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Abstract— A semi-analytical method is proposed to generate
minimum-time optimal velocity profiles for a vehicle with given
acceleration limits driving along a specified path. The method
is formally proven to provide optimal results using optimal
control theory. In addition, several undesirable cases, where
loss of controllability occurs, and which have been neglected
in the literature, are being dealt with in this work.

I. INTRODUCTION

Several results for trajectory planning of high-speed
land vehicles using numerical methods have been recently
published [1], [2], [3], [4], [5]. These results incorporate
accurate, high order dynamical models in the optimization
process and thus produce quite realistic results. However,
these numerical optimization approaches are computation-
ally costly and may not be appropriate for real-time imple-
mentation.

In order to develop a scheme for fast autonomous vehicle
operation that can be applied in real time, we need a
method that produces optimal or near-optimal solutions
with low computational cost. Such methods have been
proposed, for instance, in [6] and [7]. The path in these
references is designed using geometric principles, and an
intuitively “optimal” velocity profile is generated using a
semi-analytical approach, by taking into consideration the
maximum acceleration available to the vehicle at each point
on the path.

In this work we concentrate on the generation of the
optimal velocity profile along a specified path, given the
acceleration limits of the vehicle. A point mass model of
the vehicle is used, and the problem is formulated using an
optimal control framework. A formal proof of the optimality
of the semi-analytical method proposed in [6] and [7] to
generate the optimal velocity profile is provided. Several
problematic cases, in which loss of controllability occurs,
and which were neglected in [6] and [7], are also discussed.
The methodology is of minimal computational cost, com-
pared to common numerical optimization approaches, and
is suitable for on-line implementation.

II. PROBLEM STATEMENT

Consider a vehicle modelled by a point mass m travelling
through a prescribed path, with given acceleration limits
and fixed boundary conditions, that is, fixed initial and final
position and velocity. We seek the velocity profile along the
path for minimum travel time. The path is described by the
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radius at each point of the path as a function of the path
length coordinate s, R(s) (Fig. 1), or equivalently by the
curvature k(s) along the path. The cartesian coordinates at
any point on the path may be calculated using a standard
transformation [3]. The equations of motion are given by
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Fig. 1. The vehicle of mass m travels along the prescribed path R(s) in
minimum time, given the maximum acceleration limit Fmax/m.

m
d2s

dt2
= ft ,

m
(

ds
dt

)2

R(s)
= fn , (1)

where, ft is the tangential component of the force along
the path, and fn is the normal (centripetal) force such
that the vehicle tracks the prescribed path. Consider now
the following state assignment and change of time scale:
τ = βt, z1 = αβs, z2 = αds

dt , with α =
√

m/Fmax and
β = αFmax/m. The control input in this formulation is ft,
and the maximum overall acceleration limit Fmax/m trans-
lates to a state-dependent control constraint. Introducing the
control variable u, the control constraint may be written as

ft/Fmax = u

√
1 − (z2

2/R(z1))
2
, u ∈ [−1,+1] . (2)

The dynamics of the system may then be written as

ż1 = z2 , ż2 = u

√
1 − (z2

2/R(z1))
2
, u ∈ [−1,+1] . (3)

Note that for the dynamics to be well defined and controlla-
bility to be maintained the trajectories have to remain inside
the region S of the state space defined by

S = {(z1, z2) : |R(z1)| > z2
2}. (4)

In the sequel we assume that (z1(τ), z2(τ)) ∈ S, for all
τ ∈ [0, τf ], unless stated otherwise.

