
Comparative Studies of Load Balancing With Control and
Optimization Techniques

Yixin Diao, Chai Wah Wu, Joseph L. Hellerstein, Adam J. Storm, Maheswaran Surendra, Sam Lightstone,
Sujay Parekh, Christian Garcia-Arellano, Matthew Carroll, Lee Chu, and Jerome Colaco

Abstract— Load balancing is a widely used technique to
optimizing distributed computing system performance. System
response delays are reduced by equalizing the loads, such as
adjusting memory pool sizes to balance disk access demands in
a database management system. In this paper we formulate
load balancing as a constrained optimization problem and
investigate two load balancing controllers based on feedback
control theory and optimization theory. We show the difference
and equivalence between their design methods and criteria.
Furthermore, our studies on a DB2 Universal Database Server
reveal their performance difference regarding to system noise
and workload variations.

I. INTRODUCTION

Load balancing is essential in distributed computing sys-
tems to improve quality of service by managing customer
loads that are varying over time. The request demands of
incoming requests are optimally distributed among available
system resources to avoid resource bottlenecks as well as to
fully utilize available resources. Load balancing also facil-
itates horizontal scaling (e.g., adding computing resources
to accommodate increased loads). In this paper we compare
two load balancing techniques in the context of managing
database server memory, where the goal is to balance the
load consumption across multiple memory pools.

There is a vast literature on load balancing, including
its use in multiple source routing [1], redirection for web-
server systems [2], and memory management [3]. The focus
of these efforts, however, is more on load balancing in a
specific context, for example, how to classify the memory
load through reference characteristics and how to divide the
memory into partitions to accommodate them; the general
load balancing strategies are seldom formally analyzed.
Although heuristic tuning logic may work well in certain
circumstances, lack of rigorous convergence analysis can
lead to oscillation and unnecessary reallocation overheads
for load balancing in a dynamic environment. Recently,
analytical approaches such as those employing control
theory for computing systems are studied for web server
performance, differentiated caching and web service, and
multimedia streaming [4] [5] [6]. None of these approaches,
however, addresses load balancing or optimization of com-
puting system resources.

Y. Diao, C. W. Wu, J. L. Hellerstein, M. Surendra, and S. Parekh are
with IBM Thomas J. Watson Research Center, Hawthorne, New York,
USA.

A. J. Storm, S. Lightstone, C. Garcia-Arellano, M. Carroll, L. Chu, and
J. Colaco are with IBM Toronto Lab, Markham, Ontario, Canada.

In this paper we formulate load balancing as a constrained
optimization problem and investigate its different properties.
Furthermore, we study two load balancing technologies,
based on feedback control theory and optimization theory,
respectively. The control-based approach uses a model-
based feedback controller to equalize the marginal gains
from different memory pools so as to maximize the expected
saved system time for processing database requests. Not all
the components in the feedback loop, however, are strictly
analyzed, and the enforcement of the resource constraints
is handled by a separate projection logic, which makes it
difficult to analyze. In the second approach, we use the
optimization-based problem formulation to develop a so-
lution that exploits rigorous constrained optimization tech-
niques. Comparative analysis between these two approaches
shows similarities regarding to design methodologies as
well as differences in method implementation.

The remainder of the paper is organized as follows.
Section II describes the database memory load balancing
problem and experiment setup and analytical models for
simulation studies. Section III presents the control-based
and optimization-based load balancing approaches and com-
pares the difference and similarity between them. Section
IV assesses our controllers for a DB2 Universal Database
Server. The conclusions are contained in Section V.

II. LOAD BALANCING PROBLEMS

This section formulates the load balancing problem and
shows that load balancing provides a way to optimize
memory allocations in a database management system.

A. Database Memory Management

Figure 1 shows the architecture and system operations
of a database server that provides load balancing across
multiple memory pools. The database clients interact with
the database server through the database agents which are
computing elements that coordinate access to the data stored
in the database. Since disk accesses are much slower relative
to main memory accesses, database systems use memory
pools to cache disk pages so as to reduce the number and
time of disk input/output operations needed. The in-memory
data are organized in several pools, which are dedicated
for different purposes and can be of different types and
characteristics. The management of these pools, especially
in terms of determining their optimal sizes, is a key factor
in tuning and determining database system performance.
Increasing the size of a memory pool can drastically reduce

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

WeC10.5

1484

Agents

Memory
Tuner

Sensor

Disks

Memory Pools

Database
Server

Database Clients
Memory

Allocations

Response Time Benefit

Fig. 1. Architecture of load balancing for a database server.

its response time to access disk data since there is a higher
probability that a copy of the data is cached in memory. We
refer to this reduction in response time obtained from an
increase in memory allocation as the response time benefit,
or just benefit, measured in the units of saved response time
per unit memory increase.

