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Abstract— A system with both control and disturbance
inputs is constrained input-to-state stabilizable if there exist
feedback control laws that render the closed-loop system
constrained input-to-state stable (cISS) with respect to the
disturbance. Based on a control Lyapunov function, Sontag
type controllers to the constrained input-to-state stabilization
problem is constructed for a class of nonlinear systems, and it
is shown that input-to-state stabilizability implies (arbitrary)
constrained input-to-state stabilizability, but the converse is
not true. Moreover, the constrained input-to-state stabiliz-
ability is both necessary and sufficient for the solvability of
an inverse optimal problem. The designed controllers remain
cISS against a certain class of input uncertainties, even input
unmodeled dynamics.

I. INTRODUCTION

Constrained input-to-state stability (cISS) [1] is a deriva-

tive concept from input-to-state stability (ISS) [2]. However,

cISS, unlike ISS or integral-ISS (iISS) [3], is not confined

to forward complete systems. cISS reflects the qualitative

property of small overshot when the magnitude of distur-

bances is constrained below a threshold and can be seen as a

generalization of small-signal L∞ stability [4] in much the

same way ISS generalizes L∞ stability. Furthermore, cISS

is a property with broad applicability. For example, it has

been shown in [1] that the PD-controlled manipulator used

in [3] to motivate iISS is also cISS, thus it can handle some

bounded disturbance with constrained magnitude, which

can’t be dealt with iISS or ISS.

In this paper, some important problems about constrained

input-to-state stabilization are discussed for a class of

nonlinear systems. Firstly, based on a control Lyapunov

function, an explicit construction of constrained input-

to-state stabilizing control laws is introduced. Then the

relation between constrained input-to-state stabilizability

and respectively, input-to-state stabilizability and continu-

ous stabilizability are discussed. Then we show that, for

such systems, constrained input-to-state stabilizability is not

only sufficient but also necessary for the solvability of a

generalized inverse optimal gain assignment problem which

was proposed in [5]. The designed controllers remain cISS

against a certain class of input uncertainties, even input

unmodeled dynamics, and achieve kinds of stability margin,

such as disk margin [6].
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The rest of the paper is organized as follows: Section II

introduces the fundamental results about cISS; Section III

discusses some important problems about constrained input-

to-state stabilization; the inverse optimal gain assignment

problem is studied in IV; finally, Section V summarizes the

conclusion of this paper.

II. PRELIMINARIES

A function α : R≥0 → R≥0 is said to be of class K
if it is continuous, strictly increasing, and α(0) = 0. If in

addition α is unbounded, then it is said to be of class K∞.

A continuous function γ : [0, c) → R≥0 is said to be of

class KC if it is strictly increasing in [0, c) and satisfies

γ(0) = 0 and γ(s) increases to +∞ as s → c, where c
is a positive constant. Obviously, the inverse function of

any K\K∞ function belongs to class KC . A function β :
R≥0 × R≥0 → R≥0 is said to be of class KL if β(·, t) is

of class K for each fixed t ≥ 0 and β(r, t) decreases to 0
as t → ∞ for each fixed r ≥ 0.

Consider a general system

ẋ = f(x, d) (1)

where f is locally Lipschitz, f(0, 0) = 0 and d is measur-

able locally essentially bounded disturbance input.

Definition 1: [1] system (1) is said to be constrained

input-to-state stable (cISS) with respect to d if there exist

some β ∈ KL and γ : [0, c) → R≥0 ∈ KC such that for any

d with ‖d‖ < c and any initial state x(0) the corresponding

solution of (1) satisfies the following estimate

|x(t)| ≤ β(|x(0)|, t) + γ(‖d‖) (2)

where ‖d‖ := ess sup{|d(t)| : t ≥ 0}.

Definition 2: A continuously differentiable function V :
R

n → R≥0 is said to be a cISS-Lyapunov function for (1)

if there exist functions α1, α2, α3 ∈ K∞ and δ : R≥0 →
[0, c) ∈ K\K∞, such that for all x, d, it hold that

α1(|x|) ≤ V (x) ≤ α2(|x|) (3)

|d| ≤ δ(|x|) ⇒ DV (x)f(x, d) ≤ −α3(|x|) (4)

It has been shown in [1] that a continuously differentiable

function V : R
n → R≥0 is a cISS-Lyapunov function for

system (1) if and only if there exist α1, α2, α3 ∈ K∞ and

H : [0, c) → R≥0 ∈ KC , such that (3) and the following

inequality hold

DV (x)f(x, d) ≤ −α3(|x|) + H(|d|) (5)

for all x and all d, which provides a dissipation type char-

acterization for the cISS property. The next theorem shows
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that the existence of a smooth cISS-Lyapunov function is

necessary as well as sufficient for the system to be cISS.

