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Abstract— In this paper, we use SOS (Sum of Squares)
programming approaches to analyze the stability and robust-
ness properties of the controlled pitch axis (6 state system)
of a nonlinear model of an Aircraft. The controller is a LTI
Dynamic Inversion based control law designed for the short
period dynamics of the Aircraft. The closed loop system is
tested for its robustness to uncertainty in the location of center
of gravity along the body x-axis. Results in the form of stability
regions about a trim point are computed and verified using
simulations.

I. INTRODUCTION

Design and stability analysis of an aircraft pitch axis
control system has been a well studied problem, [1], [2].
Some researchers, [1], determined analytically the stabil-
ity regions of a F-14 in terms of the engine thrust and
pitch attitude and presented a global stability result for
nonlinear modeled pitch axis of a F-14 modulated by a
nonlinear dynamic inversion control law. Recently, a new
computationally tractable nonlinear system analysis method
was proposed, [3]. From a computation perspective, the
method relaxes searching for positive semi definite stability
certificate functions (eg. Lyapunov functions) to searching
for sum of squares (of appropriate polynomials) certificate
functions. Solving for the relaxed requirement leads to
solving a SDP (Semi Definite Program) which is compu-
tationally tractable. This approach was used for Lyapunov
function synthesis, [4] and estimating the stability region of
SDRE (State Dependant Riccati Equation) systems, [5]. A
recently developed software, SOSTOOLS(v1.01), [6] was
used to convert the required sum of squares conditions to
an appropriate SDP which was then solved using SeDuMi,
[7]. In this paper we determine, numerically, the region of
attraction of a trim point for the pitch axis of a nonlinear
modeled aircraft modulated via a linear dynamic inversion
based controller. The model incorporates uncertainty in the
position of center of gravity along X-body axis. The stability
regions are computed using SOSTOOLS.

This paper is organized as follows. Section II states the
relevant results used in this paper. Due to space limitations,
it is not possible to include all the details. An interested
reader is referred to [8] for more details. Section III presents
stability analysis results for the controlled pitch axis short
period dynamics (5 states). Section IV presents stability
analysis results for the controlled pitch axis longitudinal
(short period + phugoid) dynamics (6 states). Conclusions
and future work are presented in section V.

II. BACKGROUND

A. Aircraft model
In [9] the authors proposed a Robust Flight Control

design benchmark problem. The problem was to design
an autopilot for the final segments of an approach for
a fictitious aircraft - the Robust Civil Aircraft Model
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(RCAM). A six degree of freedom nonlinear model of
the RCAM including nonlinearities of actuators (thresholds)
and a model of disturbances was proposed. For the purpose
of this paper, we consider the nonlinear model without
any disturbance inputs. The state space, we consider, is
given by [q, V, α, θ]T , which stand for the pitch rate
(rad/s), Velocity (m/s), angle of attack (rad) and pitch angle
(rad), respectively. The control inputs are [δe, δTH ]T which
stand for the elevator deflection (rad) and throttle lever
deflection (rad), respectively. More details regarding the
specific model we use in this paper is given in [8].
B. Stability of constrained nonlinear systems

It is well know that a sufficient condition for ensuring
that an equilibrium point of an unconstrained dynamical
system is stable, is the existence of a Lyapunov function,
[10]. A sufficient condition for ensuring the stability of
an equilibrium point of a constrained nonlinear dynamic
system was recently proposed, [4]. A simplified version of
the theorem without proof is given in [8]. Loosely speaking,
stability of a constrained nonlinear system was guaranteed
subject to the existence of a local Lyapunov function. We
present another sufficient condition for ensuring the stability
of an equilibrium point in this paper.

Lemma 1: Consider a dynamic system with polynomial
(possibly rational) vector field, f(x, u), polynomial con-
straints, ai(x, u), bj(x, u) where x ∈ Rm, u ∈ Rn :

ẋ = f(x, u) (1)
ai(x, u) ≤ 0
bj(x, u) = 0.