Since the total size of the memory pools is fixed, increas-
ing the size of one pool necessarily means decreasing the
size of another. The memory tuner adjusts pool allocations
with the intent of reducing overall response time for data
access. An intuitive approach is to allocate memory to
pools so that each has the same benefit, the marginal
gain. The motivation for this allocation strategy is that
the performance of computing systems is largely affected
by the most loaded resource. Thus, by balancing the load
(in this memory management case, equalizing the benefits
for memory usage in all pools), we hope to optimize the
performance.

B. Experiment Environment and System Modeling

In this section we focus on understanding the relationship
between memory allocation and response time benefit. We
start from describing the experiment environment.

The main components of the testbed are the database
server and the workload generator. For the database server
we use IBM’s DB2 version 8.1, a system which provides
programmatic access to changing the sizes of memory pools
such as the database buffer pools and sort heap. We use two
industry standard benchmarks to provide workload gener-
ation: an online transaction processing (OLTP) workload
and a decision support systems (DSS) workload. The OLTP
workload consists of a large number of concurrent requests,
each of which has very modest resource demands; we use
20 buffer pools to contain data and index for the database
tables and 50 database clients to generate load. The DSS
workload has a small number of long-running resource-
intensive requests that are highly variable in their demands;
we structure the DSS runs so that there are always four
transactions executing concurrently.

We conduct experiments with the prototype code running
on top of DB2. For dynamic resource allocation in response
to workload variations, the response time benefits must
be measured or estimated at run-time. One example of

0 0.5 1 1.5 2 2.5
x 10

4

0

0.02

0.04

0.06

0.08

0.1
3

R
es

po
ns

e
tim

e
be

ne
fit

Pool size
0 1000 2000 3000 4000 5000

0

0.05

0.1

0.15

0.2
13

R
es

po
ns

e
tim

e
be

ne
fit

Pool size

(a) A data buffer pool (b) An index buffer pool

Fig. 2. Empirical model of the response time benefit of DB2 buffer
pools for an on-line transaction processing workload.

estimating the buffer pool benefit is to have ghost buffers
(a.k.a., dataless buffers) record the number of buffer hits
and disk time for cache sizes larger than the current buffer
size [3]. Another approach is to use the Belady’s lifetime
function to approximate the buffer hit ratio [7]. Estimation
accuracy and measurement overhead, certainly, are of great
concern for practical usage. While detailed descriptions of
benefit estimation mechanisms are outside the scope of this
paper, in general, the benefit measure needs to be common
for all the memory consumers. For this reason, we define the
benefit as “saved response time per unit memory increase.”
In contrast, other utilization measures may not make sense
for some consumers. For example, hit ratio is used in buffer
pools but not sort memory.

Figure 2 depicts two example relationships between re-
sponse time benefits and memory pool sizes, under the
OLTP workload. The horizontal axis is the size of the
memory pool in the unit of 4K pages; the vertical axis is the
response time benefit of adding an increment of memory
in the unit of second per 4K pages. The circles indicate
results obtained from testbed experiments. We assume an
exponential relationship between the pool size and the saved
response time, xi = pi(1− e−qiui), so that the relationship
between the pool size and the response time benefit is
yi = dxi

dui
= piqie

−qiui , where ui denotes the memory
allocated to pool i, xi denotes the saved disk response time
for pool i, yi denotes the response time benefit for pool
i, and pi, qi are model parameters that can be obtained
empirically. Although simple, the above model results in a
reasonable fit as shown in Figure 2 by the dashed lines. This
comes from the use of “local” metrics (so that the benefits
are only affected by memory/disk access behaviors but not
other parts of the database and operating systems). It is also
because the inter memory pool effect is not that significant
so that per memory pool model can be valid. Intuitively, the
response time benefit curve implies that adding memory can
be of great benefit when the current memory pool is small,
and its benefit will decrease with the increasing of memory
pool size; thus, the saved response time will saturate when
the memory pool is large enough and no more savings
can be earned. This function shape is also consistent with
the Belady’s lifetime function for approximating the buffer

1485

hit ratio of references that follow the Least Recently Used
(LRU) model. However, our models are more general and
can be applied not only to buffer pools but also to other
memory pools such as sort [8].

