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Abstract— In this paper we study a class of optimal con-
trol problems known as the τ -elastic variational problem
for second order, under-actuated systems. After introducing
and stating the problem, we derive the necessary optimality
conditions using two approaches. The first approach is purely
variational where the resulting necessary conditions are rep-
resented by a single fourth order differential equation. In the
second approach, we use the Lagrange multiplier technique.
In this case, the necessary conditions are represented by a set
of four first order differential equations. We show that the two
results are equivalent. Finally, we further specialize the result
for the compact semi-simple Lie group case and use SO(3) as
an example. We also make some remarks on the SE(3) case,
which is the subject of current research.

I. INTRODUCTION

In this paper we use differential geometric techniques
on Riemannian manifolds to obtain necessary conditions
for a class of optimal control problems. This class of
optimal control problems is known in the mathematical
literature as τ -elastic variational problems (see [1] and [2]
and references therein for more on the τ -elastic variational
problem). Interest in the τ -elastic variational problem is
two-fold.

The first is pure interest in the mathematical and theo-
retical implications of this problem as the resulting neces-
sary conditions represent elastic curves that deviate from
geodesic curves joining the boundary points. Secondly,
the authors are generally interested in applying the results
to multi-spacecraft, especially dual spacecraft, formation
flying for imaging applications. As will be seen in the
next section, the cost functional in the τ -elastic variational
problem is a weighted sum of fuel expenditure and the
relative speed between the spacecraft pair. In interferometric
imaging, relative speed is inversely proportional to the
attained signal-to-noise ratio (see [3] and [4] and references
therein). Hence, the optimal control problem is suitable
for the motion path planning problem of a two-spacecraft
formation. Modeling the formation as a pair of fully-
actuated point particles has been treated in [2] and [5]. One
may also model the two-spacecraft as a pair of rigid bodies
evolving in three-dimensional space and, hence, as a system
in SE(3) × SE(3) (two copies of the three-dimensional
special Euclidean group). This however is a much harder
problem and is subject to current investigation.
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We focus our attention on the case where the system is
under-actuated, that is, when the control vector spans a sub-
space of the tangent space at a point on the manifold. Opti-
mal kinematic control problems on Riemannian manifolds
with under-actuated systems are known in the literature as
the sub-Riemannian optimal control problem ([6]). In [6],
the authors study a restricted version of the cost functional
we consider in this paper (setting τ = 0). Moreover, the
authors in that paper consider systems satisfying first order
(that is, kinematic) differential equations. We, on the other
hand, study second order (dynamic) systems.

Here is how the paper is organized. In Section (II), we
state the problem and describe it in more detail. In Section
(III), we provide some preliminary definitions, facts and
lemmas. In Section (IV), we derive the necessary condi-
tions for the general problem. This is done following two
approaches. One results in a single fourth order differential
equation and the second in four first order differential
equations as necessary conditions. We show that these
results are indeed equivalent. In Section (V), we specialize
the result to the compact semi-simple Lie group case, where
we relate current results to those obtain previously in the
literature. We use the SO(3) Lie group case as an example.
We conclude the paper with a summary and final remarks
on future research in Section (VI).

II. PROBLEM STATEMENT

Let M be a smooth (C∞) n-dimensional Riemannian
manifold with the Riemannian metric denoted by 〈·, ·〉 for
a point q ∈ M . Thus the length of a tangent vector
v ∈ TqM is denoted by ‖v‖ = 〈v,v〉1/2, where TqM is
the tangent space of M at q. The Riemannian connection
on M , denoted ∇, is a mapping that assigns to any two
smooth vector fields X and Y in M a new vector field,
∇XY. For the properties of ∇, we refer the reader to
[7], [8], [1], and [9]. We take ∇ to be the Levi-Civita
connection. Γk

ij denote the connections coefficients. The
operator ∇X, which assigns to every vector field Y the
vector field ∇XY, is called the covariant derivative of Y
with respect to X. We will denote by [X,Y] the Lie bracket
of the vector fields X and Y and is defined by the identity:
[X,Y]f = X(Yf)−Y(Xf). Given vector fields X, Y and
Z on M , define the vector field R (X,Y)Z by the identity

R (X,Y)Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z. (2.1)
R is trilinear in X, Y and Z and is thus a tensor of type
(1, 3), which is called the curvature tensor of M .