III. OPTIMAL CONTROL FORMULATION

Given fixed boundary conditions z10 = z1(τ = 0) (point
A), z20 = z2(τ = 0), z1f = z1(τ = τf ) (point B) and
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z2f = z2(τ = τf ), we desire the optimal control u that
drives the system (3) from point A to point B in minimum
time τf . At this point we make the natural assumption
that the boundary conditions are chosen in such a way
that the optimal velocity does not change sign, that is,
z2(τ) ≥ 0, ∀ τ ≥ 0. The Hamiltonian for the corresponding
minimum time problem is

H = 1 + λ1z2 + λ2u

√
1 − (z2

2/R(z1))
2

. (5)

The system of adjoint equations is

λ̇1 = −∂H

∂z1
= −λ2u

z4
2√

1 − (z2
2/R(z1))

2

R′

R3
, (6)

λ̇2 = −∂H

∂z2
= −λ1 + 2λ2u

z3
2

R2

√
1 − (z2

2/R(z1))
2
, (7)

where R′ denotes the partial derivative of the path radius
with respect to z1, that is, R′ = ∂R

∂z1
. From the transversality

condition we get H(τf ) = 0. Since the Hamiltonian does
not depend explicitly on time, it follows that H(τ) = 0, for
all τ ∈ [0, τf ].

The optimal control is found using Pontryagin’s Maxi-
mum Principle

u∗ = argminu∈[−1,+1]H(z, λ, u) =
{−1 for λ2 > 0,
+1 for λ2 < 0,

(8)

which implies u∗ = −sgn λ2. Therefore λ2 is the switching
function, which determines the value of u∗.
The occurrence of singular controls, i.e. intervals for which
λ2 ≡ 0, can be easily ruled out.

Proposition 1: Assuming that the optimal trajectory re-
mains in S, there can be no singular sub-arc. Subsequently,
the optimal trajectory is composed only of bang-bang
subarcs (u = +1 or u = −1).

IV. SOLUTION FOR SPECIAL CASES OF R(s)

In the following subsections we investigate the solution
of the optimal time problem introduced above for several
special cases of R(s). We consider the two simple cases of
paths of non-increasing and non-decreasing curvature. Us-
ing the solutions of these simple cases along with Bellman’s
Principle of Optimality we will show how to construct the
solution for the general case of R(s).

A. Case 1: Path of Non-Increasing Curvature

A path of non-increasing curvature is defined by
RR′ ≥ 0. Equations (6), (7) with RR′ ≥ 0 give that
λ̇1 ≥ 0.

Suppose now that there exist a switching time τ1. It
follows that λ2(τ1) = 0. The transversality condition
implies

λ1(τ1) = − 1
z2(τ1)

. (9)

For any time τ < τ1 we have that

− 1
z2(τ)

≤
−1 + |λ2|

√
1 −

(
z2
2

R(z1)

)2

z2(τ)

= λ1(τ) ≤ λ1(τ1) = − 1
z2(τ1)

(10)

since λ1 is non-decreasing. We conclude that τ1 is a
switching point from acceleration (u = +1) to deceleration
(u = −1).

Suppose now that there exist a second switching instant
τ2. Using the same reasoning as above we conclude that
τ2 has to be a switching point from acceleration to de-
celeration. It follows that there are no switchings from
deceleration to acceleration. Finally, for the case of non-
increasing curvature there may be at most one switching of
the control from acceleration to deceleration.

B. Case 2: Path of Non-Decreasing Curvature

A path of non-decreasing curvature is defined by RR′ ≤
0. Using a similar approach as before we may conclude
that in the case of a non-decreasing curvature there may be
at most one switching of the control from acceleration to
deceleration.

V. LOSS OF CONTROLLABILITY

In the previous formulation of the optimal control prob-
lem we have assumed that the vehicle tracks the given
path exactly, and thus the centripetal force is given by
fn = Fmaxz