In the above equations u represents all possible inputs such
as control inputs, uncertain parameters, disturbances, etc. It
is assumed that

◦ f(x, u) is nonsingular in D(x̃), where D(x̃) ⊂ Rm+n,

◦ f(x, u) = 0 when x = 0 ∈ D(x̃),

where D(x̃) is the domain of definition of the system.
x = 0 is a stable equilibrium point of the system (1), if
∃ W (x), ψ(x), w(x, u), pi(x, u), qj(x, u) all polynomial,
such that

� W (x) − ψ(x) +
∑

pi(x, u)ai(x, u)

+
∑

qj(x, u)bj(x, u) is SOS ( =⇒ ≥ 0),

� − w(x, u)
∂W

∂x
f(x, u)

+
∑

pi(x, u)ai(x, u) +
∑

qj(x, u)bj(x, u) is SOS,

� w(x, u) − ε and pi(x, u) are SOS; ε > 0,
� ψ(x) = xT Diag[εi]x where εi > 0.

In the above equations, D(x̃) has been incorporated as one
of the inequality constraints. �
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C. Control Design

We designed a LTI dynamic inversion based control law
for the short period dynamics of the aircraft pitch axis
at a particular trim configuration. The trim configuration
is determined at a particular flight condition; 1) dynamic
pressure, q = 4470.29Pa, 2) level flight, θ = α. The
controller regulates the pitch angle error, θ̃ := θ − θtrim

to the origin. By substituting the controller dynamics in the
nonlinear aircraft pitch axis dynamics we get the dynamics
of the closed loop aircraft pitch axis as shown below, [8].

q̇ = fq(
q

V
, α, θ, η1, η2, q,Xcg)

V̇ = fV (α, θ, q,Xcg)

α̇ = fα(
q

V
,

1
V

, α, θ, η1, η2, q,Xcg)

θ̇ = q

η̇1 = fη1(q, θ, η1, η2)
η̇2 = fη2(q, θ) (2)

where q is the aircraft pitch rate, V is the airspeed, α is the
angle of attack, θ is the pitch angle, η1,2 are the controller
states, q is the dynamic pressure and Xcg is the cg position
of the aircraft in the body x-axis. We will determine the
stability and robustness (to uncertainty in Xcg position) of
a) the short period dynamics and b) short period + phugoid
dynamics of the closed loop aircraft, described in Eq. (2),
in sections III and IV, respectively.

III. STABILITY ANALYSIS : SHORT PERIOD DYNAMICS

In this section, we present the results of estimation of
a stability region for the controlled (stability augmented)
short period dynamic model of the Aircraft. The dynamics
are governed by the states x = [q, θ, α, η1, η2]T and
the corresponding vector fields as given in (2). The stability
regions are estimated for a) the nominal closed loop system
where Xcg = 0.23c and b) the perturbed (parameterized)
closed loop system where Xcg ∈ [0.15c, 0.31c].

A. Stability regions of the nominal closed loop system

The unique real equilibrium point of the short period
dynamics (Eq. (2)) at a flight condition, 1) q = 4470.29Pa,
2) V = 90 m/s assuming a nominal Xcg = 0.23c, is given
by:

x∗ =

⎡
⎢⎢⎣

q∗
α∗
θ∗
η∗
1

η∗
2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0.01115 rad
0.01115 rad

0
0

⎤
⎥⎥⎦ . (3)

We transform the states, x → x̃ = x − x∗, where x =
[q, θ, α, η1, η2]T . Using the transformed dynamics

⎡
⎢⎢⎢⎣

q̇
˙̃α
˙̃
θ
η̇1
η̇2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

fq(q, α̃, θ̃, η1, η2)
fα̃(q, α̃, θ̃, η1, η2)

q
fη1(q, θ̃, η1, η2)

fη2(q, θ̃)

⎤
⎥⎥⎥⎦ ,

we can now pose the SOS optimization problem. The
formulation is as follows:
Prog 1: Given a) D(x̃) = x̃T x̃ − γ2 and b) ψ(x̃) =
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x̃T Diagi=1:5[εi]x̃, do there exist W (x̃), εi, p1(x̃), p2(x̃) all
SOS such that:

1. W (x̃) − ψ(x̃) + p1(x̃)D(x̃) is SOS and

2. − ∂W (x̃)
∂x̃

[fq fα̃ q fη1 fη2 ]
T + p2(x̃)D(x̃) is SOS.