We will use D/dt and ∇v to denote the covariant time
derivative. The manifold M is assumed to be parallelizable.
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That is, there exists vector fields X1(q), . . . ,Xn(q) ∈
TqM at each point q ∈ M such that 〈Xi,Xj〉 = δij for
all q ∈ M , where δ is the Kronecker delta. In this paper
we take Xi to be the standard basis Xi = ∂i = ∂

∂qi
, where

q = (q1, q2, . . . , qn).
In this paper we consider systems that satisfy dynamics

of the form:
Dq
dt

(t) =
dq
dt

(t) = v(t)

Dv
dt

(t) = u(t), (2.2)

where we now view q : [0, T ] → M as a curve on M ,
v(t) ∈ Tq(t)M and u(t) ∈ TTq(t)M . In this paper, we are
interested in the situation where u(t) is given by

u(t) =
m∑

i=1

ui(t)Xi(q(t)), (2.3)

where m < n. Thus, we have:

〈u(t),u(t)〉 =
m∑

i=1

u2
i (t). (2.4)

m = n corresponds to the fully actuated system, whereas
m < n corresponds to the under-actuated system. Different
versions of the the optimal control problem with m = n
have been treated in the past. See, for example, [10], [11],
[12], [12] and [5], [13], [2]. The case where m < n has been
treated in [14] and [6] for kinematic systems. In Section (I),
we briefly described how our present work differs from that
in [6]. We now state the optimal control problem.

Problem II.1. Find critical values of

J τ (q) =
1
2

∫ T

0

[〈u,u〉 + τ2 〈v,v〉] dt, (2.5)

over the set Ω of C1-paths q on M , satisfying
• the dynamic constraints (2.2),
• q(t) is smooth for all t ∈ [0, T ],
• boundary conditions

q(0) = q0 q(T ) = qT

v(0) = v0 v(T ) = vT ,
(2.6)

• and the motion constraints〈
Dq
dt

,Xi(q)
〉

= ki, i = 1, . . . , l (l < n) (2.7)

for Xi, i = 1, . . . , n, linearly independent vector fields
in some neighborhood of q(t) and given constants
ki, i = 1, . . . , l.

Though not studied in the present paper, the above cost
function is motivated by optimal path planning for dual
spacecraft interferometric imaging formations (see [4], [2]
and [5]). Our interest in the above cost function arises
because in interferometric imaging applications, not only
are we interested in minimizing fuel expenditure, but, also,
in executing the maneuver with the smallest possible speed.
While minimizing fuel expenditure is obvious, minimum
speed trajectories are desired in interferometric imaging be-
cause the light collectors’ speed and image quality (namely,
achievable signal-to-noise ratio) are reciprocal; the larger
the collectors’ speeds are (“shorter exposure time”), the
worse the image becomes, and vice versa (see [3] and
[2]). This is analogous to exposure time in conventional

photography, where longer exposure times (without spoil-
ing the photographic film) result in more photon arrivals
and a better image. The results presented in Section (IV)
are general enough to be applied to the multi-spacecraft
interferometric imaging problem, where the formation can
be treated as either a set of two point particles or two bodies.
In the latter case, the formation evolves on SE(3), which is
a non-compact Lie group and is subject of current research.

The compact Lie group case is also of interest in that
many previous results (e.g., [6]) study the optimal control
problem for Lie groups. It is interesting and instructive to
compare our current generalized results with those appear-
ing in previous literature. We do some of this in Section
(V).