Theorem 1: System (1) is cISS if and only if it admits a

cISS-Lyapunov function.

Proof: The proof can be found in [1]. �

III. CONSTRAINED INPUT-TO-STATE STABILIZATION

In this paper, we consider the following system

ẋ = f(x) + g1(x)d + g2(x)u (6)

where x ∈ R
n is the state, d ∈ R

p is a disturbance, u ∈ R
m

is a control input, f : R
n → R

n, g1 : R
n → R

n×p, g2 :
R

n → R
n×m are locally Lipschitz functions and f(0) = 0.

Firstly, we introduce some definitions. The system (6) is

continuously stabilizable if there exists a continuous map

k : R
n → R

m with k(0) = 0 such that system (6) with

u = k(x) is globally asymptotically stable (GAS) when

d = 0. It’s input-to-state stabilizable if there exists such a

k so that system (6) becomes ISS. It’s constrained input-

to-state stabilizable if there exist such a k and a constant c
such that system (6) becomes cISS when ‖d‖ ≤ c; and if in

addition c can be chosen arbitrarily, then we say that system

(6) is arbitrarily constrained input-to-state stabilizable. Now

we introduce the concept of cISS-control Lyapunov function

(cISS-clf), whose existence leads to an explicit construc-

tion of constrained input-to-state stabilizing control laws,

then the relation between input-to-state stabilizability and

constrained input-to-state stabilizability is analyzed.

Definition 3: A continuously differentiable and radially

unbounded function V : R
n → R≥0 is said to be a cISS-clf

for system (6) if there exists a class K\K∞ function δ such

that for all x �= 0 and all d we have

|d| ≤ δ(|x|) ⇒ inf
u
{LfV + Lg1

V d + Lg2
V u} < 0 (7)

It is easy to show that a necessary and sufficient condition

for the above V and δ to satisfy (7) is

Lg2
V = 0 ⇒ LfV + |Lg1

V |δ(|x|) < 0 ∀x �= 0. (8)

This result can be used to select an appropriate cISS-clf

from the candidate functions. In addition, we say that a clf

V satisfies the small control property if there exists a control

law αc(x) continuous on R
n such that LfV +Lg1

V δ(|x|)+
Lg2

V αc(x) < 0 for x �= 0.

Theorem 2: For system (6), if there exists a cISS-clf V
with small control property, then the following Sontag type

control law u = ks(x) defined as

ks(x) =

{
−w(x)+

√
w2+|Lg2

V |4

|Lg2V |2 (Lg2
V )T , Lg2

V �= 0

0, Lg2
V = 0

(9)

where w(x) = LfV + |Lg1
V |δ(|x|), constrained input-to-

state stabilize (6) with gain margin (1/2, +∞). On the other

hand, if (6) is constrained input-to-state stabilizable, there

exists a cISS-clf V with small control property.

Proof: We only prove here that ks(x) is con-

strained input-to-state stabilizing and achieves a gain margin

(1/2, +∞) (see Definition 5 in Section IV). Let the input

uncertainty � be of the form diag{κ1, ..., κm} with con-

stants κi ∈ (a, b), i = 1, ..., m and κ = min{κ1, ..., κm}.

Then the perturbed system is expressed as

ẋ = f(x) + g1(x)d + g2(x)diag{κ1, ..., κm}u. (10)

Assume V is an appropriate cISS-clf for system (6), thus

the time derivative of V along the trajectories of (10) with

ks is V̇ = LfV + Lg1
V d + Lg2

V diag{κ1, ..., κm}ks(x).
Since Lg2

V diag{κ1, ..., κm}(Lg2
V )T ≥ κ|Lg2

V |2 and

−(w +
√

w2 + |Lg2
V |4) ≤ 0,

V̇ ≤ LfV + |Lg1
V |δ(|x|) − κw(x) − κ

√
w2 + |Lg2

V |4

≤ (−κ+
1

2
)(w+

√
w2 + |Lg2

V |4)+1

2
(w−

√
w2 + |Lg2

V |4)
which is obviously negative definite when κ ≥ 1/2, because

Lg2
V = 0 implies w < 0 for x ∈ R

n\{0}. �

Theorem 3: For system (6), input-to-state stabilizability

implies arbitrary constrained input-to-state stabilizability.

