
Abstract—This paper establishes a framework for formal
comparisons of several leading optimization algorithms,
establishing guidance to practitioners for when to use or not use
a particular method. The focus in this paper is four general
algorithm forms: random search, simultaneous perturbation
stochastic approximation, simulated annealing, and evolution
strategies. We summarize the available theoretical results on
rates of convergence for the four algorithm forms and then use
the theoretical results to draw some preliminary conclusions on
the relative efficiency. Our aim is to contribute towards sorting
out some of the competing claims of efficiency and to suggest a
structure for comparison that is more general and transferable
than the usual problem-specific numerical studies.1

Keywords—Stochastic optimization; randomized algorithms;
rate of convergence; random search; simultaneous
perturbation stochastic approximation (SPSA); simulated
annealing; evolutionary computation.

I. INTRODUCTION

any powerful optimization algorithms with
embedded randomness have been developed. The

population-based methods of evolutionary computation, for
example, are one class among many of the available
stochastic optimization algorithms. A user facing a
challenging optimization problem for which a stochastic
optimization method is appropriate meets the daunting task
of determining which algorithm is appropriate for a given
problem. This choice is made more difficult by some
dubious claims that have been made about some popular
algorithms. An inappropriate approach may lead to a large
waste of resources, both from the view of wasted efforts in
implementation and from the view of the resulting
suboptimal solution to the optimization problem of interest.

Hence, there is a need for objective analysis of the
relative merits and shortcomings of leading approaches to
stochastic optimization. This need has certainly been

This work was partially supported by the JHU/APL IRAD Program
and U.S. Navy contract N00024-03-D-6606.

recognized by others, as illustrated, for example, in recent
conferences on evolutionary computation, where numerous
sessions are devoted to comparing algorithms.
Nevertheless, virtually all comparisons have been numerical
tests on specific problems. For example, a large fraction of
the Schwefel (1995) book is devoted to numerical
comparisons. Although sometimes enlightening, such
comparisons are severely limited in the general insight they
provide. Some comparisons for noisy evaluations of a
simple spherical loss function are given in Arnold (2002,
Chap. 6); however, some of the competitors were
implemented in nonstandard forms, making the results
difficult to interpret for an analyst using a more
conventional implementation. Spall (2003) also has a
number of comparisons (theoretical and numerical) for the
cases of noise-free and noisy loss evaluations. On the other
end of the spectrum are the “no free lunch (NFL)” theorems
(Wolpert and Macready, 1997), which simultaneously
consider all possible loss functions and thereby draw
conclusions that have limited practical utility since one
always has at least some knowledge of the nature of the loss
function being minimized.

Our aim in this paper is to lay a framework for a theoretical
comparison of efficiency applicable to a broad class of practical
problems where some (incomplete) knowledge is available
about the nature of the loss function. We will consider four
basic algorithm forms—random search, simultaneous
perturbation stochastic approximation (SPSA), simulated
annealing (SAN), and the evolution strategy form of
evolutionary computation (EC). The basic optimization
problem corresponds to finding an optimal point θ*:

θ* = arg min ()L
θ∈Θ

θ ,

where L(θ) is the loss function to be minimized, Θ is the
domain over which the search will occur, and θ is a p-
dimensional vector of parameters. We are mainly interested
in the case where θ* is a unique global minimum.

James C. Spall (james.spall@jhuapl.edu), Stacy D. Hill, and David R. Stark

The Johns Hopkins University
Applied Physics Laboratory
11100 Johns Hopkins Road

Laurel, Maryland 20723-6099 U.S.A.

Formal Basis for Algorithm Comparisons in
Stochastic Optimization

M

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

WeC12.3

1545

Although many stochastic optimization approaches other
than the four above exist, we are restricting ourselves to the
four general forms in order to be able to make tangible
progress (note that there are various specific
implementations of each of these general algorithm forms).
These four algorithms are general-purpose optimizers with
powerful capabilities for serious multivariate optimization
problems.

Central to the approach of this paper will be the known
theoretical analysis on the rate of convergence of each of
the candidate algorithms. Our approach will be built as
much as possible on existing theory characterizing the rates
of convergence for the algorithms to perform the
comparative analysis. There appears to be no previous
analysis putting the theoretical results on a common basis
for performing an objective comparison.