When m < n and the control variables belong not to
TTM but to TM and directly control the system speeds as
opposed to the accelerations, the problem is known at the
Sub-Riemannian kinematic optimal control problem. See
for example [14], [6] and [9] and references therein for
the treatment of these kinematic control problems. In this
paper we restrict our attention to the dynamic (second order)
version of the problem.

Moreover, we may ignore the motion constraints (2.7). As
shown in [2], these constraints are automatically appended
to the final expression for the necessary conditions corre-
sponding to the unconstrained problem. Here again, once
the necessary conditions are obtained for systems with a
potential field, the motion constraints are simply appended
to the necessary conditions.

III. PRELIMINARIES

In this section, we first introduce the notion of a varia-
tional vector field. This allows us to introduce the necessary
notation and tools to derive the necessary conditions for the
optimal control problem (II.1).

Let Ω be the set of all C1 piecewise smooth curves q :
[0, T ] → M in M satisfying the boundary conditions (2.6).
The set Ω is called the admissible set. For the class of C1

curves in Ω we introduce the C1 piecewise smooth one-
parameter variation of a curve q ∈ Ω by

qε : [0, T ] × (−ε, ε) → M

(t, u) → q(t, ε) = qε(t).
A vector field Y along a variation qε is defined as the

mapping that assigns to each (t, ε) ∈ [0, T ] × (−ρ, ρ) a
tangent vector Y(t, ε) ∈ Tqε

M . For example, the vector
fields Dqε

∂ε and Dqε

∂t are defined by
Dqε

∂ε
f =

D
∂ε

(f ◦ qε) and
Dqε

∂t
f =

D
∂t

(f ◦ qε) ,

respectively, where f is a C∞ real-valued function on M .
With ε = 0, the vector fields Dqε

∂ε and Dqε

∂t are now restricted
to q and the C1 piecewise smooth vector field along q,
v(t) := D

∂tqε(t, 0), is the velocity vector field along q. On
the other hand, the C1 piecewise smooth vector field Wt =
W(t) := D

∂εqε(t, 0) ∈ TqΩ is called the variational vector
field associated with qε along q.
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The one-parameter variation qε is characterized infinites-
imally by the vector space Tqε

Ω by setting qε(t) =
expq(t)(εWt), where expq(t) is the exponential map on
M . qε is said to be admissible if, for each ε ∈ (−ρ, ρ), the
curve qε satisfies the boundary conditions

qε(t, 0) = q(t),
Dqε

∂ε
(t, 0) = Wt

Dqε

∂ε
(0, 0) =

Dqε

∂ε
(T, 0) = 0 (3.1)

D
dt

Dqε

∂ε
(t, 0) =

D
dt

Wt is continuous on [0, T ]

D
dt

Dqε

∂ε
(0, 0) =

D
dt

Dqε

∂ε
(T, 0) = 0.

For subsequent theorems, we state without proof the
following standard properties.

Fact III.1. Let X, Y, Z and W be vector fields, then the
curvature tensor satisfies (see [15], page 53)

〈R (X,Y)Z,W〉 = 〈R (W,Z)Y,X〉 .

Fact III.2. A one parameter variation qε(t, u) satisfies (see
[15], page 50)

D
∂ε

Dqε

∂t
=

D
∂t

Dqε

∂ε
.

Fact III.3. Let Y be a vector field along qε, then (see [15],
page 52)

D
∂ε

D
∂t

Y − D
∂t

D
∂ε

Y = R

(
Dqε

∂ε
,
Dqε

∂t

)
Y.

We also have the following lemma.

Lemma III.1. Let Z be an arbitrary vector, W be a
variational vector field and v be the velocity vector field.
Then, we have

Z (〈v,W〉) = 0.

