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Abstract— In this paper, we present a case study of
several examples involving optimal positive real control
design for positive real plants. Specifically, we apply
genetic algorithms to obtain low order optimal con-
trol designs with and without the strict positive real
constraint on the compensator. This study shows that
genetic search strategy is an effective approach for
designing low order optimal controllers with complex
constraints such as strict positive realness of the compen-
sator. Furthermore, the examples studied also shed some
new light on optimal positive real control problems.

I. INTRODUCTION

The increasing complexity of modern control en-
gineering problems and ever stringent performance
constraints necessitates development of efficient algo-
rithms for control design. Specifically, search for effi-
cient algorithms to design fixed (low) order controllers
that satisfy a given set of performance constraints
remains open. One of the major breakthroughs in
modern control is the development of linear-quadratic-
Gaussian (LQG) theory which provides optimal dy-
namic compensators with respect to a given quadratic
(H2) performance [1]. However, the LQG theory
is severely restricted by the fact that the optimal
(dynamic) compensator thus obtained has dimension
equal to that of the plant. In practice, it is desirable
to obtain controllers that have significantly lower
dimension than that of the plant. This has led to
the development of optimal reduced order controllers
(see [2], [3] and references therein). Specifically, [2]
developed optimal projection equations, which are
essentially necessary conditions for optimality for a
fixed controller order. The optimal projection equa-
tions involve four highly coupled matrix equations and
hence very difficult to solve. Thus the development
of efficient algorithms to solve the optimal projection
equations is central to low-order controller design
techniques (see [4] and references therein). All these
algorithms involve gradient based search techniques
applied to the optimal projection equations. However,
since the optimal projection equations are noncon-
vex and only necessary conditions for optimality, the
convergence of these algorithms is not guaranteed
(even to a local minimum). An alternate approach to
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optimal projection equations is formulating the fixed
order controller problem as a set of (bilinear) matrix
inequalities [3]. Once again these formulations also
suffer from nonconvexity and hence the convergence
of algorithms to a minimum depends on initialization
of the algorithms.

Next, in addition to reducing order the controllers it
is also desirable to restrict the dynamic compensator
to be stable. Both LQG and the fixed order techniques
guarantee that the closed-loop is stable but do not
guarantee the stability of the optimal compensator. In
applications involving large flexible space structures it
is useful to further restrict the compensator to strictly
positive real systems [5]. Specifically, since flexible
space structures with collocated actuators and sen-
sors are always positive real [6] strictly positive real
compensators offer excellent robustness properties for
controlling large flexible space structures. An optimal
positive real control design problem for the full order
case has been addressed in [5] involving certain equal-
ity conditions on the weighting matrices of the H2
cost. Extensions to include H∞ performance was also
considered in [7]. Although the technique presented
in [5], [7] does provide a way to design full order
strictly positive real compensators, as indicated in [5],
the resulting compensators are not necessarily optimal
with respect to a given H2 cost criterion. Furthermore,
based on the optimal projection equation approach,
a suboptimal fixed-order positive real control design
framework has also been presented in [8]. Alterna-
tively, we may design fixed order optimal positive real
controllers by extending the approach based on matrix
inequalities given in [3]. As in the case of fixed order
optimal control problem, this extension also suffers
from nonconvexity.

In this paper, we propose genetic search strategy
[9–14] as a viable optimal control design technique to
incorporate constraints such as fixed-order and strict
positive realness of the compensator. Specifically, we
study several examples involving optimal positive
real control design for positive real plants. Here we
implement genetic algorithms [9–14] to find optimal
control designs with and without the strict positive real
constraint on the compensator.