In Sections 2 through 5, we discuss the known
convergence rate results on the four algorithm forms under
consideration. Section 6 then uses these results to provide a
theoretical framework for comparison. We demonstrate
these results in analyzing the relative efficiency as the
problem dimension increases.

II. SIMPLE GLOBAL RANDOM SEARCH

We first establish a rate of convergence result for the
simplest (“blind”) random search method where we
repeatedly sample over the domain of interest, Θ ⊆ p. This

can be done in recursive form or in “batch” (nonrecursive)
form by simply laying down a number of points in Θ and
taking as our estimate of θ* that value of θ yielding the
lowest L value.

Our primary interest is the rate of convergence. The rate
is intended to tell the analyst how close ˆ

kθ is likely to be to
θ* for a given cost of search. The cost of search here will be
expressed in terms of number of loss function evaluations.
Knowledge of the rate is critical in practical applications as
simply knowing that an algorithm will eventually converge
begs the question of whether the algorithm will yield a
practically acceptable solution in any reasonable period. To
evaluate the rate, let us specify a “satisfactory region” S(θ*)
representing some neighborhood of θ* providing acceptable
accuracy in our solution (e.g., S(θ*) might represent a
hypercube about θ* with the length of each side
representing a tolerable error in each coordinate of θ). An
expression related to the rate of convergence of the above
simple random search algorithm is then given by

 P(ˆ
kθ ∈ S(θ*)) = 1 − [1 − P(θnew(k) ∈ S(θ*)]k (2.1)

We will use this expression in Section 6 to derive a
convenient formula for comparison of efficiency with other
algorithms.

III. SIMULTANEOUS PERTURBATION STOCHASTIC
APPROXIMATION

The next algorithm we consider is SPSA. This algorithm
is designed for continuous variable optimization problems.
Unlike the other algorithms here, SPSA is fundamentally
oriented to the case of noisy function measurements and
most of the theory is in that framework. This will make for a
difficult comparison with the other algorithms, but
Section 6 will attempt a comparison nonetheless. The SPSA
algorithm works by iterating from an initial guess of the
optimal θ, where the iteration process depends on a highly
efficient “simultaneous perturbation” approximation to the
gradient g(θ) ≡ ∂L(θ)/∂θ .

Assume that measurements y(θ) of the loss function are
available at any value of θ:

y(θ) = L(θ) + noise .
It is assumed that L(θ) is a differentiable function of θ and
that the minimum point θ* corresponds to a zero point of
the gradient, i.e.,

*

*

()() 0.L
g

θ=θ

∂ θθ = =
∂θ

 (3.1)

In cases where more than one point satisfies (3.1), there
exists theory that ensures that the algorithm will converge
to the global minimum (Maryak and Chin, 2001).

The SPSA procedure has the general recursive stochastic
approximation (SA) form:

1
ˆ ˆ ˆˆ ()k k k k ka g+θ = θ − θ , (3.2)

where ˆˆ ()k kg θ is the simultaneous perturbation estimate of

the gradient g(θ) at the iterate ˆ
kθ based on the above-

mentioned measurements of the loss function and ak > 0 is a
“gain” sequence. The essential basis for efficiency of SPSA
is that only two measurements of the loss function are
needed to estimate the p-dimensional gradient vector for
any p; this contrasts with the standard finite difference
method of gradient approximation, which requires 2p
measurements.

Most relevant to the comparative analysis goals of this
paper is the asymptotic distribution of the iterate. This was
derived in Spall (1992), with further developments in Chin
(1997), Spall (2000), and elsewhere. Essentially, it is
known that under appropriate conditions,

 kβ/2(ˆ
kθ − θ*) dist⎯⎯⎯→ N(µ, Σ) as k ∞ , (3.3)

where β > 0 depends on the choice of gain sequences (ak

and ck), µ depends on both the Hessian and the third
derivatives of L(θ) at θ* (note that in general, µ ≠ 0 in
contrast to many well-known asymptotic normality results
in estimation), and Σ depends on the Hessian matrix at θ*

1546

and the variance of the noise in the loss measurements.
Given the restrictions on the gain sequences to ensure
convergence and asymptotic normality, the fastest allowable
value for the rate of convergence of ˆ

kθ to θ* is k−1/3. This

contrasts with the fastest allowable rate of k−1/2 for gradient-
based algorithms such as Robbins-Monro SA.