Proof In local coordinates, let Z =
∑n

k=1 ζk∂k, v =∑n
i=1 vi∂i and W =

∑n
j=1 wj∂j . Note that wj =

∂
∂εqj(t, ε). Then we have:

Z (〈v,W〉) =
n∑

k=1

ζk
∂

∂qk

(
n∑

i=1

vi
∂qi

∂ε

)

=
n∑

k=1

ζk

n∑
i=1

vi
∂2qi

∂qk∂ε

= 0,
where ∂2

∂qk∂εqi(t, ε) = ∂2

∂ε∂qk
qi(t, ε) = ∂

∂εδik = 0 and ∂vi

∂qk
=

0 since the components of the velocity vector field v are
independent of the local coordinates q1, . . . , qn. �
Lemma III.2. Let Z be an arbitrary vector, W be a
variational vector field, v be the velocity vector field and
u = Dv

dt be the control vector field. Then, we have
Z (〈u,W〉) = 0.

Proof of Lemma (III.2) is analogous to that of Lemma
(III.1). Lemmas (III.1) and (III.2) and the identity

X (〈Y,Z〉) = 〈∇XY,Z〉 + 〈Y,∇XZ〉
for arbitrary vector fields X, Y and Z, imply

〈v,∇ZW〉 = −〈∇Zv,W〉 (3.2)

and
〈u,∇ZW〉 = −〈∇Zu,W〉 . (3.3)

IV. NECESSARY CONDITIONS FOR OPTIMALITY

In this section we first pursue a purely variational ap-
proach in deriving the necessary conditions for the problem
(II.1) without the motion constraints (2.7). That is, Lagrange
multipliers will not be introduced to the Lagrangian. This
purely variational approach is used to derive necessary
conditions in [2], [6] and [11]. However, to take into account
the constraint that the control vector field u only spans a
subspace of the tangent space to M at some point q ∈ M ,
the following vector field will be introduced:

Zt =
n∑

k=m+1

ζk(t)Xk

such that〈
Xk,

Dv
dt

〉
= 〈Xk,u〉 = 0, k = m + 1, . . . , n (4.1)

and
〈Zt,u〉 = 0. (4.2)

We will drop the subscript t in Zt to become Z.
Appending to the cost function the constraint (4.2), one

obtains:

J τ =
∫ T

0

1
2
〈u,u〉 +

τ2

2
〈v,v〉 + 〈Z,u〉dt. (4.3)

A control vector u solves
min
u

J τ (q,v,u) (4.4)
only if

∂

∂ε
J τ (qε(t, ε),vε(t, ε),uε(t, ε))

∣∣∣∣
ε

= 0, (4.5)

where vε(t, ε) and uε(t, ε) are defined analogous to qε(t, ε)
in the previous section. Replacing u with ∇vv in Equation
(4.3) and taking variations with respect to ε, one obtains:

∂J τ

∂ε

∣∣∣∣
ε=0

=
∫ T

0

[〈
Dv
∂t

,
D2vε

∂ε∂t

〉
+ τ2

〈
v,

Dvε

∂ε

〉

+
〈

DZ
∂ε

,uε

〉
+

〈
Z,

D2vε

∂ε∂t

〉 ]
ε=0

dt.

We set ∂qε

∂ε

∣∣
ε=0

= W, use Facts (III.2) and (III.3) and the
connection ∇ property DZ

dε = ∇WZ = ∇ZW + [W,Z] so
the right hand side of the above equation becomes∫ T

0

〈
Dv
∂t

+ Z, R (W,v)v +
D
∂t

Dv
∂ε

〉

+τ2

〈
v,

D
∂t

W
〉

+ 〈∇ZW + [W,Z] ,u〉dt.

