6.2) and (6.3)), 

however, gives the ES in this setting a strong structure not 
available to the other algorithms. It remains unclear what 
practical theoretical conclusions can be drawn on a broader 
class of problems.  
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TABLE I
RATIOS OF LOSS MEASUREMENTS NEEDED RELATIVE TO 

BEST ALGORITHM AT EACH p FOR 1 ≤ p ≤ 10
 p = 1 p = 2 p = 5 p = 10 

Random Search 1.0 11.6 8970 2.0×109

SPSA 1.0 1.5 1.0 1.0 
SAN 1.0 1.0 2.2 4.1 
ES (from (6.2) and (6.3)) 1.0 1.9 1.9 2.8 
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