C. Load Balancing Problem Formulation

The above memory management problem can be clas-
sified into a general class of approaches that equalize
a measured output, so-called load balancing techniques.
For a load balancing and resource allocation problem, the
resource pool contains multiple instances of a resource type
(e.g., system resource such as memory, CPU, disk, or load
resource such as customer requests). The instances need not
be identical (e.g., CPUs with different speeds or memory
pages with different size). There are finite N consumers of
the resource type, each of which receives allocations of the
resource from the load balancer and provides to the load
balancer one or more measured outputs that quantify the
consumers’ performance (e.g., response time, utilization).
The load balancer allocates instances of the resource type in
a way that equalizes the measured outputs of the resource
consumer. Let u1, · · · , uN be resource allocations for N
resource consumers and y1, · · · , yN be their measured
outputs. The load balancing problem is to choose ui such
that y1 = · · · = yN subject to the constraint that

∑
ui = U

where U defines the total resource. While load balancing
is a widely used heuristic in computing systems, in some
cases it results in the optimal solution, specifically, when
the objective function is composed of a sum of resource
consumer metrics and the measured outputs for the load
balancer are the derivatives of such metrics.

In the database memory management example, the re-
source is the memory being managed, the consumers are
memory pools such as buffer pools for caching data and
index pages and sort memory for performing in-memory
sorting of disk pages, and the measured outputs are response
time benefits obtained as marginal gains of changing mem-
ory allocation. From the models obtained in Section II.B,
the optimization problem is to maximize the total saved
response time f , or maxu1,··· ,uN

f , where f =
∑N

i=1 xi =∑N
i=1 pi(1 − e−qiui), subject to the constraint of the total

available memory
∑N

i=1 ui = U . Since f =
∑N−1

i=1 xi +
xN =

∑N−1
i=1 pi(1 − e−qiui) + pN (1 − e−qN (U− N−1

i=1 ui)),
we can obtain max f by finding where the gradient is

zero, that is ∂f
∂ui

= piqie
−qiui + ∂pN (1−e−qN (U− N−1

i=1 ui))
∂ui

=
piqie

−qiui − pNqNe−qN uN = yi − yN = 0 for i =
1, 2, . . . , N − 1. This gives the optimal memory setting at
yi = yj for i, j = 1, 2, . . . , N . Since f is a convex function
of u, the optimal solution is unique, i.e., the local optimum
is also the global optimum [9].

In fact, the above load balancing property can be derived
without the knowledge of specific performance function.
Given a scalar performance function with N control vari-
ables u1, u2, . . . , uN

J = f(u1, u2, . . . , uN) (1)

and the scalar equality constraint

g(u1, u2, . . . , uN) = 0, (2)

the constrained optimization problem is to find the values of
ui that maximizes J subject to the constraint. This results in
N −1 independent components of ui and reduces the order
of the optimization problem by one. The solution of the
constrained optimization problem can be found by using
direct substitution of the constraint for the performance
function (as used above in the memory management exam-
ple). The direct substitution method, however, may not be
easy to use especially for a vector equality constraint. More
generally, the constrained optimization problem can be
solved using Lagrange multipliers. Furthermore, besides the
vector equality constraint we consider the vector inequality
constraint

h(u1, u2, . . . , uN) ≥ 0. (3)

For the database management problem, the inequality con-
straints are hi = ui − ui ≥ 0, that is, every memory pool
has its minimum size.