Proof: From the converse theorem [7], we know that

if system (6) is input-to-state stabilizable, there exists a

ISS-control Lyapunov function with small control property,

that is, there exist a continuously differentiable and radially

unbounded function V : R
n → R≥0 and a class K∞

function ρ such that for all x �= 0 and all d, we have

|d| ≤ ρ(|x|) ⇒ infu{LfV + Lg1
V d + Lg2

V u} < 0.

Obviously, for any c > 0, there exists a class K\K∞

function δ : R≥0 → [0, c) such that δ(r) ≤ ρ(r) for r ≥ 0.

Then it’s easy to verify that V satisfies (7) with δ and V is a

cISS-clf function with small control property. By Theorem

2, system (6) is constrained input-to-state stabilizable. �

Corollary 1: For system (6), if g1 = g2 = g, continuous

stabilizability implies arbitrary constrained input-to-state

stabilizability.

Proof: This result can be seen as a combination of

Theorem 1 in [2] and Theorem 3. However, it can be proved

in a direct way with another construction instead of Sontag

type control, which leads to an interesting result and is

sketched below as a remark. �

Remark 3.1: Without loss of generality, we can assume

ẋ = f(x) is GAS. Thus we only need to construct a

continuous map k with k(0) = 0 such that k renders the

closed-loop system (6) arbitrary cISS. Firstly, we show that,

if ẋ = f(x) is GAS, there exist a Lyapunov function V and

some α1, α2 ∈ K∞ and α3 : R≥0 → [0, c) ∈ K\K∞ where

c can be chosen arbitrarily such that (3) and LfV (x) ≤
−α3(|x|) are satisfied ( The proof is similar to [2] and is

omitted here due to limitation of space). Now construct the

feedback control law u = k(x) as

k(x) = −α3(|x|)
2m

(LgV )T (11)
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Then following the same procedures in [2, p. 441], we can

prove that k(x) render the closed-loop system (6) cISS

by Theorem 1. k(x) is continuous everywhere, because

α3(|x|), LgV are continuous. Also notice that c is an arbi-

trarily chosen positive constant, therefore k(x) is arbitrarily

constrained input-to-state stabilizing. Now denote (11) as

kcISS(x) = −acISS(x)(LgV )T /2m with acISS(x) =
α3(|x|) and the corresponding ISS control law (32) in [2] as

kISS(x) = −aISS(x)(LgV )T /2m, then it’s easy to show

lim
|x|→∞

kISS(x)

kcISS(x)
=

aISS

acISS

= +∞ (12)

which implies that for system (6) with g1 = g2, if the

magnitude of the disturbance is finite and constrained below

a predefined threshold and if system (6) moves in a large

region, the designed constrained input-to-state stabilizing

control law is more efficient and saves much more energy.

Moreover, for system (6), Sontag type control (9) can also

have such benefit (see Example 2).

IV. INVERSE OPTIMAL GAIN ASSIGNMENT PROBLEM

In the following, we show that, if system (6) is con-

strained input-to-state stabilizable, then an inverse optimal

gain assignment problem is solvable.

Definition 4: The inverse optimal gain assignment prob-

lem for system (6) is solvable if: 1. there exist a class

KC function H : [0, c) → R≥0 whose derivative H ′ is

also a class KC function, a matrix-valued function R(x)
such that R(x) = RT (x) > 0 for all x, positive definite,

radially unbounded functions L(x) and E(x); 2. there exists

a continuous feedback control law u = k(x) with k(0) = 0,

which minimizes the cost function J(u) =

sup
|d|≤c

{ lim
t→∞

[E(x(t)) +

∫ t

0

(L(x) + uT Ru − H(|d|))dτ ]}
Before we start our developments, let us introduce the

notation and also some properties of Legendre-Fenchel
transform for class KC functions. For a class KC function H
whose derivative H ′ exists and is also a class KC function,

let �H denotes the Legendre-Fenchel transform

�H(h) = h(H ′)−1(h) − H((H ′)−1(h)), (13)

where (H ′)−1 stands for the inverse function of H ′.