Unfortunately, (3.3) is not directly usable in our
comparative studies here since the other algorithms being
considered here appear to have formal results for
convergence rates only for the case of noise-free loss
measurements. The authors are unaware of any general
asymptotic distribution result for the noise-free case (note
that it is not appropriate to simply let the noise level go to
zero in (3.3) in deriving a result for the noise-free case; it is
likely that the rate factor β will also change if an asymptotic
distribution exists). Some partial results, however, are
available that are related to the rate of convergence.
Gerencsér and Vágó (2001) established that the noise-free
SPSA algorithm has a geometric rate of convergence when
constant gains ak = a are used. In particular, for functions
having bounded third derivatives, they show for sufficiently
small a,

k

ˆ
limsup 1 a.s.

k

k

∗

→∞

θ − θ
=

for some 0 < η < 1.

IV. SIMULATED ANNEALING ALGORITHM

The SAN method (Metropolis et al., 1953; Kirkpatrick et
al., 1983) was originally developed for optimization over
discrete finite sets. The Metropolis SAN method produces a
sequence that converges in probability to the set of global
minima of the loss function as Tk, the temperature,
converges to zero at an appropriate rate (Hajek, 1988).

Gelfand and Mitter (1993) present a SAN method for
continuous parameter optimization. They obtained discrete-
time recursions (which are similar to a stochastic
approximation algorithm) for Metropolis-type SAN
algorithms that, in the limit, optimize continuous parameter
loss functions. Spall (2003, Sect. 8.6) summarizes this
connection of SAN to SA in greater detail. Suppose that ˆ

kθ
is such a Metropolis-type SAN sequence for optimizing L.
To define this sequence, let qk(x, •) be the p-dimensional
Gaussian density function with mean x and variance

2 2 ()k k pb x Iσ , where 2 ()k xσ = { }max 1, ka xτ , τ is fixed in

the range 0 < τ < 1/4, and ak = a/k with a > 0. (Observe that
{ }2sup (), 1k x x Aσ ∈ → as k → ∞ for any bounded set A.)

Also, let sk(x, y) = []()exp () () kL y L x T− − , if L(y) > L(x),

and sk(x, y) = 1 otherwise, where ()kT x = 2 2 () (2)k k kb x aσ .

The function sk(x, y) is the acceptance probability, as in the
usual Metropolis algorithm.

Let {Wk} be an independent identically distributed (i.i.d.)
sequence of p-dimensional standard Gaussian random
vectors and let the sequence 0 1, ,ξ ξ be defined by setting

1
ˆ ˆ ˆ()()k k k k k k ka g b W+θ = θ − θ + ξ + a.s., k > 0. (4.1)

The reason for introducing this form for the recursion is to
show that ˆ

kθ converges in probability to the set of global
minima of L.

Furthermore, like SPSA, SAN has an asymptotic
normality result (but unlike SPSA, this result applies in the
noise-free case). In particular, following Yin (1999), assume
that ak = a/k, bk = (b/(kγ log (k1−γ + B0))1/2, where B0, a, and
b are positive constants, 0 < γ < 1. Let H(*) denote the Hessian
of L() evaluated at * and let Ip denote the p × p identity
matrix. Yin (1999) showed that

[log (k1−γ + B0)]1/2(ˆ
kθ − *) N(0,) in distribution,

where ΣH + HTΣ + (b/a)I = 0.

V. EVOLUTIONARY COMPUTATION
There are some results on rates of convergence for EC

algorithms, but, unfortunately, many of the results are not
useful in the practical characterization of the rates. Based on
results in Rudolph (1994) and elsewhere, Spall (2003, Sect.
10.5) and Stark and Spall (2003) discuss how it is possible
to cast the binary bit-based GA in the framework of Markov
chains. Unfortunately, the dimension of the transition
matrix grows very rapidly with increases in the number of
bits in the representation of the chromosomes in the
algorithms and/or with increases in the number of candidate
solutions in the population.