The solution of this constrained optimization problem can
be found using the first order Karush-Kuhn-Tucker (KTT)
necessary conditions. Define the Lagrange function

L = f(u1, u2, . . . , uN) + λg(u1, u2, . . . , uN)
+µ�h(u1, u2, . . . , uN) (4)

which adjoin the original performance function and the
constraints using the Lagrange multipliers λ and µ. The
KTT necessary conditions for a solution u to be locally
optimal is that the constraints are satisfied, i.e., g(u) = 0
and h(u) ≥ 0 and there exists Lagrange multipliers λ and
µ such that the gradient of the Lagrangian vanishes:

∂L

∂ui
=

∂f

∂ui
+ λ

∂g

∂ui
+

N∑

j=1

µj
∂hj

∂uj
= 0 (5)

Furthermore, µ satisfies the complementarity condition
µjhj = 0 with µj ≥ 0. For the memory load balancing
problem with the inequality constraint hi = ui−ui ≥ 0 and
equality constraint g(u1, u2, . . . , uN) =

∑N
i=1 ui − U = 0,

we have ∂L
∂ui

= ∂f
∂ui

+λ+µi = 0. Since the complementarity
condition implies that µi = 0 if hi > 0, and µi > 0 if
hj = 0. This means that the benefits ∂f

∂ui
are all equal for

the memory pools at the optimal allocation whose sizes are
not at the boundaries. For the memory pools whose sizes
are at the boundaries, their benefits would be smaller.

A few remarks of the load balancing problem. (i) A
locally optimal load not at the boundaries is a balanced
load if the measured outputs yi are the partial derivatives
of the performance metric J with respect to the resource
allocations ui, that is, yi = ∂f

∂ui
. (ii) A balanced load not at

the boundaries is a globally optimal load if the measured
outputs yi are the partial derivatives of the performance
metric J with respect to the resource allocations ui and
the performance function f is a concave function of ui.

1486

(iii) For a “weighted” constraint
∑N

i=1 wiui = U , the
optimal load is a “weighted”-balanced load, i.e., all yi/wi

are equal. (iv) Note that yi = ∂f
∂ui

may not be easy to
measure from the system as f is a global function across
all loads/consumers. However, if f(u1, u2, . . . , uN) can
be expressed as f(u1, u2, . . . , uN) = q1f1(u1) + · · · +
qNfN (uN), then the measured output yi = qi

dfi

dui
becomes

local measurement which is easier to measure or simulate.
This facilitates distributed modeling and control as in the
database memory management problem where, for example,
the saved disk I/O time is counted separately for each buffer
pool. (v) Given f(u1, u2, . . . , uN) = q1f1(u1) + · · · +
qNfN (uN) and qi > 0, a balanced load is a global optimal
load if all fi(ui) are concave functions. For the database
memory management problem, the exponential relationship
is concave.

The database memory management problem is one appli-
cation of the load balancing algorithm. We study two other
applications in Appendix.

III. LOAD BALANCING CONTROLLER DESIGN AND
COMPARISON

A. Control-Based Approach

As discussed in Section II, maximizing the total saved
response time from all memory pools can be achieved by
equalizing the response time benefit. We design a multiple-
input multiple-output (MIMO) feedback controller to im-
plement the load balancing function [9]. Such an approach
allows us to exploit well established techniques for handling
disturbances (e.g., due to changes in workloads) and to
incorporate the cost of control (e.g., throughput reductions
due to memory pool resizing). The load balancing model
and controller are given as follows.

y(k + 1) = Ay(k) + B(u(k) + d(k)) (6)

e(k) = (
1
N

1N,N − I)y(k) (7)

eI(k + 1) = eI(k) + e(k) (8)
u(k) = KPe(k) + KIeI(k) (9)

The first equation is a local linear approximation of the
exponential response time benefit curve as that in Section
II.B, where y(k) is a N×1 vector representing the measured
output (e.g., response time benefit). The N ×1 vector u(k)
represents the computed resource allocation (e.g., memory
pool size) from the feedback controller, and the N×1 vector
d(k) represents the possible adjustments made to enforce
the equality and inequality constraints. The N×N matrices
A and B contain state space model parameters that can be
obtained from system identification.

Equation (7) specifies the N×1 control error vector e(k),

where I =

1 · · · 0
...

...
0 · · · 1

 and 1N,N =

1 · · · 1
...

...
1 · · · 1

are N × N matrices. We define the average measured
output ȳ(k) = 1

N

∑N
i=1 yi(k) as the control reference. The

i-th control error is ei(k) = ȳ(k) − yi(k). The control
objective is to make ei(k) = 0, that is, equalizing the
measured outputs (i.e., yi(k) = yj(k) for any i and j) so
as to maximize the total saved response time. Note that
in contrast to having a static value or external signal as
the reference input, we specify the reference as a linear
transformation of measured outputs.