Genetic search strategies are population based prob-
abilistic optimization techniques mimicking Darwin’s
idea of natural selection. Unlike traditional techniques
such as gradient search algorithms, which require
objective function as well as its gradient expression,
genetic algorithms require minimal information about
the objective function. Specifically, genetic algorithms
require only an algorithm to compute the objective
function and nothing more. This feature has been
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extremely useful in the ease of implementing ge-
netic algorithms for a variety of complex optimization
problems [9–14]. Although genetic algorithms do not
guarantee convergence to an optimum solution the
high point of genetic algorithms is that they provide
near global optima for many complex problems in
practice. The algorithms have been used to solve
a range of complex problems from combinatorial
problems such as the travelling salesman problem [9]
to many problems in optimal control [15–22]. The
success of genetic algorithms for solving a particu-
lar problem depends on primarily on variable rep-
resentation (real, binary, combinatorial etc.) and its
corresponding genetic recombination (also known as
crossover) and mutation operators. In this paper, we
first transform the fixed order optimal control problem
to an unconstrained optimization problem involving
nonsmooth objective function. Next, we apply genetic
algorithms to solve three optimal control design prob-
lems using a real variable representation with real mu-
tation operator [23] and two different recombination
operators namely; discrete recombination operator and
line recombination operator.

The manuscript is organized as follows. Section
2 contains several definitions and key results used
in this paper. Section 3 presents the fixed order op-
timal control and fixed order optimal positive real
control problems. Section 4 presents several numerical
examples involving reduced order control design for
positive real plants using genetic algorithms. Finally,
Section 5 presents the conclusion.

II. MATHEMATICAL PRELIMINARIES

In this section we introduce notation, definitions,
and two key lemmas used in this paper. Specifically,
R denotes the reals and R

n is an n-dimensional linear
vector space over the reals with Euclidean norm ‖ · ‖.
Furthermore, for M ∈ R

m×n (resp., M ∈ C
m×n), we

write MT (resp., M∗) to denote the transpose (resp.,
complex conjugate transpose) of M and M ≥ 0 (resp.,
M > 0) to denote the fact that the symmetric matrix
M is nonnegative (resp., positive) definite. For Let

G(s) ∼

[
A B

C D

]
denote a state space realization

of a transfer function G(s); that is, G(s) = C(sI −

A)−1B + D. The notation “
min
∼ ” is used to denote a

minimal realization. Finally, we write In to denote the
n × n identity matrix.

Definition 2.1: A square transfer function G(s) is
called positive real if i) all elements of G(s) are
analytic in Re[s] > 0 and ii) G(s) + G∗(s) ≥ 0,
Re[s] > 0. A square transfer function G(s) is strictly
positive real if there exists ε > 0 such that G(s − ε)
is positive real.

Next, we state the well-known positive real lemma
[6].

Lemma 2.1: Let G(s)
min
∼

[
A B

C 0

]
be a strictly

proper transfer function where A ∈ R
n×n, B ∈ R

n×m,

and C ∈ R
m×n. Then G(s) is strictly positive real

(resp., positive real) if and only if there exist a matrix
P ∈ R

n×n and a scalar ε > 0 (resp., ε = 0) such that
P > 0 and[

ATP + PA + εP PB − CT

BTP − C 0

]
≤ 0. (1)

Definition 2.2: Let G(s)
min
∼

[
A B

C 0

]
be a posi-

tive real transfer function. Then

[
A B

C 0

]
is a self-

dual realization of G(s) if A+AT ≤ 0 and B = CT.
The next result due to [6] shows that positive real

transfer functions always have self-dual realizations.

Lemma 2.2: Let G(s)
min
∼

[
A B

C 0

]
be a positive

real transfer function and let P > 0 satisfy (1). Then[
P 1/2AP−1/2 P 1/2B

CP−1/2 0

]
is a self-dual realization of

G(s).
Remark 2.1: It follows from Lemmas 2.1 and 2.2

that G(s) is positive real (resp., strictly positive real) if

and only if there exist A, B, and C such that G(s)
min
∼[

A B

C 0

]
and A + AT ≤ 0 (resp., A + AT < 0) and

B = CT.

III. FIXED ORDER POSITIVE REAL OPTIMAL

CONTROL

In this section we present the fixed order optimal
control problem and the fixed order optimal positive
real control problem.