If the problem, Prog 1, is feasible, then D(x̃) is an estimate
of the stability region of the short period dynamics about
the equilibrium point (3). By solving the above feasibility
problem recursively, it is possible to determine the largest
γ (= 5.18 in the present case) such that the SOS program is
feasible. Note that the stability region, D(x̃) is the largest
spherical domain of attraction of the equilibrium point (3).
Via a more rigorous parametrization of D(x̃) and a line
search on γ, it may be possible to find a domain D1(x̃)
which can embed the spherical D(x̃) that we have deter-
mined. The Lyapunov function that guaranteed the local
stability of the equilibrium point (3) is quadratic. A plot
of the response of the controlled aircraft with initialization
within the stability region (γ = 1 < 5.18) is shown in Fig.
1.

We present simulation results which verify the above
analysis. In order to test the validity of the computed
stability regions, we initialize the states of the nonlinear
controlled short period dynamics Aircraft model, x̃ ∈
ext D(x̃). The control law acts to drive the perturbed system
states, x̃ to the origin. Four different simulations were
performed. State evolution is shown in Fig. 2-5. In all four
cases, the initial conditions of the states are perturbed by
the largest stabilizing perturbation. Hence, any perturbation
larger than that used in the simulations would destabilize
the pitch axis. We can infer from the ’stable’ simulation
top left plot (Fig. 2) that the linear dynamic inversion
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Fig. 4. q initialized with largest stabilizing perturbation, q = 4.3166.
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based controller was able to stabilize the nonlinear short
period dynamics of the Aircraft even if all the states were
simultaneously perturbed such that γ = 5.6 which is
larger than that computed using SOSTOOLS (γ = 5.18).
This is because, the parametrization of D(x̃), V may not
have been rich enough to determine the exact region. The
currently computed D(x̃) is the stability region given a
quadratic lyapunov function. It may be possible to improve
the estimate of the region if we considered higher degree
candidates as lyapunov functions, at the cost of computation
complexity. Note from both the bottom plots (Fig. 4, 5) that
the control can sustain larger magnitude initializations in
pitch rate (= 4.31 rad/s instead of 2.3166 rad/s as computed
by SOSTOOLS) and pitch angle (= 3.81 rad instead of
2.3166 rad as computed by SOSTOOLS). Fig. 3 shows that
the controller was not able to sustain as large perturbations
in the angle of attack (= 2.71 rad/s instead of 2.31 rad/s
as computed by SOSTOOLS). The fact that the closed
loop system is marginally stable for larger perturbations
in one state (4.31 rad/s in pitch rate) and smaller size
perturbation in another state (2.71 rad in angle of attack)
suggests that the region of attraction is not spherical. A
richer characterization (an ellipsoid, for example) of the
domain D(x̃) could be included in the search for a higher
degree lyapunov function using SOSTOOLS in order to
better estimate the region of attraction. The cost would be
computation complexity.

B. Stability regions of the Xcg parameterized closed loop
system

The parameterized (in terms of Xcg) equilibrium point
of the short period dynamics at a flight condition, 1) q =

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

2

4

6

8

time − sec

sta
tes

x
tilde

(0) = [2.3166, 2.3166, 3.8166, 2.3166, 2.3166]T. ||x
tilde

(0)|| = 6.0027. Xcg = 0.23 cbar

q
t

α
t

eta
1t

eta
2t

θ
t

Fig. 5. θ̃ initialized with largest stabilizing perturbation, θ̃ = 3.8166.
Other states are initialized at 5.18√

5
= 2.3166.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

time − sec

sta
tes

x
tilde

(0) = [1.8783, 1.8783, 1.8783, 1.8783, 1.8783]T. ||x
tilde

(0)|| = 4.2. Xcg = 0.15 cbar

q
t

α
t

eta
1t

eta
2t

θ
t

Fig. 6. Perturbation of x̃(0) with Xcg = 0.15c. Each state is perturbed
by 1.8783 resulting in γ = 1.8783

√
5 = 4.2. This is the largest stabilizing

perturbation.