Using Fact (III.1) for the curvature in the first term, inte-
grating the τ2 term by parts and applying Lemma (III.2) to
the last term in the integrand we obtain∫ T

0

〈
W, R

(
Dv
∂t

+ Z,v
)

v
〉

+
〈

Dv
∂t

+ Z,
D
∂t

D
∂t

W
〉

−τ2

〈
Dv
∂t

,W
〉

+ Z
(〈

W,
Dv
∂t

〉)

−
〈
W,∇Z

Dv
∂t

〉
+ 〈− [Z,W] ,u〉dt.
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Recall that the Lie bracket is skew-symmetric: [W,Z] =
− [Z,W] and that

LZ

〈
W,

D
∂t

v
〉

= 〈LZW,u〉 + 〈W,LZu〉 .

Observe, however, that
LZ (〈W,u〉) = Z (〈W,u〉) = 0

by Lemma (III.2). Hence, we have 〈[Z,W] ,u〉 =
〈LZW,u〉 = −〈W,LZu〉. From this and by integrating
the second inner product twice by parts, we obtain∫ T

0

〈W, R (u + Z,v)v〉
+

〈∇3
vv + ∇2

vZ,W
〉

−τ2

〈
Dv
∂t

,W
〉

−〈W,∇Zu〉 + 〈W,LZu〉dt.
Collecting terms, we finally obtain
∂J τ

∂ε

∣∣∣∣
ε=0

=
∫ T

0

〈
W, R (u + Z,v)v + ∇3

vv + ∇2
vZ

−τ2 Dv
∂t

−∇Zu + [Z,u]
〉

dt. (4.6)

In obtaining Equation (4.6), repeated use has been made of
the integration by parts identity, for example,∫ T

0

〈
D
∂t

W,
Dv
∂t

〉
= −

∫ T

0

〈
W,

D
∂t

Dv
∂t

〉
dt,

and the fact that the variational vector field W is fixed at
the boundary points 0 and T .

Since W is an arbitrary variational vector field, the
condition (4.5) and Equation (4.6) immediately result in
the main theorem of our paper.

Theorem IV.1. A necessary condition for a control law
u(t) to be an optimal solution for the problem (II.1)
without the motion constraints (2.7), is that it satisfies the
differential equation:
D2u
dt2

+ R (u + Z,v)v +
D2Z
dt2

− τ2u −∇Zu + [Z,u] = 0
and the condition (4.2).

It can be easily checked that this result reduces to
previously published results in the literature. For example,
if m = n, one can set Z = 0 in the above theorem to
obtain the necessary conditions for the fully actuated τ -
elastic variational problem (see [2] and [11]).

We now derive the necessary conditions following the
Lagrange multiplier approach and show that these are
equivalent to those obtained in Theorem (IV.1).

First, we define a bilinear form B (·, ·) that, for any vector
field Y

∑n
i=1 yiXi, satisfies:

∇vY = Ẏ + B (v,Y)
∇WY = δY + B (W,Y) ,

where Ẏ =
∑n

i=1 ẏiXi, δY =
∑n

i=1
∂yi

∂ε Xi, B (v,Y) =∑n
i,j,k=1 viyjΓk

ijXk, B (W,Y) =
∑n

i,j,k=1 wiyjΓk
ijXk,

and W =
∑n

i=1 wiXi =
∑n

i=1
∂qεi

∂ε Xi is the variation
vector field corresponding to the curve q(t). B(W, ·) is
introduced in order to be able to separate variations in the
components of a vector field, δY, from variations in the

basis vector fields, which are contained in B (W,Y). It
is important to separate these terms since the variations
δY are independent from W. The notation B (v, ·) will
be appreciated later when we treat the Lie group case.