2
2/R(z1). When the speed of the vehicle takes

the value of

z2−critical =
√

|R(z1)|, (11)

we have that (z1, z2) ∈ ∂S. In this case fn = Fmax and
ż2 = 0 from (3). The control input u cannot affect the
value of the velocity and loss of controllability ensues. This
may also be interpreted as loss of the ability to generate
tangential force ft, since the whole force capacity Fmax is
used to produce the centripetal force fn. In order to analyze
this pathological case, we introduce the state constraint

|R(z1)| − z2
2 = ε (12)

and we let ε → 0+. Taking the derivative with respect to
time of (12) we may solve for the control input that ensures
that the vehicle stays on the characteristic path (12). It is
easily shown that this control input is given by

usc =
RR′

2z2
2

√
1 − z4

2/R2
. (13)

Next we investigate the case of loss of controllability at
paths of decreasing, constant and increasing curvature.
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A. Path of Monotonically Decreasing Curvature

Consider a path of monotonically decreasing curvature.
Assume that at some point in time τc, z2(τc) = z2−critical.
The tangential component of the acceleration becomes zero
and ż2(τc) = 0. Since the vehicle travels on a path
of decreasing curvature (increasing radius), R(z1(τ+

c )) >
R(z1(τc)), while z2(τ+

c ) = z2(τc). It follows that the
square root in the rhs of equation (3) will take a positive,
non-zero value at τ = τ+

c and the system will regain
controllability. Thus, in a path of monotonically decreasing
curvature controllability may be lost only instantaneously.

B. Path of Constant Curvature

Consider now a path of constant curvature, and assume
that at some point τc we have that z2(τc) = z2−critical. Since
the square root in equation (3) becomes zero, the tangential
acceleration becomes zero and hence ż2(τc) = 0. Since we
are on a path of constant curvature, z2(τ) = z2−critical for
all τ ≥ τc and thus once controllability is lost, it cannot be
regained.

In Fig. 2 the curve (i) is the characteristic path of
maximum acceleration (u = +1) from the starting point
A, (ii-a) is the characteristic path z2 = z2−critical, and
(iii) is the characteristic path of maximum deceleration
(u = −1) towards the end point F . Once the point C is
reached accelerating from A, controllability is lost and the
vehicle travels with velocity z2−critical on the path (ii-a). At
the point D the control would have to change to braking
(u = −1) in order for the vehicle to reach the end point D.
This is not possible however due to loss of controllability,
and the vehicle continues to travel with velocity z2−critical

even after the point D.
As already discussed, the solution A → C → D → F

using the characteristic paths (i), (ii-a) and (iii) is not
possible. In fact, it is not allowable for the vehicle to
reach z2−critical (unless at the end point z2f = z2−critical).
Consider now the solution z∗2(z1), from A → B on (i) with
u = +1, then from B → E on (ii-b) with u = 0, and finally
from E → F on (iii) with u = −1. The characteristic path
(ii-b) has constant velocity, which is less than the critical
velocity but it is as close to it as possible (let ε → 0+ in
(12)). Notice that this solution provides a smaller travel time
than any other solution satisfying R(z1) − z2

2 ≥ ε, since it
has pointwise the largest possible velocity. The necessary
optimality conditions are also satisfied since for R′ = 0 (13)
gives usc = 0, which is the control applied on the B → E
subarc. Note however that an optimal solution does not exist
in this case since the optimal trajectory for ε → 0+ does
not lie in S.

We point out that the characteristic path (ii-a) corresponds
to the solution with free boundary conditions, and thus it
represents the fastest possible way to travel through a path
of constant curvature.

z
1

z 2

A

B

C D 

E

F

(i)

(ii−a)

(ii−b)

(iii)

z
2 critical

b c d e

Fig. 2. Constant radius path; uncontrollable case.

C. Path of Monotonically Increasing Curvature

Consider finally a path of monotonically increasing cur-
vature, and a time τc such that z2(τc) = z2−critical.
Once again, ż2(τc) = 0 and z2(τ+

c ) = z2(τc), and since
R(z1(τ+

c )) < R(z1(τc)), it follows that a z2(τ+
c )2 ≥

R(z1(τ+
c )). The quantity inside the square root in the rhs

of (3) becomes negative at τ+
c . The equations are infeasible

and a larger centripetal force than the available Fmax is
needed for the vehicle to negotiate the path. In other words
the vehicle cannot follow the prescribed path.