The dynamic state feedback control law is defined in
Equation (9), where u(k) is a N × 1 control input vector
(subject to constraint-oriented adjustment d(k) prior to be
applied to the database server) and eI(k) is the N × 1
vector representing the sum of the control error as defined
in Equation (8). The above state feedback controller can
be designed (specifying the N × N matrices KP and
KI) using linear control systems design techniques such
as linear quadratic regulator (LQR). Specific considerations
need to be given to maintain the controllability due to the
existence of equality constraints [9]. A cost model can also
be specified to choose the LQR Q and R matrices based
on the impact on system performance of changing resource
allocations and transient load imbalances [10].

The load balancing model and the feedback controller
described above can be simplified to facilitate online mod-
eling when the workload is unknown in advance and can
change overtime. It is also useful to manage a large number
of memory pools where the number of pools can also
vary at run-time and to increase the robustness regarding
to measurement uncertainties and uneven control intervals.
This simplification is performed by using distributed control
strategies. The model is built and the controller is designed
locally for each individual memory pool; the only connec-
tion between different pools is the control reference signal–
the average measured output. Specifically, a single-input
single-output model

yi(k + 1) = bi(k)ui(k) (10)

is built online for the i-th memory pool using recursive least
squares, and an integral controller

ui(k + 1) = ui(k)− 1 − p

bi(k)

yi(k) − 1

N

N∑
j=1

yj(k)

 (11)

is deployed for the i-th memory pool where p is the only
design parameter indicating the desired closed loop pole.
Although in general for a real database server the system
dynamics may not be negligible (e.g., an increase of buffer
pool size may not immediately result in response time
benefit decrease because of the time needed to fill up the
added buffer space) and the cross memory pool impact
does exist (e.g., an increase of sort memory will not only
bring down the benefit for sort memory but also that for
the buffer pool that stores temporary sort spill pages), our
experimental results for several different workload bench-
mark environments confirms the control performance of this
distributed controller. This is also because of our using

1487

relatively large control and sample interval to reduce the
effects of dynamics as well as measurement noise.

Note that the control input obtained from the above
feedback control approach may not satisfy either the equal-
ity constraint on total available memory or the inequality
constraint on minimum memory pool size. To enforce the
constraint conditions, a projection method is used to adjust
the control input u(k). Specifically, we compute

di(k) =
ui(k)∑N

j=1 uj(k)

U −

N∑
j=1

uj

 + ui (12)

where ui(k)) is from the above feedback controller but is
further bounded to be non-negative (i.e., set ui(k) to 0 if it
is negative). The new memory pool size is given by ui(k)+
di(k) to satisfy both the equality and inequality constraints
and is applied to the database server. Since the effect of
the projection method is modeled by a disturbance signal
d(k) in Equation (6), it will not affect the stability and
convergence of the closed loop system.

B. Optimization-Based Approach

As formulated in Section II.C, the load balancing problem
is a constrained optimization problem. Instead of solving it
using the control-based approach, in this section we use the
standard constrained optimization technique, particularly,
the active set methods [11]. Although equality constraints
are relatively easy to enforce, for their effect is to reduce the
dimensionality of the optimization problem by the number
of independent linear equality constraints, the inequality-
constrained problem is more involved. This is because for
the set of inequality constraints, only the constraints active
(becoming equality) at the solution are significant; this set of
constraints that hold with equality at the solution, however,
is generally unknown. The active set algorithm works with
the following logic steps. (i) Predict the active set by se-
lecting a working set of constraints to be treated as equality
constraints. (ii) Evaluate the validity of the working set and
add or delete a constraint if necessary. (iii) Compute the
feasible search direction and step length obeying the above
working set, so that the inequality-constrained problem is
solved as equality-constrained problem through iterations.

With the active set method, the search direction is con-
structed to lie in a subspace defined by the working set;
the step length is ensured to not violate any constraint that
is not in the working set. For the constrained optimization
problem defined by Equations (1), (2), and (3), the optimal
solution is searched as follows (since we are maximizing an
objective function, our notation will vary slightly in several
places compared to the optimization literature which usually
minimizes an objective function):

u(k + 1) = u(k) + λ(k)p(k) (13)

where u(k) denotes the N × 1 vector comprising of N
memory pool sizes, p(k) denotes the N × 1 projected
gradient vector (i.e., the feasible search direction), and λ(k)

is the (scalar) step length. Specifically, the search direction
can be computed using quasi-Newton or Newton’s method,
and the Newton direction is projected to formulate the
feasible search direction [11]

p(k) = −(H(k) − H(k)A�(k)
(
A(k)H(k)A�(k)

)−1

A(k)H(k))y(k) (14)

where y(k) denotes the N × 1 gradient vector comprising
of N response time benefit measurements, I is a N × N
identify matrix, A is a m×N matrix consisting of m linear
equality constraints in the working set, and H denotes the
inverse of the N×N Hessian matrix. The inverse Hessian is
approximated sequentially by a quasi-Newton update such
as BFGS.