We append the Lagrangian in Equation (2.5) with the
dynamics (2.2) and the constraints (4.1) to obtain

J τ =
∫ T

0

1
2
〈u,u〉 +

τ2

2
〈v,v〉 + λ1

(
dq
dt

− v
)

+λ2

(
Dv
dt

− u
)

+
〈
Z,

Dv
dt

〉
dt. (4.7)

Taking variations of this expression, one obtains
∂J τ

∂ε
= 〈u, δu + B (W,u)〉 + τ2 〈v, δv + B (W,v)〉

+λ1

(
DW
dt

− δv − B (W,v)
)

+λ2

(
D2v
∂ε∂t

− δu − B (W,u)
)

+ 〈∇WZ,u〉 + 〈Z, δu + B (W,u)〉dt. (4.8)
Now, note that∫ T

0

λ1

(
DW
dt

)
dt = −

∫ T

0

Dλ1

dt
(W) dt,∫ T

0

λ2

(
D2v
∂ε∂t

)
dt =

∫ T

0

λ2

(
D2v
∂t∂ε

+ R (W,v)v
)

=
∫ T

0

−Dλ2

dt
(δv + B (W,u))

+λ2 (R (W,v)v) dt

〈∇WZ,u〉 = 〈∇ZW + [W,Z] ,u〉
= −〈W,∇Zu〉 + 〈W, [Z,u]〉 .

Hence, we have
∂J τ

∂ε
=

∫ T

0

〈u + Z, δu〉 − λ2 (δu) dt

+
∫ T

0

τ2 〈v, δv〉 − λ1 (δv) − Dλ2

dt
(δv)

+ 〈u, δu〉 + τ2 〈v,B (W,v)〉 − λ1 (B (W,v))

−λ2 (B (W,u)) + 〈Z,B (W,u)〉 − Dλ2

dt
(δv)

+ 〈W, [Z,u]〉 − Dλ1

dt
(W)

−〈W,∇Zu + R (u + Z,v)v〉dt.
By the independence of W, δv and δu, we have the
following theorem.

Theorem IV.2. A necessary condition for a control law
u(t) to be an optimal solution for the problem (II.1)
without the motion constraints (2.7), is that the first order
differential equations:

dq
dt

= v

Dv
dt

= u

Dλ1

dt
= ([Z,u] −∇Zu + R(u + Z,V)v)�

Dλ2

dt
= −λ1 + τ2 (v)�
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u + Z = λ�
2

〈Z,u〉 = 0
be satisfied on [0, T ].

In Theorem (IV.2), � and 	 denote the sharp and flat
operators (see [9] for definitions). In the above, the La-
grange multipliers λi, i = 1, 2, are viewed as elements in
the cotangent space T ∗M .

We now show that the necessary conditions from Theo-
rem (IV.2) are equivalent to those of theorem (IV.1). First
note that for an arbitrary vector field Y, Theorem (IV.2)
implies that

D2λ2

dt2
(Y) =

〈
D2 (u + Z)

dt2
,Y

〉
.

and that
D2λ2

dt2
(Y) = −Dλ1

dt
(Y) + τ2 〈v,Y〉

=
〈− [Z,u] + ∇Zu − R(u + Z,V)v + τ2v,Y

〉
.

Equating these two expressions immediately results in the
fourth order necessary condition given in Theorem (IV.1).
Hence, we have the following Lemma.

Lemma IV.1. The necessary conditions of Theorem (IV.2)
are equivalent to those of theorem (IV.1).

V. OPTIMAL CONTROL ON COMPACT SEMI-SIMPLE LIE

GROUPS

In this section we derive the necessary conditions from
Theorem (IV.1) where the manifold M is a compact semi-
simple Lie group G. Let g denote the Lie algebra of G and
define the metric such that � ·, · 	: − 1

2κ (·, ·), where κ
denotes the Killing form on g. Recall that for semi-simple
Lie groups, the Killing form is non-degenerate.

Let J : g → g be a positive definite linear mapping (the
inertia tensor) that satisfies:

� JX,Y 	 = � X, JY 	
� JX,X 	 = 0 if and only if X = 0.