In the sequel, an approach to generate a suboptimal
solution that is guaranteed to maintain z2 < z2−critical is
proposed. Although the proposed path is not necessarily
optimal, it is feasible, controllability is maintained at all
times, and recovers the optimal solution when R′(z1) → 0.

In order to construct this feasible path, notice that the
smallest possible slope of the z1-z2 plot of any feasible
solution is achieved at maximum deceleration (u = −1). In
particular, we have

ż2 = u
√

1 − z4
2/R2 ⇒ z′2 =

u

z2

√
1 − z4

2/R2 (14)

which for u = −1 yields

z′2min = − 1
z2

√
1 − z4

2/R2. (15)

On the other hand, the slope of the z2−critical characteristic
path of (11) is

z′2−critical =
sgn(R)R′

2
√|R| = ρ (16)

We enforce the inequality z′2min ≤ z′2−critical, which im-
plies, by taking into consideration equations (15) and (16),
that the following polynomial inequality should hold

P (z2) = z4
2 + R2ρ2z2

2 − R2 ≤ 0. (17)

Solving for z2
2 , the roots of P (z2) are r1,2 = (−R2ρ2 ∓√

R4ρ4 + 4R2 )/2 and for (17) to hold, given z2 > 0 we
must have z2 ≤ √

r2. The following characteristic path is
then generated

z2−safe =
√

r2. (18)
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The explicit relationship between z2−safe and z2−critical is
given by the following equation

z4
2−safe − z4

2−critical +
(
R′2/4

)
z2
2−safez

2
2−critical = 0 , (19)

from which we conclude that z2−safe → z2−critical when
R′ → 0.
It is easy to show that this characteristic path may be
followed by the vehicle using the control law

usafe =
z2z

′
2−safe√

1 − z4
2/R2

. (20)

This is shown in Fig. 3, where the trajectory starts at
point A with maximum acceleration u = +1 and moves
along the characteristic (i). Afterwards the control switches
to usafe at the point B, where the path (i) intersects the
characteristic path (ii-b) where z2 = z2−safe. Observe that
the path (ii-b) and the z2−critical path denoted by (ii-a) never
meet. Finally, at the point C the control switches to u = −1
and the trajectory follows the path (iii) in order to reach the
desirable final point D.

Proposition 2: The control law usafe approaches the op-
timal control law usc as ε → 0+.

z
1

z 2

trajectory
z

2 critical
z

2 safe

A D 

B

C

(i)

(iii)

(ii−b)

(ii−a)

Fig. 3. Path of increasing curvature; uncontrollable case.

VI. PATH WITH min R(s)

Consider a path that has a unique point of minimum
radius at C, as in Fig. 4. Let z∗2−C denote the velocity
at point C of this path. According to Bellman’s Principle
of Optimality if the solution A → B is optimal then the
first part of this solution, A → C, solves the minimum
time problem from A → C with the final condition
z2(C) = z∗2−C . Similarly, the second part, C → B, solves
the minimum-time problem C → B with initial condition
z2(C) = z∗2−C .

On the part A → C we have a path of decreasing radius,
and according to Section IV-B the possible optimal velocity
profiles, summarized in Fig. 5(a), are: pure acceleration
(Case 1), pure deceleration (Case 2) or pure acceleration
that switches once to pure deceleration (Case 3). Similarly,
on the part C → B we have a path of increasing radius
and according to Section IV-A the possible optimal velocity
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Fig. 4. Path with minimum radius at point C, in cartesian coordinates
(left), radius as a function of path length (right).

profiles, summarized in Fig. 5(b), are: pure acceleration
(Case a), pure deceleration (Case b) or pure acceleration
that switches once to pure deceleration (Case c).
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(a) A → C
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Fig. 5. Possible optimal velocity profiles before (left) and after (right)
point C. Similarly for a path with maximum radius at point C.