Fixed Order Optimal Control Problem: Given a
stabilizable and detectable plant

ẋ(t) = Ax(t) + Bu(t) + D1w(t), x(0) = x0, (2)
y(t) = Cx(t) + D2w(t), (3)

where t ≥ 0, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n,

D1 ∈ R
n×p, y(t) ∈ R

m is the measured output,
w(t) ∈ R

p is a disturbance input, determine a ncth-

order dynamic compensator Gc(s) ∼

[
Ac Bc

Cc 0

]
of

the form

ẋc(t) = Acxc(t) + Bcy(t), (4)
u(t) = −Ccxc(t), (5)

that satisfies the following design criteria.
i) the undisturbed (that is, w(t) ≡ 0) closed-loop

system (2)–(5) given by Ã
�

=

[
A −BCc

BcC Ac

]

is Hurwitz;
ii) the H2 performance measure

J(Ac, Bc, Cc)
�

= lim
t→∞

1

t

∫ t

0
[xT(s)R1x(s)

+uTR2u(s)]ds (6)
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is minimized, where R1
�

= ET
1 E1, R2

�

=
ET

2 E2 > 0 and ET
1 E2 = 0.

Fixed Order Optimal Positive Real Control
Problem: Given the minimal positive real plant (2),
(3) determine an ncth-order compensator Gc(s) ∼[

Ac Bc

Cc 0

]
that satisfies the design criteria ii) with

the additional property that Gc(s) is strictly positive
real.

Remark 3.1: Note that in the case of the fixed order
optimal positive real control problem since the plant
is positive real and the compensator is positive real,
criterion i) of the fixed order optimal control problem
is trivially satisfied [6]. Hence, the feasible space for
the fixed order optimal positive real control problem
is a subset to that of the fixed order optimal control
problem. Hence, the minimal cost obtained in the fixed
order optimal control problem is always less than or
equal to that of the fixed order optimal positive real
control problem.

For convenience of notation, define V1
�

= D1D
T
1

and V2
�

= D2D
T
2 and assume D1D

T
2 = 0. Now,

recall that, given a dynamic compensator Gc(s) such
that the closed-loop is asymptotically stable, the H2
performance measure J(Ac, Bc, Cc) is given by [2]

J(Ac, Bc, Cc) = tr P̃ Ṽ , (7)

where Ṽ
�

=

[
V1 0
0 BcV2B

T
c

]
and P̃ ∈

R
(n+nc)×(n+nc) satisfies

0 = ÃTP̃ + P̃ Ã + R̃, (8)

and where R̃
�

=

[
R1 0
0 CT

c R2Cc

]
. Hence, the fixed

order optimal control problem may be solved by
minimizing the objective function tr P̃ Ṽ subject to
the equality constraint (8) where Ac ∈ R

nc×nc , Bc ∈
R

nc×m and Cc ∈ R
m×nc . In the case where n = nc the

solution to this constrained minimization is given by
the LQG controller [1], [2] in terms of solutions to two
independent algebraic Riccatti equations. However, if
nc < n then this problem is extremely complex and
leads to four highly coupled matrix equations (nec-
essary conditions for optimality) known as optimal
projection equations [2]. The typical approach to solve
these equations are gradient based methods such as
quasi Newton methods [4]. It should be noted that
the optimal projection equations are nonconvex and
only necessary conditions for optimality and hence
the convergence of gradient based algorithms is not
guaranteed (even to a local minimum). Alternatively,
the H2 performance measure J(Ac, Bc, Cc) can be
obtained from the minimization

J(Ac, Bc, Cc) = min{λ : tr PV ≤ λ,

ÃTP̃ + P̃ Ã + R̃ ≤ 0}, (9)

which may be solved using a dual linear matrix
inequality iteration method [3]. Once again, since this
problem is nonconvex the convergence of this algo-
rithm is extremely sensitive to the initial conditions.
Finally, it follows from Lemmas 2.1 and 2.2 that the
fixed order optimal positive real control may be solved
using the dual LMI iteration method with additional
constraints Ac + AT

c < 0 and Bc = CT
c . However, as

above, the convergence of this algorithm is extremely
sensitive to the initial conditions.