4470.29Pa, 2) V = 90 m/s is given by:

x∗ =

⎡
⎢⎢⎢⎣

q∗ = 0
α∗ = 0.0224 − 0.0074Xcg rad
θ∗ = 0.0224 − 0.0074Xcg rad

η∗
1 = 10−5

(−1.6 + 2.1Xcg − 0.7X2
cg

)
rad

η∗
2 = 10−4

(−1.1 + 1.4Xcg − 0.5X2
cg

)
rad

⎤
⎥⎥⎥⎦ . (4)

As explained in section III-A we transform the states,
x → x̃ = x − x∗, where x = [q, θ, α, η1, η2]T .
We assume here that the variation in Xcg is significantly
slower than the evolution of the short period states hence
letting us assume that Ẋcg = 0. Following the rest of the
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formulation as explained in section III-A, we can pose the
SOS optimization problem. The formulation is as follows:

Prog 2: Given a) D(x̃) = x̃T x̃ − γ2, b) ψ(x̃) =
x̃T Diagi=1:5[εi]x̃ and c) C1(Xcg) = (Xcg − 0.15c)(Xcg −
0.31c) does there exist W (x̃, Xcg), εi, pj(x̃,Xcg); j =
1 : 4 all SOS such that:

1. W (x̃,Xcg) − ψ(x̃) + p1(x̃,Xcg)D(x̃)
+ p2(x̃,Xcg)C1(Xcg) is SOS and

2. − ∂W

∂x̃
[fq fα̃ q fη1 fη2 ]

T + p3(x̃,Xcg)D(x̃)

+ p4(x̃,Xcg)C1(Xcg) is SOS.

If the problem, Prog 2, is feasible, then D(x̃) is a parameter
independent estimate of the stability region of the short
period dynamics about the equilibrium point (4). W is the
parameterized quadratic lyapunov function. By recursively
solving Prog 2 for various values of γ, the largest spherical
D(x̃) was determined at γ = 3.92. A plot of the response of
the controlled Aircraft with initialization within the stability
region (γ = 1 < 3.92) is shown in Fig. 10.

The four different scenarios which are simulated are
shown in Fig. 6-9. Notice from the plots (Fig. 6, 7) that the
linear dynamic inversion based controller was able to guar-
antee stability of the closed loop system for simultaneous
perturbations in states less than γ = 4.2 for extreme Xcg
conditions. It was also found (simulation results not shown)
that the controller stabilized the closed loop system for a
finite set of Xcg variations within the permissible limits of
Xcg ∈ [0.15c, 0.31c]. However, given the parametrization
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Fig. 10. Perturbation of x̃(0) with Xcg = 0.22c. Each state is perturbed
by

√
5 resulting in γ = 1.

of D(x̃) and the Lyapunov function, since SOSTOOLS
was not able to solve the posed optimization problem, it
is not possible to claim that the controller will stabilize
the closed loop system for perturbations that lie in D(x̃)
with γ = 4.2. We can only claim that the stability region
for the closed loop system is D(x̃) with γ = 3.92.
The discrepancy between SOSTOOLS computed γ and the
simulation suggested γ can be resolved by including higher
degree parameterizations of both W and D(x̃) when solving
the SOS optimization problem. The results of such analysis
are not shown in the paper as the problem complexity
was beyond what SOSTOOLS could currently handle. Note
from comparing the two Fig. 8 and Fig. 9 that a 3.25 rad/s
perturbation in the pitch rate, destabilizes the closed loop
system if Xcg = 0.31c indicating that the stability region
is a function of the uncertain parameter too, unlike the
parametrization we assume to solve the problem. In the
simulations it was assumed that Xcg was fixed.
IV. STABILITY ANALYSIS : SHORT PERIOD + PHUGOID

DYNAMICS

In this section we present stability region estimates for the
short period + phugoid dynamics modeled aircraft. Stability
regions are computed for the nominal Aircraft model (no
uncertainty in Xcg position). Although we formulated the
problem to determine stability regions for the short period +
phugoid model Aircraft with Xcg uncertainty, SeDuMi (the
Semi Definite Programming solver called by SOSTOOLS)
encountered memory issues on a P4, 2 GHz, 1 GB RAM
machine running WindowsXP. Problem complexity in terms
of degree of the polynomial vector fields is suspected to be
the primary cause. Longitudinal dynamics of the Aircraft
considered in the analysis in this section is given by (2) at
Xcg = 0.23c.