All the possible optimal velocity profiles for the overall
problem from A to B are shown in Fig 6. In the following,
we discuss each case separately in order to compute the
optimal velocity at point C.

Case 1a corresponds to pure acceleration in both
sub-arcs, A → C and C → B. The velocity at point C has
to be less or equal to z2−critical. In this case the optimal
velocity z∗2−C is determined exclusively by the boundary
conditions at A and B.
Case 1b corresponds to pure acceleration from A to
C and pure deceleration from C to D. Consider a
different solution using the sequence of characteristic paths
(I),(III),(IV),(II) shown in Fig. 6, Case 1b, which also
satisfies the IC’s at points A and B. However, it is obvious
that the solution using one switching from (I) to (II) uses
the highest possible velocity point-wise between A and B
(for the given boundary conditions), and thus this is the
optimal solution. Again, the velocity at point C has to be
less than or equal to z2−critical.
Case 1c corresponds to pure acceleration from A to C and
switching of the control from acceleration to deceleration
along the sub-arc C → B. This case is similar to the
Case 1b.
Case 2a corresponds to pure deceleration from A to C
and pure acceleration from C to B. Assume, as shown
in Case 2a of Fig 6, that there are other solutions that
consist of admissible switchings, and which satisfy the
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Fig. 6. All possible optimal velocity profiles from A to B.

same boundary conditions at points A and B. In fact, the
solution that corresponds to Case 2a, constructed by the
characteristic paths (I) and (II), is the one with the lowest
velocity point-wise between A and B. We conclude that
Case 2a will be optimal only if z∗2−C = z2−C−critical. In
that case any other solution would require the vehicle to
pass through C with velocity greater than the critical one,
which is not possible.
Case 2b corresponds to pure deceleration in both sub-arcs,
A → C and C → B. It is completely equivalent to Case 1a
if we reverse the boundary conditions at the points A and
B.
Case 2c corresponds to pure deceleration from A to
C and one switching from acceleration to deceleration
inside the sub-arc from C to B. As in Case 2a, unless
z∗2−C = z2−C−critical there are other solutions that satisfy

the boundary conditions at points A and B consisting of
higher velocities at all points between A and B.
Case 3a is completely equivalent to Case 2c.
Case 3b is completely equivalent to Case 1c.
Case 3c corresponds to one switching from acceleration
to deceleration along the sub-arc A → C and another
switching from acceleration to deceleration along the
sub-arc C → B. Obviously, there are other solutions
that satisfy the boundary conditions at the points A and
B, consisting of smaller velocities at all points (using
the sequence (I), (II’), (III’), (IV), for instance). Unless
z∗2−C = z2−C−critical there are other solutions that satisfy
the boundary conditions at points A and B, which consist
of higher velocity at all points. Thus Case 3c is optimal if
z∗2−C = z2−C−critical.

From the previous analysis we conclude that there are
only two possible scenarios for the value of z∗2−C . In Cases
1a, 2a, 3a, 2b and 3b we have z∗2−C ≤ z2−C−critical. In all
these cases there exists at most one control switching. In
Cases 2a, 2c, 3a and 3c we have z∗2−C = z2−C−critical. In
such cases we may have up to three control switchings.

We now propose a methodology to construct the overall
optimal solution. Starting from point A we calculate the
characteristic path using full acceleration (u = +1), say
zi
2(z1). Starting at point B we construct the characteristic

path of full deceleration (u = −1) using backward inte-
gration, say zii

2 (z1). Finally, we construct the characteristic
ziii
2 (z1) of full deceleration up to point C and full accel-

eration starting from point C. In fact, the path ziii
2 (z1) is

exactly the characteristic path of Case 2a, and the solution to
the free boundary condition problem. The optimal velocity
profile is then given by

z∗2(z1) = min
{
zi
2(z1), zii

2 (z1), ziii
2 (z1)

}
(21)

It is easy to show that (21) reproduces all the cases of Fig. 6.