IV. FIXED ORDER OPTIMAL CONTROL USING

GENETIC ALGORITHMS

In this section, we use genetic algorithms to solve
both the fixed order optimal control and the fixed
order optimal positive real control problems for two
given positive real plants. Since both these problems
involve complex equality and/or inequality constraints
we, first, reformulate both problems as unconstrained
optimization problems. Specifically, we introduce a
new objective function F (Ac, Bc, Cc) given by

F (Ac, Bc, Cc) =

{
J

J+1 , if (Ac, Bc, Cc) ∈ F ,

1, otherwise,
(10)

where F denotes the feasible space. For the fixed order
optimal control problem

F
�

= {(Ac, Bc, Cc) : such that Ã is Hurwitz},

and for the fixed order optimal positive real control
problem

F
�

= {(Ac, Bc, Cc) : such that Ac + AT
c < 0,

Bc = CT
c }.

Note that minimizing F (·, ·, ·) is equivalent to min-
imizing J(·, ·, ·). Hence, the fixed order optimal
control problem (resp., fixed order optimal positive
real control problem) can be solved by minimizing
F (Ac, Bc, Cc) where Ac ∈ R

nc×nc , Bc ∈ R
nc×m,

and Cc ∈ R
m×nc . Finally, since genetic algorithms

require a bounded search space we further restrict
Ac, Bc, and Cc such that their entries are within the
interval [−1000, 1000].1 It is important to note that
the objective function F (Ac, Bc, Cc) is nonsmooth and
hence the traditional gradient based approaches cannot
be used to minimize F (·, ·, ·). Furthermore, given a
triple (Ac, Bc, Cc) it is easy to compute F (Ac, Bc, Cc)
although there does not exist a closed-form expression
for F (Ac, Bc, Cc). This, however, does not present
a problem for implementing genetic algorithms as
they require only a method to compute F (Ac, Bc, Cc).
Finally, since effort for computing F (Ac, Bc, Cc) is
practically the same for both problems the compu-
tational time for optimal controller design with or

1Note that this range is chosen sufficiently large to include the
optimal controller. However, it should be emphasized that there is
no rigorous method to choose this range to guarantee existence of
the optimal controller exists within the range.
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without strict positive real constraint. It should be
noted that inclusion of other constraints such as H∞

performance constraints is relatively straightforward.
Example 4.1: This example adopted from [4] in-

volves a simply supported beam of length 2 with two
collocated sensor/ actuator pairs located at a = 55

172
and b = 46

43 . In this case, a continuous time model
retaining the first five modes is given by (2) and (3)
where

A = block−diag

([
0 1

−ω2
i −2ζωi

])
,

ωi = i2, i = 1, . . . , 5, ζ = 0.005,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−0.2174 −0.8439

0 0
0.4245 −0.9054

0 0
−0.6112 −0.1275

0 0
0.7686 0.7686

0 0
−0.8893 0.9522

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and C = BT. The noise intensities are V1
�

= D1D
T
1 =

0.1I10, V2
�

= D2D
T
2 = 0.1I2, R2 = 0.1I2, and

R1 = I10 and it is assumed that V12
�

= D1D
T
2 = 0.

For this example, the optimal cost for the full order
(LQG) controller is 29.0798. Next, we designed a
second order optimal dynamic compensator whose
cost was found to be 29.5717. For this design, we
used both discrete and line recombination operators.
Figure 1 shows the best cost (in a generation) versus
the generation number for the two operators. As can
be seen from the figure the line recombination oper-
ator has a faster convergence rate than the discrete
recombination operator. That has been the common
trend for the all the examples considered for this pa-
per. Furthermore, the resulting dynamic compensator
satisfies the optimal projection equations (necessary
conditions for optimality) and hence we conjecture
that this is most probably the global minimum. Finally,
it is interesting to note that the optimal second order
controller thus obtained is also strictly positive real.
Hence, the solution to the fixed order optimal pos-
itive real control problem should result in the same
controller (modulo a similarity transformation). This
has been verified by constraining the compensator to
be a self dual strictly positive real compensator and
performing the genetic algorithm with both the genetic
recombination operators. Figure 2 shows the best cost
(in a generation) versus the generation number for the
two operators.