Lemma 4.1: If H, H ′ : [0, c) → R≥0 ∈ KC , then the

Legendre-Fenchel transform satisfies the following proper-

ties: (a) �H(h) =
∫ h

0
(H ′)−1(s)ds; (b) ��H(h) = H(h), for

h < c; (c) �H ∈ K∞; (d) �H(H ′(h)) = h(H ′)(h)−H(h),
for h < c.

Lemma 4.2: (Young‘s Inequality [8, Th. 156]): For any

vectors x that satisfies |x| < c and y , the following

inequality holds xT y ≤ H(|x|) + �H(|y|), and the equality

is achieved if and only if y = H ′(|x|)x/|x| ∀ |x| < c, that

is, for x = (H ′)−1(|y|)y/|y|.
The next theorem provides a sufficient condition for the

solvability of the inverse optimal gain assignment problem.

Theorem 4: Consider the auxiliary system of (6):

ẋ = f(x) + g1(x)�H(2|Lg1
V |) (Lg1

V )T

|Lg1
V |2 + g2(x)u (14)

where V (x) is a Lyapunov function candidate for (14),

H, H ′ : [0, c) → R≥0 ∈ KC and �H denotes the Legendre-

Fenchel transform of H . Suppose that there exists a matrix-

valued function R(x) = RT (x) > 0 for all x such that

u = k(x) = −R(x)−1(Lg2
V )T (15)

globally stabilizes (14) with respect to V (x), then the

control law u = k∗(x) = βk(x) = −βR(x)−1(Lg2
V )T

with any β ≥ 2 solves the inverse optimal gain assignment

problem for (6) by minimizing the cost function J(u) =

sup
|d|≤λc

{ lim
t→∞

[2βV (x(t))+

∫ t

0

[L(x)+uT Ru−βλH(
|d|
λ

)]dτ ]}
(16)

for any λ ∈ [1, 2], where

L(x) = −2β[LfV + �H(2|Lg1
V |) − Lg2

V R−1(Lg2
V )T ]

+β(2 − λ)�H(2|Lg1
V |) + β(β − 2)Lg2

V R−1(Lg2
V )T

Proof: It has been shown in Lemma 4.1 and 4.2 that

properties of the Legendre-Fenchel transform mentioned in

the Appendix of [5] for class K∞ functions also applies

to class KC functions, thus the proof of this theorem is

essentially the same with [5, Th. 3.1]. �

Theorem 5: If system (6) is constrained input-to-state

stabilizable, the inverse optimal gain assignment problem

is solvable.

Proof: By Theorem 2, there exist a cISS-clf V (x) and

δ ∈ K\K∞ such that (7) and the small control property

are satisfied. Then we can construct a Sontag type control

u = ks(x), which can be rewritten as (15). Since we have

shown in Theorem 2 that ks(x) can constrained input-

to-state stabilize system (6) and achieves a gain margin

(1/2, +∞), if we can find H, H ′ : [0, c) → R≥0 ∈ KC and

show that u = ks(x)/2 can globally stabilize the auxiliary

system (14), then the proof is complete.

Assume the range of δ is [0, λc), where λ ∈ [1, 2]. Since

|Lg1
V (x)| = 0 vanishes at the origin x = 0, there exists a

class K∞ function π such that

|Lg1
V | ≤ π(|x|) (17)

and
∫ h

0 π ◦ δ−1(λs)ds → +∞ as h → c. Since δ ∈ K\K∞,

δ′(r) > 0, for r > 0, it is easy to prove that there always

exists π ∈ K∞ such that limr→+∞ π(r)δ′(r) = +∞.