One of the more computationally useful convergence
rates for EC algorithms applies in a particular class of
convex loss functions. The following theorem due to
Rudolph (1997) is an application of a more general result
by Rappl (1989). The theorem is the starting place for the
specific convergence rate result that will be used for
comparison in Section 6.
Definition 5.1. An algorithm has a geometric rate of

convergence if and only if E[*
kL − L(θ*)] = O(ηk)

where η ∈ (0, 1) defines the convergence rate.
Theorem 5.1 (Rudolph 1997). Let kΘ ≡ { 1

ˆ
kθ , 2

ˆ
kθ , …,

ˆ
kNθ } be the sequence of populations of size N generated by

some ES at generation k (ˆ
kiθ represents the ith estimate for

θ from the population of N elements). If E[*
kL − L(θ*)] < ∞

and E[*
1kL + − L(θ*)| kΘ] ≤ η[*

kL − L(θ*)] a.s. for all k ≥ 0

1547

where *
kL = min{L(1

ˆ
kθ), L(2

ˆ
kθ), …, L(ˆ

kNθ)}, then the ES

algorithm converges a.s. geometrically fast to the optimum
of the objective function.

The condition E[*
1kL + − L(θ*)| kΘ] ≤ η[*

kL − L(θ*)] implies
implies that the sequence decreases monotonically on
average. This condition is needed since in the (1, λ)-ES that
will be considered below, the loss value of the best parent
in the current generation may be worse than the loss value
of the best parent of the previous generation, although on
average this will not be the case. Rudolph (1997) shows
that a (1, λ)-ES using selection and mutation only (where
the mutation probability is selected from a uniformly
distributed distribution on the unit hyperball), with certain
classes of loss functions, satisfies the assumptions of the
theorem. One such class is the (K, q)-strongly convex
functions:
Definition 5.2. Let L: Θ → 1. Then L is called (K, q)-

strongly convex on Θ if for all x, y ∈ Θ and for each α ∈ [0,
1] the inequalities

2

2

(1) () (1) () (1)
2

(1)
2

()K
x y L x L y L x y

G
x y

α − α − ≤ α + − α − α + − α

α − α −≤

hold with 0 < K ≤ G ≡ Kq < ∞.
For example, every quadratic function is (K, q)-strongly

convex if the Hessian matrix is positive definite. In the case
of twice differentiable functions, fairly simple tests are
available for verifying that a function is (K, q)-strongly
convex, from Nemirovsky and Yudin (1983).

The convergence rate result for a (1, λ)-ES using only
selection and mutation on a (K, q)-strongly convex loss
function is geometric with a rate of convergence η = (1 –

2 2
,)pM qλ , where pMλ, = E[Βλ:λ] > 0 and where Βλ:λ

denotes the maximum of λ i.i.d. Beta random variables. The
computation of Mλ,p is complicated since it depends on
both the number of offspring λ and the problem dimension
p. Asymptotic approximations are available. Assuming p is
fixed and λ → ∞ then pMλ, ≈ (2 p−1log λ)1/2. To extend

this convergence rate from a (1, λ)-ES to a (N, λ)-ES, note
that each of the N parents generate λ/N offspring. Then the
convergence rate for the (N, λ)-ES where offspring are only
obtained by mutation is

η ≤
1

2
2 log(/)1 p N

q

− λ−

for (K, q)-strongly convex functions.

VI. COMPARATIVE ANALYSIS

A. Problem Statement and Summary of Efficiency
 Theory for the Four Algorithms

This section uses the specific algorithm results in
Sections 2 to 5 above in drawing conclusions on the relative
performance of the four algorithms. There are obviously
many ways one can express the rate of convergence, but it is
expected that, to the extent they are based on the theory
outlined above, the various ways will lead to broadly
similar conclusions. We will address the rate of
convergence by focusing on the question:

With some high probability 1− ρ (ρ a small number),
how many L(⋅) function evaluations, say n, are needed to
achieve a solution lying in some “satisfactory set” S(θ*)
containing θ*?

With the random search algorithm in Section 2, we have a
closed form solution for use in questions of this sort while
with the SPSA, SAN, and ES algorithms of Sections 3
through 5, we must apply the existing asymptotic results,
assuming that they apply to the finite-sample question
above. For each of the four algorithms, we will outline
below an analytical expression useful in addressing the
question. After we have discussed the analytical
expressions, we present a comparative analysis in a simple
problem setting for varying p. To maintain a fair
comparison, the algorithms here explicitly use only loss
evaluations, no direct gradient information.

