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Abstract— A continuous time infinite horizon linear
quadratic regulator with input constraints is studied. On the
theoretical side, optimality conditions, both in the open loop
and feedback form, are shown together with smoothness of the
value function and local Lipschitz continuity of the optimal
feedback. Arguments are self-contained, use basic ideas of
convex conjugacy, and in particular, use a dual optimal control
problem. A method of calculating the optimal and stabilizing
feedback without relying on discrete optimization is outlined.

I. INTRODUCTION

The discrete time infinite horizon constrained linear

quadratic regulator has received much attention in the liter-

ature, with the purpose of computing stabilizing feedbacks

for constrained linear systems. See Rawlings and Muske

[22], Chmielewski and Manousiouthakis [10], Scokaert and

Rawlings [29], Bemporad, Morari, Dua and Pistikopoulos

[4], Grieder, Borelli, Torrisi and Morari [17], and the

references therein. The resulting computations all require

numerically solving finite horizon optimal control problems,

either online for the receeding horizon control, or offline

and leading to explicit piecewise affine feedbacks. This is

also the feature of suboptimal feedback construction for

continuous time regulator in Kojima and Morari [20].

Here we show how for a continuous time infinite horizon

linear quadratic regulator with input constraints (CLQR),

the stabilizing optimal feedback can be computed without

solving any discrete time control problems, and often,

without any optimization at all. Computation is done offline

and leads to a lookup table; one should not expect an

explicit formula, as the piecewise structure is not present.

What makes this possible is that the gradient of the value

function, a key ingredient of the optimal feedback, can

be propagated backwards from the solution to the Riccati

equation through the Hamiltonian differential system.

The properties of the value function and the optimal feed-

back can be studied by reducing the problem, in the spirit

of the Optimality Principle, to a finite horizon one with

a terminal cost. This was suggested for the discrete time

regulator in [10], [29]. Then, for discrete problems with both

input and state constraints, finite dimensional parametric

optimization tools and piecewise linear-quadratic function

technology, see Fiacco [11] and Rockafellar and Wets [27],
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can be applied; this was done for example in [10] and [4].

In continuous time, the piecewise structure is not present,

and the control problems are infinite dimensional. Some

tools for analyzing the value function for such problems

were given by Goebel [14]. Here, for CLQR, we propose

a direct and largely self-contained approach.

The feature of CLQR that makes this approach possible

is convexity. We work in the framework of convex duality

as suggested by Rockafellar [25], [26]; in particular we con-

sider a control problem dual to CLQR. For finite-horizon

problems, convex duality was utilized by Rockafellar and

Wolenski [28] and [14]. To a certain extent, convex analysis

has been used directly in the study of CLQR by Di Blasio

[7], and Heemels, Eijndhoven, and Stoorvogel [19], but

duality has not been fully taken advantage of. We attempt to

do it here, working directly with CLQR. Alternatively, the

properties needed for the algorithm could be deduced from

the general results by Goebel [12] (see also [15]), which

in turn rely on finite-horizon results of [28]. This was the

approach by Goebel [13], where similar properties are used

to show the existence of continuous stabilizing feedbacks

for linear systems with general saturation nonlinearities,

extending a results by Sontag, Sussmann, Yang [31]. We

add that it is convexity that guarantees that the mentioned

propagation of the value function through the Hamiltonian

system works; this is related to the method of characteristics

for the Hamilton-Jacobi equation working globally even for

nonsmooth but convex problems, as in [28], but not for

nonconvex but smooth ones; see Byrnes [8].

To our knowledge, open-loop and feedback optimality

conditions for CLQR and results on smoothness of its value

function, as we give here, have not been previously stated.

The extensive literature on infinite horizon optimal control

problems in theoretical economics, in particular Benveniste

and Scheinkman [5], [6], Araujo and Scheinkman [2], Gota

and Montrucchio [16], often uses assumptions not compat-

ible with CLQR. Our necessary open-loop optimality con-

dition could be derived from the general results by Seierstad

[30], but without reference to feedback. Results of [25] (and

their extension by Barbu [3]) lead only to local results and

do not give sufficient feedback optimality conditions. For

other results in continuous time, a comprehensive reference

is Carlson, Haurie, and Leizarowitz [9]. Finally, we note

that the treatment of state constraints for CLQR with the

tools we present requires further research. Such constraints

result in the adjoint arcs, or the optimal arcs for the dual

problem, being potentially discontinuous; see Rockafellar

[24] and Hartl, Sethi, and Vickson [18].
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II. PRELIMINARIES AND THE DUAL PROBLEM

The continuous time infinite horizon linear quadratic

regulator with control constraints (CLQR) is as follows:

minimize

1

2

∫ +∞

0

y(t)T Qy(t) + u(t)T Ru(t) dt (1)

subject to linear dynamics and an initial condition{
ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t),
(2)

and a constraint on the input

u(t) ∈ U for almost all t ∈ [0, +∞). (3)

The following are assumed throughout the paper.

Assumption 2.1: (standing assumption)

(i) Matrices Q and R are symmetric and positive definite.
(ii) The pair (A, B) is controllable. The pair (A, C) is

observable.
(iii) The set U is closed, convex, and 0 ∈ intU .

The optimal value function V : IRn �→ [0, +∞] is the

infimum of (1) subject to (2), (3), parameterized by the

initial condition x0. The infimum is taken over all locally

integrable control functions u : [0, +∞) �→ IRk.