Let α be any K∞ function so that α(r) ≤ π(r)δ′(r) for

r ≥ 0, then
∫ h

0
π ◦ δ−1(λs)ds = 1

λ

∫ δ−1(λh)

0
π(t)δ′(t)dt ≥

1
λ

∫ δ−1(λh)

0
α(t)dt with t = δ−1(λs). Obviously, the last

integral increases to +∞ as h goes to c. Thus such a

π ∈ K∞ always exists. Notice that δ ◦ π−1(r) ∈ K\K∞,∫ r

0 δ ◦ π−1(s)ds ∈ K∞, then define

ξ′(2r) =
1

λ
δ ◦ π−1(r), H ′(h) = (ξ′)−1(h). (18)
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It is easy to check H, H ′ ∈ KC . From Lemma 4.1 and the

definition of H , it follows that �H(h) =
∫ h

0
(H ′)−1(s)ds =

ξ(h), which implies that

�H(2h) = ξ(2h) =
1

λ

∫ h

0

δ ◦ π−1(s)ds ≤ 1

λ
hδ ◦ π−1(h).

Then by Theorem 2, the time derivative of V along the

trajectories of (14) with u = ks(x)/2 for all x �= 0 is

V̇ = LfV +
1

2
Lg2

V ks(x) + �H(2|Lg1
V |)

≤ LfV +
1

2
Lg2

V ks(x) +
1

λ
|Lg1

V |δ ◦ π−1(|Lg1
V |)

Notice that λ ∈ [1, 2] and (17), then we have

V̇ ≤ LfV + |Lg1
V |δ(|x|) +

1

2
Lg2

V ks(x) (19)

which is negative definite, because u = ks(x) render the

closed-loop system (6) cISS with gain margin (1/2, +∞)
by Theorem 2. Thus the auxiliary system (14) is asymptoti-

cally stabilized by the control law ks/2. The same technique

as [5] can be used to achieve radial unboundedness of L(x)
if L(x) is only positive definite. Then by Theorem 4, ks

solves the inverse optimal gain assignment problem. �

It is shown in the following that constrained input-to-

state stabilizability is not only sufficient but also necessary

for the solvability of the inverse optimal gain assignment.

Moreover, from [6], we know that if a controller u = k(x)
for system (6) without d is optimal with respect to

J(u) =

∫ ∞

0

(l(x) + uT R(x)u)dt,

then the controller remains stabilizing in the presence of

some input uncertainties. Now, such property is generalized

to the inverse optimal gain assignment problem. Before the

statements, some concepts are first introduced.

Definition 5: The nonlinear feedback system (P, k) is

said to have a sector margin (a, b) if the perturbed closed-

loop system (P, k,�) (see Fig.1) is cISS for any � which is

of the form diag{ϕ1(·), ..., ϕm(·)} where ϕi(·) are locally

Lipschtiz static nonlinearities which belong to the sector

(a, b), that is, as2 < sϕi(s) ≤ bs2,∀s ∈ R; If ϕi(s) = s
∀s ∈ R, then the sector margin reduces to the gain margin.

Definition 6: System �

(�)

{
ż = f̂(z, û) û ∈ R

m

ŷ = ĥ(z, û) ŷ ∈ R
m

(20)

is said to be: strictly passive if Ṡ ≤ −α(|z|)+ ûT ŷ, α ∈ K;

output feedback passive (OFP(ρ)) if Ṡ ≤ ûT ŷ−ρŷT ŷ; input

feedforward passive (IFP(v)) if Ṡ ≤ ûT ŷ − vûT û, where

S(x) is the storage function of system � and is assumed

to be continuously differentiable and radially unbounded.

Definition 7: The nonlinear feedback system (P, k) is

said to have a disk margin D(a) if the perturbed closed-

loop system (P, k,�) is cISS for any � which is strictly

IFP(v), v > a, with a radially unbounded storage function.

Fig. 1. Nonlinear feedback loop with plant P , control law k and input
uncertainty �

Theorem 6: If the inverse optimal gain assignment prob-

lem is solvable for system (6), u = k(x) = −βR(x)−1

(Lg2
V )T constrained input-to-state stabilizes system (6)

with gain margin (1/2, +∞). If in addition, R(x) =
diag{r1(x), ..., rm(x)}, u = −βR(x)−1(Lg2

V )T achieves

a sector margin (1/2, +∞).

Proof: We only prove the second part. The time

derivative of V along trajectories of (6) with ϕ(k(x)) is

V̇ = LfV +Lg1
V d+

1

2
Lg2

V k(x)+Lg2
V (ϕ(k(x))−1

2
k(x))

Since R(x) = diag{r1(x), ...rm(x)},

V̇ = LfV + Lg1
V d +

1

2
Lg2

V k(x)

− 1

β

m∑
i=1

ri(x)[ki(x)ϕi(ki(x)) − 1

2
k2

i (x)]

when sϕi(s) ≥ s2/2, V̇ ≤ LfV + Lg1
V d + Lg2

V k(x)/2.