Let Rg denote the right translation on G by g ∈ G. If
X,Y ∈ g, then the corresponding right invariant vector
fields are given by Xr

g = Xr(g) = Rg∗X and Yr
g =

Yr(g) = Rg∗Y, respectively. Hence a right invariant
metric on G may be defined as

〈Xr(g),Yr(g)〉 :=� X, JY 	 . (5.1)
Corresponding to this metric there exists a unique Rieman-
nian connection ∇, which, in turn, defines the bilinear form:

(X,Y) → B (X,Y) =
1
2
{

[X,Y] + J−1 [X, JY]

+ J−1 [Y, JX]
}
, (5.2)

for any X, Y ∈ g. If J is the identity, then B (X,Y) =
1
2 [X,Y]. In this paper we make the simplifying assumption
J = I , the identity. The reason for doing this is that the
derivation becomes very cumbersome and lengthy in the
general case, which will be the focus of future work. We
will drop the superscript r for right invariant vector fields
in the rest of the paper.

With q̇ = v =
∑n

i=1 viXi, then we have:
Dv
dt

=
n∑

i=1

v̇iXi +
n∑

i,j=1

1
2
vivj [Xi,Xj ] =

m∑
i=1

v̇iXi

D2v
dt2

=
n∑

i=1

v̈iXi +
1
2

n∑
j,k=1

viv̇k [Xi,Xk] (5.3)

D3v
dt3

=
n∑

i=1

...
v iXi +

n∑
i,j=1

v̈ivj [Xj ,Xj ]

+
1
4

n∑
i,j,k=1

viv̇jvk [Xk, [Xi,Xj ]] ,

where B(v,v) = ∇vv =
∑n

i,j=1
1
2vivj [Xi,Xj ] = 0 by

the skew-symmetry of the Lie bracket. Note here that v̇i = 0
for i = m + 1, . . . , n. This is a standard result that can be
found in [16]. We also need to compute [Z,u]:

[Z,u] =
n∑

i=m+1

m∑
j=1

ζiuj [Xi,Xj ] . (5.4)

We now determine R (u + Z,v)v:

R (u + Z,v)v =
1
4

[[u + Z,v] ,v] (5.5)

=
1
4

n∑
j,k=1

vjvk

[[
m∑

i=1

uiXi +
n∑

l=m+1

ζlXl,Xj

]
,Xk

]
.

Finally, we need to compute the second-order time deriva-
tive of Z. This is easily found to be:

D2Z
dt2

=
n∑

i=m+1

ζ̈iXi +
n∑

i=m+1

n∑
j=1

ζ̇ivj [Xj ,Xi]

+
1
2

n∑
i=m+1

n∑
j=1

ζiv̇j [Xj ,Xi] (5.6)

+
1
4

n∑
i=m+1

n∑
j,k=1

ζivjvk [Xk, [Xj ,Xi]] .

We are now in a position to state the necessary optimality
conditions for the problem (II.1). By Theorem (IV.1), the
necessary conditions are stated as:

...
v iXi − τ2ukXk + v̈ivj [Xj ,Xi] + ζ̈lXl

+ζ̇lvi [Xi,Xl] + ζluk [Xl,Xk]

+
1
4

{
vhvivj [Xj , [Xh,Xi]]

+vivj [[ukXk + ζlXl,Xi] ,Xj ]

+ζlvivj [Xj , [Xi,Xl]]
}

= 0, (5.7)

where we note that ∇Zu = B (Z,u) = 1
2 [Z,u] since Z

and u are independent of the coordinate q. We also used
the fact that D2u

dt2 = D3u
dt3 . In Equation (5.7), we use the

Einstein convention of summation over each (individual)
term, where the indexes h, i, j are summed over 1, . . . , n,
k over 1, . . . ,m and l over m + 1, . . . , n. Finally, note that
the first term inside the curly brackets is zero, again, by the
skew-symmetry of the Lie bracket. Hence, in final form, the
necessary conditions are given by:

...
v iXi − τ2ukXk + v̈ivj [Xj ,Xi] + ζ̈lXl

+ζ̇lvi [Xi,Xl] + ζluk [Xl,Xk]
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+
1
4