A. Stability regions of the nominal closed loop system
The equilibrium point of the dynamics (2) at a flight

condition, 1) q = 4470.29Pa, assuming a nominal Xcg =
0.23c, is given by:

x∗ =

⎡
⎢⎢⎢⎣

q∗
V ∗
α∗
θ∗
η∗
1

η∗
2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
Vtrm/s

0.01115 rad
0.01115 rad

0
0

⎤
⎥⎥⎥⎦ . (5)

Notice that the aircraft can theoretically attain equilibrium
at any non-zero velocity as long as it is at the appropriate
altitude so that the q flight condition is not violated. We will
determine stability regions about various velocities along
the equilibrium line Eq (5). Let Vtr denote the equilibrium
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aircraft velocity, hence V = Vtr + Ṽ . We transform the
states, x → x̃ = x − x∗, where x = [q, V, α, θ, η1, η2]T .
Using the transformed dynamics

⎡
⎢⎢⎢⎢⎢⎣

q̇
˙̃V
˙̃α
˙̃
θ
η̇1
η̇2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

fq( q
V , α̃, θ̃, η1, η2)
fṼ (α̃, θ̃)

fα̃( q
V , 1

V , α̃, θ̃, η1, η2)
q

fη1(q, θ̃, η1, η2)
fη2(q, θ̃)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

we can now pose the SOS optimization problem. The
formulation is as follows:
Prog 3: Given a) the domain of definition D(x̃) =
x̃T x̃ − γ2, b) a positive definite function ψ(x̃) =
x̃T Diagi=1:5[εi]x̃ and c) a positivity constraint on the ve-
locity V − δv ≥ 0 for some δv > 0; does there exist
W (x̃), εi, p1(x̃), p2(x̃), p3(x̃), p4(x̃) all SOS such that:

1. W (x̃) − ψ(x̃) + p1(x̃)D(x̃) − p2(x̃)(V − δv) is SOS;
(6)

2. − V 2 ∂W (x̃)
∂x̃

[fq fṼ fα̃ q fη1 fη2 ]
T + p3(x̃)D(x̃) (7)

− p4(x̃)(V − δv) is SOS. (8)

Note that W (x̃) is the Lyapunov function. In order for Eq.
(7) to be a sufficient condition for stability of an equilibrium
point, it is necessary that V > 0. Hence the condition
V −δv = SOS is adjoined to the above two inequalities, (7).
If the problem, Prog 3, is feasible, then D(x̃) is an estimate
of the stability region of the longitudinal dynamics about the
equilibrium point (5). By solving the above feasibility prob-
lem recursively it is possible to determine, approximately,
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Fig. 13. Vtr – γ dependence.
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Fig. 14. Vtr = 90 m/s, Ṽ = −0.46949 × 100 m/s. Therefore V ≈ 53
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the largest γ, hence the largest stability region subject to the
a) Lyapunov function and b) Domain parametrization. The
system (6) displayed different sized stability domains based
on the magnitude of the trim Aircraft velocity Vtr. Larger
trim velocities resulted in larger estimated stability regions.
A summary of the results is shown in Fig. 13. A plot of the
response of the controlled Aircraft with initialization within
the stability region (γ = 1, Vtr = 150 m/s) is shown in Fig.
10.

The Lyapunov function, W (x̃) that guaranteed the local
stability of each of the equilibrium point (5) is quadratic.
At an Aircraft trim velocity of Vtr = 90 m/s, notice that the
estimated stability region had a radius of only γ = 0.85.
Where as, the estimated stability region at the same trim
velocity assuming only short period dynamics (section III-
A) had a radius of γ = 5.18. We are tempted to conclude
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at this point that analyzing stability of the Aircraft pitch
axis considering just the short period dynamics may lead to
false results such as overestimation of γ. However, let us
examine the simulation results of the Aircraft dynamics (6)
first. Simulations are performed by initializing the Aircraft
transformed states x̃ such that x̃ ∈ exterior D(x̃). The
control law acts to drive the perturbed system states, x̃ to
the origin, x̃ = 0. Plots of the responses of the states are
shown in Fig. 14-15. A symbol (·)t in the legend stands
for (̃·). Notice that in all the three simulation cases, the
perturbation (initialization of x̃) size is large enough to drive
the Aircraft normalized velocity, ( V m/s