Since u = k(x) solves the inverse optimal gain assignment

problem for system (6), the following equation is satisfied:

LfV −β

2
Lg2

V R−1(Lg2
V )T +

λ

2
�H(2|Lg1

V |) = − 1

2β
L(x)

(21)

then V̇ ≤ − 1

2β
L(x)− λ

2
�H(2|Lg1

V |) +
λ

2
2|Lg1

V | |d|
λ

,

by Lemma 4.2, we have V̇ ≤ − 1

2β
L(x)+

λ

2
H(

|d|
λ

).

Therefore u = k(x) renders system (6) cISS by Theorem

1, and achieves sector margin (1/2, +∞). �

Example 1: Consider the following system

ẋ1 = −x1 + (x1 − cosx1)d + u
ẋ2 = −x2 + (x2 + cosx1)d − u

(22)

No matter what control law u is applied, d ≡ 2 gives d(x1+
x2)/dt = x1+x2. This means that system (22) is not input-

to-state stabilizable. On the other hand, let x = [x1, x2]
T ,

V (x) = log(1 + x2
1) + log(1 + x2

2) is a cISS-clf with small

control property, since for all x, d

LfV + Lg1
V d ≤ − 2|x|2

1 + |x|2 + 6|d|.

Therefore, (22) is constrained input-to-state stabilizable. Let

δ(r) = r2/3(1 + r2) and π(r) = 4r + r2, it is easy

to check |Lg1
V | ≤ π(|x|) and compute that �H(2r) =

ξ(2r) = (r−ln(r−4
√

4 + r+9)−4 arctan(
√

4 + r−2))/6,
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ξ′(2r) = (8−4
√

4 + r+r)/6(9−4
√

4 + r+r), and H(h) =
4(−

√
6h(1 − 6h) + arcsin

√
6h)/3 − 2h − ln(1 − 6h)/3.

Then the Sontag type control ks(x) = −2R(x)−1(Lg2
V )T ,

where R(x) = 2|Lg2
V |2/(w(x) +

√
w2 + |Lg2

V |4) can

solve the inverse optimal control problem (16) with V, H, R
as right above, λ = β = 2 and L(x) := −4(LfV +
�H(2|Lg1

V |)−Lg2
V R−1(Lg2

V )T ). Fig. 2 shows the sim-

ulation results for a constant disturbance d(t) = 0.3 and

initial conditions x1(0) = −x2(0) = 2 with respectively

u = ks(x) and u = ks(x)/2, which illustrates that ks

can constrained input-to-state stabilize (22) with certain

robustness to the disturbance on the input gain.

Remark 4.1: From Theorem 3, we know that input-to-

state stabilizability implies (arbitrary) constrained input-to-

state stabilizability. However, from Example 1 we find that

the converse is not true. Therefore, to achieve constrained

input-to-state stabilization is, to some extent, easier than

input-to-state stabilization.

Theorem 7: If the inverse optimal gain assignment prob-

lem is solvable for system (6) with R(x) = I , then

k(x) = β(Lg2
V )T constrained input-to-state stabilizes the

nonlinear feedback system (P , k) with disk margin D(1/2).
More specifically, if � is strictly IFP(v), v > 1/2, then k(x)
constrained input-to-state stabilize the following system

(P ) ẋ = f(x) + g1(x)d + g2(x)u, u = ŷ, y = k(x)

(�) ż = f̂(z, û), û = −y, ŷ = h(z, û)

Proof: Since system � is strictly IFP(v), there exists a

Lyapunov type function V̂ for � such that
˙̂
V ≤ −α(|z|)+

ûT ŷ − vûT û. Since k(x) solves the inverse optimal gain

assignment problem, (21) is satisfied with R(x) = I . Now

consider Vc(x, z) = V (x)+ V̂ /β as the composite cISS-clf.