The scalar step length λ(k) can be computed using
line search algorithms. For instance, the step size λ(k) is
selected when sufficient increase is observed. One way this
is done is by decreasing the step size until the Armijo
condition

f (u(k) + λ(k)p(k)) ≥ f (u(k)) + c1λ(k)∇f (u(k))� p(k)
(15)

is satisfied. However, the evaluation of the cost function
f is required, which is not available in the database
memory management problem since the saved response
time is unknown or difficult to measure. In line search
type optimization algorithms, about the only place where
the cost function f is needed is in the scalar line search
component to determine λ(k). Therefore, we can get an
optimization algorithm that does not require knowledge of
f if we modify the line search algorithm to use only the
gradient information. Specifically, we conduct backtracking
line search which decreases the step size λ(k) each time by
a multiplicative factor β < 1 until the following condition

∇f (u(k) + λ(k)p(k))� p(k) ≥ c1∇f (u(k))� p(k) (16)

is satisfied. Note that Equation (15) is equivalent to
Equation (16) when f is linear. On the other hand,
when f is concave, f (u(k)) ≤ f (u(k) + λ(k)p(k)) −
λ(k)∇f (u(k) + λ(k)p(k))� p(k). Thus Equation (16) im-
plies the Armijo condition (Equation (15)). In other words,
for concave f , the convergence properties associated with
line search algorithms using the Armijo condition is pre-
served when using Equation (16) instead of the Armijo
condition.

C. Comparison Between the Control-Based and
Optimization-Based Approaches

In this section we compare the control-based and op-
timization based approaches in the context of database
memory management and show their equivalence regarding
to design criteria and difference in design implementations.

Consider a situation where all memory pool sizes are not
at the boundary, so that the working set only consists of the
equality constraint

∑N
i=1 ui(k) = U , that is,

A(k) =
[

1 1 · · · 1
]

(17)

1488

is a 1×N vector. Suppose the benefits (i.e., first derivatives)
are available and the memory pools are independent, i.e.,
f can be written as f =

∑
i fi(ui). Then the Hessian is

diagonal, and thus applying group partial separability [12]
to quasi-Newton updates of the inverse Hessian results in an
update which is equivalent to the finite difference method
of estimating the inverse Hessian matrix

H(k) =

1
s1(k) 0 · · · 0

0 1
s2(k) · · · 0

...
...

0 0 · · · 1
sN (k)

(18)

where si(k) = yi(k)−yi(k−1)
ui(k)−ui(k−1) is the slope of the benefit

curve for memory pool i. Since

A�(k)
(
A(k)H(k)A�(k)

)−1
A(k)H(k)

=
1∑N

j=1
1

sj(k)

1
s1(k)

1
s2(k) · · · 1

sN (k)
1

s1(k)
1

s2(k) · · · 1
sN (k)

...
...

1
s1(k)

1
s2(k) · · · 1

sN (k)

,(19)

we have

pi(k) = − 1
si(k)

yi(k) − 1∑N

j=1
1

sj(k)

N∑
j=1

yj(k)
sj(k)

 .

(20)
This gives

ui(k+1) = ui(k)− λ(k)
si(k)

yi(k) − 1∑N

j=1
1

sj(k)

N∑
j=1

yj(k)
sj(k)

(21)
where the step length λ(k) is computed using the modified
Armijo rule as above. Because “successive step size reduc-
tion” is used and the initial step length is picked at 1, we
have 0 < λ(k) ≤ 1.