{
vivj [[ukXk + ζlXl,Xi] ,Xj ]

+ζlvivj [Xj , [Xi,Xl]]
}

= 0, (5.8)

If we set τ = 0, this is the second order, dynamic version
of the first order, kinematic problem found in [16] (Theorem
6) and [6]. Moreover, if we set m = n (hence, Z = 0) and
τ = 0, then the above equation reduces to:

0 =
...
v iXi + v̈ivj [Xj ,Xi] +

1
4

{
vivjvk [[Xk,Xi] ,Xj ]

}
=

...
v iXi + v̈ivj [Xj ,Xi] ,

where the term in curly brackets before the first equality
sign is zero by the skew-symmetry of the Lie bracket. This
is exactly what is found in [10] and Lemma 4 in [16].

Using the first equation in (5.3) as well as Equations
(5.4) and (5.5), it is easy to derive the first order form of
the necessary conditions as given in Theorem (IV.2). In the
form of Theorem (IV.2), the necessary conditions are:

n∑
i=1

q̇iXi =
n∑

i=1

viXi

m∑
i=1

v̇iXi =
m∑

i=1

uiXi

(
Dλ1

dt

)�

=
1
2

n∑
i=m+1

m∑
j=1

ζiuj [Xi,Xj ]

+
1
4

n∑
j,k=1

vjvk

[[
m∑

i=1

uiXi +
n∑

l=m+1

ζlXl,Xj

]
,Xk

]

Dλ2

dt
= −

∑
i

λi
1Υi + τ2

n∑
i=1

viΥi,

where λ1 =
∑n

i=1 λi
1Υi and λ2 =

∑n
i=1 λi

2Υi and Υi, i =
1, . . . , n, is the co-frame for T ∗M such that Υi (Xj) = δij .

We now give an example on the three dimensional
group of rigid body rotations SO(3). In this case, we have
[X1,X2] = X3, [X2,X3] = X1 and [X3,X1] = X2. We
note, of course, that for the optimal control problem to be
well defined, the system we consider must be controllable.
For example, the under-actuated system:

q̇ = v1X1 + v2X2 + v3X3
Dv
dt = u1X1

(5.9)

is not controllable and, hence, the system can not be steered
between any two arbitrary states. However, the system:

q̇ = v1X1 + v2X2 + v3X3
Dv
dt = u1X1 + u2X2

(5.10)

is controllable. For this case we have Z = ζ3X3. After
a long derivation, the fourth order necessary conditions in
Equation (5.8) for SO(3) can be shown to be:
...
v 1 − τ2u1 + ζ̇3v2 − ζ3u2

+
1
4

[
v1v2u2 + v1v3ζ3 − u1

(
v2
2 + v2

3

)]
= 0

...
v 2 − τ2u2 − ζ̇3v1 + ζ3u1

+
1
4

[
v1v2u1 + v2v3ζ3 − u2

(
v2
1 + v2

3

)]
= 0

...
v 3 + ζ̈3 +

1
4

[
v1v3u3 + v2v3u2 − ζ3

(
v2
1 + v2

2

)]
= 0.

Remark V.1. Note that the dynamics (2.2) describe the
motion of a rigid body with identity moments of inertia.
Hence, the results presented in this paper pertain to sym-
metric bodies, but may easily be extended to systems with
non-symmetric inertia properties.

VI. CONCLUSION

In this paper, we use geometric tools to derive coordinate-
free necessary conditions for an optimal control problem,
where the system is under-actuated and evolves on a Rie-
mannian manifold. We apply the results to semi-simple
compact Lie groups and relate our results to those appearing
previously in the literature. Our current research focuses on
the non-compact Lie group case, such as SE(3). Future
research will focus on adding more complexity to the
model. Of particular interest are adding a drift (gravitation)
term and the treatment of additional holonomic and/or
nonholonomic constraints to the problem (II.1).
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