Then V̇c ≤ − 1

2β
L(x) +

β

2
|Lg2

V |2 − λ

2
�H(2|Lg1

V |)

+Lg1
V d + Lg2

V u +
1

β
(−α(|z|) + ûT ŷ − vûT û)

substitute u = −ŷ, û = y and y = k(x) in to the above

equation, and also notice Lemma 4.2, then we have

V̇c ≤ − 1

2β
L(x)− 1

β
α(|z|) +

λ

2
H(

|d|
λ

)+ β(
1

2
− v)|Lg2

V |2

when v ≥ 1/2, V̇c ≤ − 1

2β
L(x)− 1

β
α(|z|)+ λ

2
H(

|d|
λ

)

Therefore by Theorem 1, we conclude that k(x) =
β(Lg2

V )T constrained input-to-state stabilizes the nonlin-

ear feedback system (P , k) with disk margin D(1/2). �

Corollary 2: If u = −k(x) = −β(Lg2
V )T solves the

inverse optimal gain assignment problem for system (6)

with R(x) = I , the system ẋ = f(x) + g2(x)u, y = k(x)
is strictly OFP(−1/2) with βV as the storage function.

Proof: Let S(x) = βV (x) and also notice (21), then

Lg2
S = yT and LfS ≤ − 1

2L(x) + β2

2 |Lg2
V |2. Then the

time derivative of S along the solutions of the system is

Ṡ = LfS + Lg2
Su ≤ −1

2
L(x) + yT u +

1

2
yT y

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2
x

1
x

2

0 1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2
x

1
x

2

Fig. 2. Trajectories of states with u = ks and u = ks/2

Since L(x) is positive definite and radially unbounded, we

can find a class K function α such that α(|x|) ≤ L(x) for

x ∈ R
n. Therefore, we complete the proof. �

Remark 4.2: Notice that the form and the assumption of

perturbation � here are obviously more general than that of

[5], moreover, Theorem 7 and Corollary 2 generalizes and

recovers respectively the result for general optimal control

in [6], thus our result is more general and formal.

In order to achieve disk margin D(1/2), we shall find

ways to make R(x) = I . The next theorem shows that

R(x) = I can be achieved for systems that are constrained

input-to-state stabilizable.

Theorem 8: If a cISS-clf V has small control property,

that is, there exists a continuous control αc(x) such that

LfV +Lg1
V δ(|x|)+Lg2

V αc(x) < 0, ∀x �= 0. If in addition,

lim
ε→0

max
|x|=ε

αc(x)

|Lg2
V (x)| < +∞ (23)

then the inverse optimal gain assignment problem is solv-

able with R(x) = I .

Proof: Since idea of the proof is similar to [5], we

only sketch here. Firstly from (19), there exists a positive

definite function W (x) such that

LfV − β

2
Lg2

V R−1(Lg2
V )T + |Lg1

V |δ(|x|) = −W (x)

(24)

Since (23) implies the existence of a continuous positive

function (V (x)) such that R−1(x) ≤ (V (x))I for

each x ∈ R
n, multiply (24) by (V ) and let Ṽ (x) =∫ V (x)

0
(s)ds, which is obviously a continuously differen-

tiable Lyapunov type function, then

Lf Ṽ − β

2
|Lg2

Ṽ |2 + |Lg1
Ṽ |δ(|x|) ≤ −(V )W (x)

+
β

2
Lg2

V (R−1 − (V )I)(Lg2
V )T (V ) ≤ −(V )W (x)

(25)

Since (V )Lg1
V is continuous and vanishes at x = 0, there

exists π̃ ∈ K∞ such that |(V )Lg1
V | ≤ π̃(|x|). Similar to

Theorem 5, we can define H̃(h) =
∫ h

0
(ξ̃′)−1(s)ds, where

ξ̃ ∈ K∞ whose derivative ξ′ ∈ K\K∞, such that �H̃(2h) ≤
hδ ◦ π̃−1(h)/λ, where λ ∈ [1, 2]. The time derivative of Ṽ
along the solutions of (14) with u = −β(Lg2

Ṽ )T /2 is

˙̃V = Lf Ṽ − β

2
|Lg2

Ṽ |2 + �H(2|Lg1
Ṽ |)
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substitute (25) into above equation, we get

˙̃V ≤ −(V )W (x) + �H(2|Lg1
Ṽ |) − |Lg1

Ṽ |δ(|x|)
which is negative definite. Thus u = −β(Lg2

Ṽ )T /2 sta-

bilizes the auxiliary system (14), and solves the inverse

optimal gain assignment problem with R̃(x) = I . �

Example 2: Consider the same example used in [5]