Random Search. We can use (2.2) to answer the question
above. Setting the left-hand side of (2.2) to 1 − ρ and
supposing that there is a constant sampling probability P* =
P(θnew(k) ∈ S(θ*)) for all k, we have

log
log 1()

n
P∗

ρ=
−

. (6.1)

Although (6.1) may appear benign at first glance, this
expression grows rapidly as p gets large due to P*

approaching 0. (A numerically stable approximation that is
useful with small P* is given in Spall, 2003, p. 62.) Hence,
(6.1) shows the extreme inefficiency of simple random
search in higher-dimensional problems as illustrated in the
study below.

Simultaneous Perturbation Stochastic Approximation.
As mentioned in Section 3, there is no known asymptotic
normality result in the case of noise-free measurements of
L(θ). Nonetheless, a conservative representation of the rate
of convergence is available by assuming a noisy case with
small levels of noise. Then we know from (3.4) that the
approximate distribution of ˆ

kθ with optimal decay rates for

the gains ak and ck is N(θ* + µ/k1/3, Σ/k2/3). In principle,
then, one can use this distribution to compute the

1548

probabilities associated with arbitrary sets S(θ*), and these
probabilities will be directly a function of k. In practice, due
to the correlation in Σ, this may not be easy and so
inequalities such as in Tong (1980, Chap. 2) can be used to
provide bounds on P(ˆ

kθ ∈ S(θ*)) in terms of the marginal

probabilities of the ˆ
kθ elements.

For purposes of insight, consider a case where the
covariance matrix Σ is diagonal. If S(θ*) is a hypercube of
the form 1 1 2 2[,] [,] ... [,]− + − + − +× × × p ps s s s s s , then P(ˆ

kθ ∈ S(θ*))

is a product of the marginal normal probabilities associated
with each element of ˆ

kθ lying in its respective interval

[,]i is s− + , i = 1, 2, …, p. Such diagonal covariance matrices
arise when the loss function is separable in each of the
components of θ. Then we can find the k such that the
product of probabilities equals 1 − ρ. To illustrate more
specifically, suppose further that Σ = σ2I, the µ/k1/3 term in
the mean is negligible, that S(θ*) is centered around θ*, and
that δs ≡ i is s+ −− for all i (i.e., i is s+ −− does not depend on
i). Then for a specified ρ, we seek the n such that
P(ˆ

kθ ∈ S(θ*)) = P(ˆ
kiθ ∈[,]− +

i is s)

p = 1 − ρ. From standard
N(0, 1) distribution tables, there exists a displacement
factor, say d(p), such that the probability contained within ±
d(p) units contains probability amount (1 − ρ)1/p; we are
interested in the k such that 2d(p)σ/k1/3 = δs. From the fact
that SPSA uses two L(θ*) evaluations per iteration, the
value n to achieve the desired probability for ˆ

kθ ∈ S(θ*) is
then

32 ()2 d p
n

s
σ=

δ
.

Simulated Annealing. Because SAN, like SPSA, has an
asymptotic normality result, the method above for
characterizing the rate of convergence for SPSA may also
be used here. Again, we shall consider the case where the
covariance matrix is diagonal (Σ = σ2I). Assume also that
S(*) is a hypercube of the form

1 1 2 2[,] [,] ... [,]− + − + − +× × × p ps s s s s s centered around *, and that

δs ≡ i is s+ −− , for all i. The (positive) constant B0 is assumed
small enough that it can be ignored. At each iteration after
the first, SAN must evaluate L(*) only once per iteration.
So the value n to achieve the desired probability for ˆ

kθ ∈
S(*) is

2
1 2 ()log d p

n
s

−γ σ=
δ

.