Comparing the above simplified optimization-based con-
trol law with the distributed control law in Equation (11),
we can see that the search direction are approximately
the same when the Hessian is close to a multiple of the
identity matrix. (For example, if s1(k) = · · · = sN (k), then

1
N
j=1

1
sj(k)

∑N
j=1

yj(k)
sj(k) = 1

N

∑N
j=1 yj(k).) In either ap-

proach, the change in u depends on the difference between
the benefit and average benefit. Equation (21) is a standard
projected method (i.e., projection Newton) satisfying the
equality constraint (and inequality constraints if the working
set A(k) represents so) and the average benefit is a convex
sum of all the benefits. Equation (11) uses “pure” average
benefit (i.e., 1

N

∑N
j=1 yj(k)) and does not enforce the con-

straints so that additional projection method, such as that in
Equation (12), needs to be applied. Unlike the optimization-
based method that strictly applies constrained optimization
techniques, the control-based approach implicitly considers
the constraints to reduce its dependence on the model so

as to improve its robustness; meanwhile, this implicit con-
sideration still guarantees system stability and convergence,
for its effect can be modeled by the disturbance signal d(k)
and compensated by the feedback control scheme.

Furthermore, there exists other differences between the
two methods. First, 1 − p is used in the control-based
approach, where p (0 < p < 1) is the desired closed loop
pole and is specified as a design parameter (a smaller p indi-
cate a more aggressive control action). In the optimization-
base approach, λ(k) is used and calculated online with
the line search method. Both of them, however, are in the
range between 0 and 1. Second, bi(k) is the steady-state
gain in the control-based approach determined online using
recursive least squares. Same as si(k), it also indicates the
slope of the benefit curve. On the other hand, si(k) can be
quite subject to noise (even if it can also be computed using
recursive least squares, a not common practice in calculating
the Hessian matrix). Third, we consider the difference in
deriving Equation (11) and (21). In the optimization-based
approach the computation of the inverse Hessian matrix
is greatly simplified by not considering the interactions
between memory pools. If these interactions are significant,
then the inverse Hessian is not diagonal and the quasi-
Newton inverse Hessian update will be more complicated
than Equation (18). In the control-based approach, the SISO
model (10) is also a simplified version of the dynamic
system model (6) which captures the system dynamics as
well as the interactions between memory pools.

IV. CONTROLLER ASSESSMENT

This section describes simulation studies for comparing
the control-based and optimization-based approaches in
balancing the load of database memory. The simulator uses
the models developed in Section II.B, where the model para-
meters are identified from the data collected in experiments
with an OLTP workload. The variabilities in response time
benefit data are also emulated using noise models with a
normal distribution and the standard deviations matching
with those from different memory pools. A total of 20 buffer
pools are being managed with a total of 40,000 4K pages.
The minimum pool size is 20 4K pages.

We first consider the case without noise. The memory
is initially allocated so that all the pools has 100 pages
except one with 38,100 pages. The load balancing per-
formance is show in Figure 3 for both the control-based
and optimization-base approaches, where the horizontal axis
is the control interval in 30 seconds. A workload change
occurs at the 40th interval. The top plot shows the sizes
of 20 memory pools (some of these 20 lines are not distin-
guishable), the middle plot shows the response time benefits
of these 20 pools, and the bottom plots shows the total saved
response time computed from models developed in Section
II.B. Both controllers adjust the size of buffer pools so as
to equalize the response time benefits from different pools.
However, we see that the optimization-based controller is
converging much faster (except the initial “inertia” after the

1489

0 20 40 60 80
0

2

4x 10
4

u
Control−Based

0 20 40 60 80
0

0.05

0.1

y

0 20 40 60 80
200

300

400

J

k

0 20 40 60 80
0

2

4x 10
4

u

Optimization−Based

0 20 40 60 80
0

0.05

0.1

y

0 20 40 60 80
200

300

400

J

k

(a) Control-based approach (b) Optimization-base approach

Fig. 3. Load balancing performance with workload change but
without noise for a simulated OLTP workload.

0th and 40th intervals). This can be explained by noting
that the optimization-based approach takes full advantage
of accurate model information, while the control-based
algorithm enforces the constraints implicitly and chooses
a larger p for robustness considerations.