100 m/s , represented as
Vt + Veq in the figures) close to 0. In reality, however,
pitch axis perturbations are typically never so large as
to have such a significant effect on the aircraft velocity.
Even if such perturbations do occur, the pilot typically uses
both the elevator and throttle controls to ensure that the
aircraft velocity does not decrease to stall speed (signif-
icantly higher than 0 m/s). Use of the throttle to ensure
that the Aircraft’s velocity remains close to the set trim
value without significantly affecting the Aircraft attitude
is possible due to the difference in time scales of the
short period dynamics and the phugoid dynamics. In the
simulations shown above, the throttle is trimmed to level
the Aircraft and held constant during the simulation thus
leading to poor performance of the stability augmentation
system when perturbed simultaneously in all states.

V. CONCLUSION AND FUTURE WORK

In this paper, we explored the use of Sum-Of-Squares
programming approaches to analyze the stability properties
of a nonlinear system. Specifically, we determined quadratic
stability regions (spherical) for the controlled pitch axis of
a nonlinear model of an Aircraft. Stability regions were
determined for a) nominal, controlled short period dynamic
model, (largest γ) b) Xcg uncertain, controlled short period
dynamic model and c) nominal, controlled short period +
phugoid dynamic model (smallest γ). In all the three cases,
it was shown that there existed initial conditions which did
not lie within the stability regions which were still stabilized
by the controller. Such a result is attributed to the fact
that the SOS program we solve, verifies only a sufficient
condition for stability. We showed that the closed loop
system’s ability to remain stable to perturbations depended
on the direction of the perturbation in the state space. This
indicates that a spherical stability region parametrization is
not the right choice to determine more accurate estimates
of the region of attraction for the Aircraft pitch axis control
problem. It was also found that the size of a stability region
was also a function of the trim velocity of the Aircraft.
Hence, an Aircraft flying at higher speed could sustain
larger perturbations in the pitch axis states than an Aircraft
flying at lower speeds.

The analysis presented in this paper does not assume
actuator limits. We believe, that including tailplane actuator
saturation limits is not only a more realistic problem but
can also shrink the stability regions significantly. However,
it may be challenging for SOSTOOLS (v1.01) to solve
a problem with 1 or 2 additional states / higher degree
vector fields. Figure 16 plots the largest dimension of
the Positive Semi Definite cone (Z-axis) which contains
the candidate Positive Semi Definite matrix certifying the
positive definiteness of a polynomial of degree m, with
p variables. Notice the exponential growth in the worst
case dimension of the cone. The time-taken to solve the
programs, Prog 1,2,3 in this paper are tabulated in Tab. I.
In the table, t1 is approximately the time it takes SOS-
TOOLS(v1.01) to formulate the problem, t2 is the time
is takes SeDuMi to solve the formulated SDP, n is the
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Fig. 16. Worst case dimension of the PSD cone

poly n (Prog 1) n (Prog 2) n (Prog 3) n (Prog 4)
V 15 30 21 42
ψ 5i 5i 6i 6i
p1 6 7 7 8
p3 - 7 28 8
p2 21 28 7 8
p4 - 28 7 8
C1 21 28 28 36
C2 56 84 84 120

t1 (s) 6.64 28.59 19.71 OOM
t2 (s) 13.43 71.96 98.21 OOM

TABLE I
COMPUTATION TIMES

dimension of the PSD cone and OOM is Out Of Memory.
The problems were solved on a Pentium 4, 1GB RAM,
2GHz machine. As can be seen from Tab. I, it was not
challenging to pose a ‘large’ unsolvable problem. In our
experience, it was possible to reduce computation time and
problem complexity (dimension of the psd cone) for certain
problems, by choosing the right ‘basis’ polynomials which
constitute V (x̃), pi(x̃). However, such a method would need
the control engineer to exploit the explicit structure of
the polynomial vector fields. In this paper, the focus was
on using SOS programming to determine approximately
the stability regions of a well-studied nonlinear modeled
controlled aircraft pitch axis problem. Accurate estimates of
the stability regions and practical interpretation of the size
of destabilizing perturbations as output by SOSTOOLS will
be significant complements to the present work.
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