Evolution Strategy. As discussed in Section 5, the rate-of-

convergence results for algorithms of the evolutionary
computation type are not as well developed as for the other
three algorithms of this paper. Theorem 5.1 gives a general
bound on E[L(ˆ

kθ) − L(θ*)] for application of a (N, λ)-ES

form of EC algorithm to (K, q)-strongly convex functions. A
more explicit form of the bound is available for the (1, λ)-
ES. Unfortunately, even in the optimistic case of an explicit
numerical bound on E[L(ˆ

kθ) − L(θ*)], we cannot readily

translate the bound into a probability calculation for ˆ
kθ ∈

S(θ*), as used above. So, in order to make some reasonable
comparison, let us suppose that we can associate a set S(θ*)
with a given deviation from L(θ*), i.e., S(θ*) = {θ: L(ˆ

kθ) −
L(θ*) ≤ ε} for some prespecified tolerance ε > 0 (note that
S(θ*) is a function of ε). As presented in Rudolph (1997),
E[L(ˆ

kθ) − L(θ)] ≤ ηk for sufficiently large k, where η is the
convergence rate in Section 5. Then by Markov’s
inequality,

 1 − P(ˆ
kθ ∈ S(θ*)) ≤

ˆ[() ()]kE L L ∗θ − θ
ε

≤
kη

ε
, (6.2)

indicating that P(ˆ
kθ ∈ S(θ*)) is bounded below by the ES

bounds mentioned in Section 5. For EC algorithms in
general (and ES in particular), there are λ evaluations of the
loss function for each generation k so that n = λk, where

 k = log log(1/)
2log 1 log(/)2 N

pq

ρ − ε

− λ
. (6.3)

B. Application of Convergence Rate Expressions for
 Varying p

We now apply the results above to demonstrate relative
efficiency for varying p for random search, SPSA, SAN and
ES. Let Θ = [0, 1]p (the p-dimensional hypercube with
minimum and maximum θ values of 0 and 1 for each
component). We want to guarantee with probability 0.90
that each element of θ is within 0.04 units of the optimal.
Let the (unknown) optimal θ, θ*, lie in (0.04, 0.96)p. The
individual components of θ* are *

iθ . Hence,

* * *
1 1

* *
2 2

* *

() [0.04, 0.04]

[0.04, 0.04]

... [0.04, 0.04]

θ θ − θ +

× θ − θ +

× × θ − θ + ⊂ Θp p

S =

Table I is a summary of relative efficiency for the setting
above for p = 2, 5, and 10; the efficiency is normalized so
that all algorithms perform equally at p = 1, as described
below. The numbers in Table I are the ratios of the number

1549

of loss measurements for the given algorithm over the
number for the best algorithm at the specified p; the
highlighted values 1.0 indicate the best algorithm for each
of the values of p. To establish a fair basis for comparison,
we fixed the various parameters in the expressions above
(e.g., σ in SPSA and SAN, λ for the ES, etc.) so that the
algorithms produced identical efficiency results for p = 1
(requiring n = 28 measurements to achieve the objective
outlined above). We then use these parameter settings as p
increases. Of course, in practice, algorithm parameters are
typically tuned for each new problem, including changes in
p. Rather, they point towards general efficiency trends as a
function of problem dimension in the absence of problem-
specific tuning.

For the random sampling algorithm, suppose uniform
sampling on Θ is used to generate θnew(k) for all k. Then,
P* = 0.08p . For SPSA, we fix σ such that the same number
of function measurements in the p = 1 case (n = 28) is used
for both random search and SPSA (so δs = 0.08 and σ =
0.0586). Likewise, for SAN, we fix σ to achieve the same
objective (so δs = 0.08 and σ = 0.031390). Also, for
convenience, take γ = 1/2. To compare the (N, λ)-ES
algorithm with the random search, SPSA, and SAN
algorithms, it is assumed that the loss function is restricted
to the (K, q)-strongly convex functions discussed in Section
5. Also let λ = 14, N = 7, ε = 8.3, q = 4, and ρ = 0.1. The
variables were constrained here so that for p = 1, we have
the same n (= 28) as realized for the other algorithms.
Table I summarizes the performance comparison results.

Table I illustrates the explosive growth in the relative
(and absolute) number of loss evaluations needed as p
increases for the random search algorithm. The other
algorithms perform more comparably, but there are still
some non-negligible differences. For example, at p = 5,
SAN will take 2.2 times more loss measurements than
SPSA to achieve the objective of having ˆ

kθ inside S(θ*)
with probability 0.90. Of course, as p increases, all
algorithms take more measurements; the table only shows
relative numbers of function evaluations (considered more
reliable than absolute numbers).

The performance for ES is quite good. The restriction to
strongly convex loss functions (from (6.2) and (6.3)),

however, gives the ES in this setting a strong structure not
available to the other algorithms. It remains unclear what
practical theoretical conclusions can be drawn on a broader
class of problems.