Next, we consider the effect of noise. As shown in
Figure 4 (without workload changes), the control-based
approach is still converging to approximately the same
memory allocations as the ones without noise. However,
the optimization-based approach does not and thus re-
sults in larger and unbalanced response time benefits and
smaller total saved response time. To see this noise effect
more clearly, we conduct this simulation 10 times with
different randomness and also with workload changes at
the 100th interval as shown in Figure 5. The control-
based approach shows higher robustness with respect to
the noise and with more consistent convergence behaviors,
while the optimization-based approach seems more sensitive
to noise. However, its performance may be improved by
using recursive least squares for estimating the Hessian
matrix or by adjusting the parameters c1 and β in the
line search procedure. On the other hand, Figure 4 and
Figure 5 show that noise causes the allocation in the control-
based approach to fluctuate at each interval, whereas in the
optimization-based approach, the allocation does not change
significantly once an optimal (or steady-state) solution is
found. This can be attributed to the fact that the line search
makes sure a change in allocation is only done if it result
in a significant increase in the saved response time.

Experimental comparison are also conducted for the DSS
workload with similar results; in the interest of brevity,
however, we do not include those plots here.

V. CONCLUSIONS

Load balancing is widely used in computing systems for
performance optimization through equalizing loads. One
example in database systems is to adjust the memory
pool sizes so as to balance the disk I/O demands. In this
paper we have formulated load balancing as a constrained
optimization problem and studied two load balancing con-
trollers based on feedback control theory and optimization
theory. Their difference and similarity have been studied
analytically. Furthermore, our simulation studies over a DB2

0 20 40 60 80
0

2

4x 10
4

u

Control−Based

0 20 40 60 80
0

0.05

0.1

y

0 20 40 60 80
200

300

400

J

k

0 20 40 60 80
0

2

4x 10
4

u

Optimization−Based

0 20 40 60 80
0

0.05

0.1

y

0 20 40 60 80
200

300

400

J

k

(a) Control-based approach (b) Optimization-base approach

Fig. 4. Load balancing performance with noise for a simulated
OLTP workload.

0 50 100 150 200
0

2

4x 10
4

u

Control−Based

0 50 100 150 200
0

0.05

0.1

y

0 50 100 150 200
0

200

400

J

k

0 50 100 150 200
0

2

4x 10
4

u

Optimization−Based

0 50 100 150 200
0

0.05

0.1

y

0 50 100 150 200
0

200

400

J

k

(a) Control-based approach (b) Optimization-base approach

Fig. 5. Load balancing performance of multiple runs with noise
and workload change for a simulated OLTP workload.

Universal Database Server have demonstrated better perfor-
mance and robustness for the feedback control approach
with respect to system noise and workload variations.

REFERENCES

[1] L. Zhang, Z. Zhao, Y. Shu, L. Wang, and O. Yang, “Load balancing
of multipath source routing in ad hoc networks,” in International
Conference on Communications, 2002.

[2] V. Cardellini, M. Colajanni, and P. S. Yu, “Request redirection al-
gorithms for distributed web systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 14, no. 4, pp. 355–368, 2003.

[3] J. T. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Ze-
lenka, “Informed prefetching and caching,” in Proceedings of the
15th Symposium on Operating System Principles, pp. 1–16, 1995.

[4] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley and Sons, 2004.

[5] Y. Lu, A. Saxena, and T. F. Abdelzaher, “Differentiated caching
services: A control-theoretic approach,” in International Conference
on Distributed Computing Systems, Apr. 2001.

[6] B. Li and K. Nahrstedt, “Control-based middleware framework for
quality of service applications,” IEEE Journal on Selected Areas in
Communication, 1999.

[7] J. R. Spirn, Program Behavior: Models and Measurements. Elsevier-
North, Holland, 1977.

[8] IBM, IBM DB2 Universal Database Administration Guide. IBM
Corp, 2002.

[9] Y. Diao, J. L. Hellerstein, A. Storm, M. Surendra, S. Lightstone,
S. Parekh, and C. Garcia-Arellano, “Using MIMO linear control
for load balancing in computing systems,” in Proceedings of the
American Control Conference, Boston, MA, 2004.

[10] Y. Diao, J. L. Hellerstein, A. Storm, M. Surendra, S. Lightstone,
S. Parekh, and C. Garcia-Arellano, “Incorporating cost of control
into the design of a load balancing controller,” in Proceedings of
the Real-Time and Embedded Technology and Application Systems
Symposium, Toronto, Canada, 2004.

[11] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization.
Academic Press, 1981.

[12] J. Nocedal and S. J. Wright, Numerical Optimization. Springer-
Verlag, 1999.

1490

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