ẋ = u + x2d (26)

Since (26) is input-to-state stabilizable, (26) is arbitrarily

constrained input-to-state stabilizable by Theorem 3. Take

V (x) = x2/2 and get Lg1
V = x3, Lg2

V = x. If we assume

δ ∈ K\K∞ as δ(r) = 10r/(1+r), w(x) = |Lg1
V |δ(|x|) =

10x4/(1 + |x|). Then the Sontag type control u = ks(x) =
−2R−1(Lg2

V )T , where

R(x) = 2[
10x2

1 + |x| +

√
100x4

(1 + |x|)2 + 1]−1.

Now choose the K∞ function π as π(r) = r3. From

(18), we can take ξ(2r) = 5
∫ r

0 s
1

3 /(1 + s
1

3 )ds, then H(h)
and �H(2h) can be computed as H(h) = 25 + 30 ln 5 −
2h − 30 ln(5 − h) − 150/(5 − h) + 125/(5 − h)2 and

�H(2h) = ξ(2h) = 5h − 7.5h
2

3 + 15h
1

3 − 15 ln(1 + h
1

3 ).
Since the time derivative of the Lyapunov function along

the solutions of the auxiliary system (14) of (26) with

u = ks(x)/2 is V̇ = �H(2|Lg1
V |)−Lg2

V R−1(Lg2
V )T ≤

(w − √
w2 + |Lg1

V |4)/2 < 0 for x �= 0, u = ks(x)/2 is

stabilizing. Then by Theorem 4, with β = λ = 2, u = ks(x)
solves the inverse optimal gain assignment problem with

V, H, R as right above and L(x) := −4(�H(2|Lg1
V |) −

Lg2
V R−1(Lg2

V )T , which is obviously positive definite

and radially unbounded, therefore the inverse optimal gain

assignment problem is well defined.

Besides, it’s easy to check V (x) = x2/2 satisfies the

assumption of Theorem 8, therefore system (26) can be

redesigned to achieve a disk margin D(1/2). By choosing

(r) =
1

2
[

20r

1 +
√

2r
+

√
400r2

(1 +
√

2r)2
+ 1] (27)

it is easy to show that R(x)−1 ≤ (V (x))I . Consider

Ṽ (x) =
∫ V (x)

0 (r)dr, then by Theorem 7, kcISS(x) =

2(Lg2
Ṽ )T = 2R(x)−1x can constrained input-to-state

stabilize feedback system (P, kcISS) with disk margin

D(1/2). Now consider the perturbation � as ż = −z+z2ũ,

ỹ = z3 + ũ/2, which is not ISS but obviously strictly

IFP(1/2) with respect to the storage function S(z) = z2/2.

Then from Theorem 8, the perturbed closed-loop system

(P, kcISS ,�) is still cISS. Fig. 3 shows the simulation

results for an almost periodic disturbance d(t) = (3 sin 9t+
5 sin

√
13t+7 cos 15t+9 cos19t)/3, β = λ = 2, and initial

conditions x(0) = 2, z(0) = −2 with respectively kcISS(x)
and kISS(x), which is the ISS Sontag type control (59) in

[5]. It illustrates that kcISS is a more satisficing control

than kISS , since it saves more energy and the corresponding

dynamic response is also better than the ISS case.
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Fig. 3. Trajectories of states with control and disturbance

V. CONCLUSION

Some important problems about constrained input-to-

state stabilization for a class of nonlinear systems are

discussed. Although input-to-state stabilizability implies

arbitrary constrained input-to-state stabilizability, there exist

systems which can’t be input-to-state stabilizable but can be

constrained input-to-state stabilizable. Therefore, to achieve

constrained input-to-state stabilization is, to some extent,

easier than input-to-state stabilization. Furthermore, it is

shown that input-to-state stabilizability is necessary as well

as sufficient for the solvability of an inverse optimal prob-

lem, which is a generalization of [5] to cISS but still applies

to ISS, and which can’t be achieved under the assumption

of iISS. The designed constructive controllers remain cISS

against a certain class of input uncertainties, even input

unmodeled dynamics, and achieve kinds of stability margin,

such as disk margin.
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