REFERENCES

[1] Arnold, D. V. (2002), Noisy Optimization with Evolution Strategies,
Kluwer, Boston.

[2] Chin, D. C. (1997), “Comparative Study of Stochastic Algorithms for
System Optimization Based On Gradient Approximations,” IEEE
Transactions on Systems, Man, and Cybernetics—B, vol. 27,
pp. 244–249.

[3] Gelfand, S. and Mitter, S. K. (1993), “Metropolis-Type Annealing
Algorithms for Global Optimization in Rd,” SIAM Journal of Control
and Optimization, vol. 31, pp. 111−131.

[4] Gerencsér, L. and Vago, Z. (2001), “The Mathematics of Noise-Free
SPSA,” Proceedings of the IEEE Conference on Decision and
Control, 4–7 December 2001, Orlando, FL, pp. 4400–4405.

[5] Hajek, B. (1988), “Cooling Schedules for Optimal Annealing,”
Mathematics of Operations Research, vol. 13, pp. 311−329.

[6] Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983), “Optimization
by Simulated Annealing,” Science, vol. 220, pp.
671–680.

[7] Maryak, J. L. and Chin, D. C. (2001), “Global Random Optimization
by Simultaneous Perturbation Stochastic Approximation,” in
Proceedings of the American Control Conference, pp. 756–762.

[8] Metropolis, N., Rosenbluth, A., Rosenbluth, M. Teller, A. and Teller,
E. (1953), “Equation of State Calculations by Fast Computing
Machines,” Journal of Chemical Physics, vol. 21,
pp. 1087–1092.

[9] Nemirovsky, A. S. and Yudin, D. B (1983), Problem Complexity and
Method Efficiency in Optimization, Wiley, Chichester.

[10] Rappl, G. (1989), “On Linear Convergence of a Class of Random
Search Algorithms,” Zeitschrift für angewandt Mathematik und
Mechanik (ZAMM), vol. 69, pp. 37−45.

[11] Rudolph, G. (1994), “Convergence Analysis of Canonical Genetic
Algorithms,” IEEE Transactions on Neural Networks, vol. 5,
pp. 96–101.

[12] Rudolph, G. (1997), “Convergence Rates of Evolutionary Algorithms
for a Class of Convex Objective Functions,” Control and Cybernetics,
vol. 26, pp. 375–390.

[13] Schwefel, H.-P. (1995), Evolution and Optimum Seeking, Wiley,
New York.

[14] Spall, J. C. (1992), “Multivariate Stochastic Approximation Using a
Simultaneous Perturbation Gradient Approximation,” IEEE
Transactions on Automatic Control, vol. 37, pp. 332–341.

[15] Spall, J. C. (2000), “Adaptive Stochastic Approximation by the
Simultaneous Perturbation Method,” IEEE Transactions on
Automatic Control, vol. 45, pp. 1839–1853.

[16] Spall, J. C. (2003), Introduction to Stochastic Search and
Optimization, Wiley, Hoboken, NJ.

[17] Stark, D. R. and Spall, J. C. (2003), “Rate of Convergence in
Evolutionary Computation,” in Proceedings of the American Control
Conference, pp. 1932–1937.

[18] Tong, Y. L. (1980), Probability Inequalities in Multivariate
Distributions, Academic, New York.

[19] Wolpert, D. H. and Macready, W. G. (1997), “No Free Lunch Theorems
for Optimization,” IEEE Transactions on Evolutionary Computation, vol.
1, pp. 67−82.

[20] Yin, G. (1999), “Rates of Convergence for a Class of Global
Stochastic Optimization Algorithms,” SIAM Journal on Optimization,
vol. 10, pp. 99−120.

TABLE I
RATIOS OF LOSS MEASUREMENTS NEEDED RELATIVE TO

BEST ALGORITHM AT EACH p FOR 1 ≤ p ≤ 10
 p = 1 p = 2 p = 5 p = 10

Random Search 1.0 11.6 8970 2.0×109

SPSA 1.0 1.5 1.0 1.0
SAN 1.0 1.0 2.2 4.1
ES (from (6.2) and (6.3)) 1.0 1.9 1.9 2.8

1550

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