VII. PATH WITH max R(s)

Consider now a path that has a unique point of maximum
radius at C. As before, we may assume that the total path
consists of two parts, one of increasing radius, from A to
C, and one of decreasing radius, from C to the final point
B.

All possible scenarios that may appear along the sub-arcs
A → C and C → B according to the solutions presented in
Sections IV-A and IV-B may be summarized as in Fig. 5.
The same arguments as in Section VI hold for each one of
the Cases 1a-3c. Thus, we conclude that the optimal velocity
at point C is determined solely by the boundary conditions
at points A and B for each of the Cases 1a, 1b, 1c, 2b and
3b. In all these cases the optimal solution involves at most
one switching, from acceleration to deceleration.

In Section VI we concluded that Cases 2a, 2c, 3a and
3c may appear as the optimal solutions only if the velocity
at C is z∗2−C = z2−C−critical. Since point C is a point of
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maximum radius the critical velocity at point C is larger
compared to any other point from A to B

z2−critical < z2−C−critical . (22)

On the other hand, in Cases 2a, 2c, 3a and 3c the velocity
at point C is a local minimum. That is, in an area around
point C

z∗2−C ≤ z2 . (23)

For z∗2−C = z2−C−critical equations (22), (23) imply that
z2 > z2−critical and the vehicle cannot follow the prescribed
path. We conclude that Cases 2a, 2c, 3a and 3c cannot
appear as optimal solutions in the case of a path with a
point C of maximum radius. The only possible scenarios
are Cases 1a, 1b, 1c, 2b and 3b, where the optimal velocity
at C is determined uniquely by the initial and final boundary
conditions.

VIII. GENERAL SOLUTION

In this section we show how to construct the optimal
solution for the general case path, that is, a path that
includes any combination of constant, decreasing and in-
creasing curvature. Consider the general case path having
the radius profile shown in Fig. 7(a). There are several
points of minimum radius (points P1, P2 and P5) and a
sub-arc of constant radius P3 → P4. In Fig. 7(b) we show
the solutions of the of the problems with free boundary
conditions, for the sub-arcs containing a minimum radius
and the sub-arcs of constant curvature. In particular, (i)
corresponds to the fastest way to cross the sub-arc with
minimum radius at point P1 regardless of the boundary
conditions; likewise, (ii) is the fastest way to cross the sub-
arc containing P2, (iii) is the fastest way to cross P3 → P4,
and (iv) is the fastest way to cross the sub-arc containing
P5.

Next, consider fixed boundary conditions at the initial
and final points A and B as in Fig. 7(b). Also consider the
characteristic paths (I) and (II) of maximum acceleration
from A and maximum deceleration towards B, respectively.
The solid line in Fig. 7(b) is constructed as in [7] by taking

z∗2(z1) = min
{
zk
2 (z1)

}
, k = I, i, ii, iii, iv, II (24)

where zk
2 (z1) is the trajectory z2(z1) on the kth character-

istic path. It is easy to verify the optimality of the proposed
solution from point-wise maximality of the velocity.

IX. CONCLUSIONS

Formal proof of optimality for a method to determine
the optimal velocity profile for the minimum time travel of
a vehicle through a specified path, with given acceleration
limits has been presented. Several problematic cases that
lead to loss of controllability have been identified, and
for these cases alternative suboptimal solutions have been
proposed. The optimal path is synthesized by combining
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Fig. 7. (a) A general case radius profile path (top); (b) Optimal velocity
profile for the general case path.

together paths of non-increasing and non-decreasing curva-
ture. Bellman’s Principle of Optimality allows the elimina-
tion of non-optimal combination of such paths. The method
is computationally very fast and can be easily implemented
on-line, unlike other numerical optimization approaches.
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