Example 4.2: This example involves a positive real

plant given by (2) and (3) where

A = block−diag

([
0 1

−i2 −0.02i

])
,

i = 1, . . . , 5,

B = CT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0.9877

0
−0.0309

0
−0.891

0
0.5878

0
0.7071

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The noise intensities are V1
�

= D1D
T
1 = 0.1I10,

V2
�

= D2D
T
2 = 3.61, R2 = 3.61, and R1 = I10 and it

is assumed that V12
�

= D1D
T
2 = 0. For this example,

the optimal cost for the full order (LQG) controller
is 26.8607. Using the genetic algorithm a second
order dynamic compensator has been designed for the
two genetic operators as in the first example. The
optimal costs are 27.4172 and 26.0636 for discrete and
linear recombination genetic operators, respectively.
Figure 3 shows the best cost (in a generation) versus
the generation number. As in the first example, the
line recombination operator outperforms the discrete
recombination operator. Although it seems that we
obtain two different optimal costs with two different
operators, it should be noted that the genetic algorithm
with the discrete recombination operator continues to
search for designs with lower costs (albeit slowly).
Furthermore, the optimal compensator obtained from
the line recombination operator satisfies the optimal
projection equations.

Unlike the first example, the optimal second order
controller (obtained using the line recombination op-
erator) is not strictly positive real. This may be easily
verified by observing the phase of Gc(s) (see Figure
6). Next, we have performed optimal positive real
compensator design with the positive real constraint
on the compensatorwhich resulted in an optimal cost
27.4172. Figure 4 shows the best cost (in a gen-
eration) versus the generation number. In addition,
Figure 5 shows cost J(Ac(α), Bc(α), Cc(α)) versus
α ∈ [0, 1] where Ac(α), Bc(α), and Cc(α) are convex
combination of Ac(0), Bc(0), and Cc(0) and Ac(1),
Bc(1), and Cc(1) where Ac(0), Bc(0), and Cc(0) is
the solution to the optimal control problem and Ac(1),
Bc(1), and Cc(1) is the solution to the optimal positive
real control problem. It is clear from Figure 5 that
there is a continuous degradation of the cost as we
move from the optimal controller to optimal positive
real controller. Similarly, Figure 6 shows a continuous
transition from a non-positive-real compensator to a
positive real compensator as α changes from 0 to 1.
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Figures 5 and 6 confirm the necessity of the positive
real constraint for the compensator and also the fact
that there can be a degradation in the cost due to the
additional constraint. Finally, it is interesting to note
that the genetic algorithm with the discrete recombina-
tion operator (and without the positive real constraint)
converges to a cost close to that of the optimal positive
real compensator. At this time we have no reason to
conclude that this anything but a coincidence. Further
study of this interesting coincidence will be pursued
in a later work.

V. CONCLUSION

In this paper, we studied two examples involving
optimal positive real control design for positive real
plants. Specifically, we applied genetic algorithms to
obtain optimal control designs with and without the
strict positive real constraint on the compensator. This
study shows that genetic search strategy is an effective
approach for designing low order optimal controllers
with highly complex constraints such as strict positive
realness of the compensator. The advantage of the
genetic algorithms is that adding constraints such as
the positive realness of the compensator does not alter
the efficiency of the algorithm.

The two examples considered in this paper further
emphasize the importance of the fixed-order control
problem. As seen in both the examples the degradation
due to reducing the order from a 10th order LQG
controller to a 2nd order controller is small, establish-
ing the importance of optimal reduced order controller
design techniques for obtaining high performance low
complex controllers.

The two examples also provide comparison of two
different recombination operators. It has been ob-
served that the line recombination operator has consis-
tently performed better than the discrete recombination
operator.
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