For the unconstrained problem (1), (2) the value function

is quadratic: 1

2
x0 · Px0, the matrix P solves the Riccati

equation, and the optimal feedback is linear: given the state

x, the optimal control is −R−1BT Px. See Anderson and

Moore [1] or Kwakernaak and Sivan [21]. In presence of

(3), V is a convex function, is positive definite, and may

have infinite values: V (x0) = +∞ if no feasible process (a

pair x(·), u(·) satisfying (2), (3) and such that (1) is finite)

exists. For any x0 with V (x0) < +∞, an optimal process

x(·), u(·) exists and satisfies x(t) → 0 (this in fact holds

for any feasible process), and V is lower semicontinuous.

The (maximized) Hamiltonian associated with CLQR is

H(x, p) = pT Ax −
1

2
xT CT QCx + ρ(BT p), (4)

where the function ρ is

ρ(q) = sup
u∈U

{
qT u −

1

2
uT Ru

}
. (5)

This function is convex, nonnegative, bounded above by

q �→ 1

2
qT R−1q, and equal to this quadratic on a neigh-

borhood of 0. It is also differentiable, with ∇ρ Lipschitz

continuous. Also, if U is polyhedral, ρ is piecewise linear-

quadratic. The Hamiltonian differential system is

ẋ(t) = Ax(t) + B∇ρ(BT p(t)),

ṗ(t) = −AT p(t) + CT QCx(t).
(6)

As the function ρ is convex and differentiable, we have that

u(t) = ∇ρ(BT p(t)) if and only if

u(t) maximizes uT BT p(t) −
1

2
uT Ru over u ∈ U, (7)

and thus the first equation of (6) is exactly what the

Maximum Principle suggests. Almost symmetrically, we

have w(t) = −QCx(t) if and only if

w(t) maximizes − wT Cx(t) −
1

2
wT Q−1w. (8)

Following [25], [26], by the dual problem to CLQR we

understand the following optimal control problem: minimize∫ +∞

0

ρ(q(t)) +
1

2
wT (t)Q−1w(t) dt (9)

subject to{
ṗ(t) = −AT p(t) − CT w(t), p(0) = p0,

q(t) = BT p(t).
(10)

Arc p(·) describes the dual state, q(·) is the dual output,

while w(·) is the dual input/control. Motivation for consid-

ering such a problem should become clear after the initial

arguments of Section III. Note that (10) is essentially a

linear system dual to (2), subject to time reversal.

The optimal value function W : IRn �→ [0, +∞) for

the dual problem is the infimum of (9) subject to (10),
parameterized by the initial condition p0. The infimum

is taken over all locally integrable control functions w :
[0, +∞) �→ IRk. The value function W is a positive

definite, finite everywhere, and convex function (and thus

continuous). For each dual feasible process (a pair p(·),
w(·) satisfying (10) and such that (9) is finite) we have

p(t) → 0, and for any p0, an optimal process for the dual

problem exists.

For a proper, lower semicontinuous and convex function

f : IRn �→ (−∞, +∞], its convex conjugate f ∗ : IRn �→
(−∞, +∞] is defined by

f∗(p) = sup
x∈IRn

{p · x − f(x)}. (11)

It is a proper, lower semicontinuous and convex function

itself, and (f∗)∗ = f . The last equality implies that con-

jugacy gives a one to one correspondence between convex

functions and their conjugates. Simple examples are:

(i) Let f(x) = 1

2
xT Mx for a symmetric and positive

definite matrix M . A direct calculation yields f ∗(p) =
1

2
pT M−1p.

(ii) The function ρ in (5) is the conjugate of g given by

g(u) = 1

2
uT Ru if u ∈ U and g(u) = +∞ if u �∈ U .

There are several pairs of properties dual to each other with

respect to convex conjugacy, not unlike what is seen for

dual linear systems. Standard reference for these and other

elements of convex analysis we use is Rockafellar [23].

Example 2.2: (duality in unconstrained case) The value

function for the unconstrained linear quadratic regulator (1),
(2) is Vu(x0) = 1

2
xT

0 Px0, where P is the unique symmetric

and positive definite solution of the Riccati equation

PA + AT P − CT QC + PBR−1BT P = 0. (12)

As P is invertible, the equation above is equivalent to

−P−1AT − AP−1 − BR−1BT + P−1CT QCP−1 = 0.
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Just as (12) corresponds to the problem (1), (2), the second

equation corresponds to a dual linear quadratic regulator

(9), (10) with ρ(z) = 1

2
zT R−1z. The function Wu(p0) =

1

2
pT
0 P−1p0 is the value function for this problem. Indeed,

as (10) is stabilizable and detectable, the matrix describing

the value function is the unique positive definite solution of

the second equation above. In particular, the value functions

Vu, Wu are convex functions conjugate to each other.

III. MAIN RESULTS

To shorten the notation, we will use a subscript to denote

time dependence. That is, instead of x(t) we write xt, etc.

For all y, w, we have that

1

2
yT Qy +

1

2
wT Q−1w ≥ yT w,

and this holds as an equation if and only if w = Qy.

Similarly, for all u ∈ U , q,

1

2
uT Ru + ρ(q) ≥ uT q,

and this holds as an equation if and only if u = ∇ρ(q). The

two inequalities and the dynamics (2) and (10) show that,

for any primal feasible (xt, ut) and dual feasible (pt, wt)

1

2
xT

t CT QCxt +
1

2
uT

t Rut

+ ρ(BT pt) +
1

2
wT

t Q−1wt ≥
d

dt
(xT

t pt).

Moreover, an equality holds if and only if (xt, ut) and

(pt, wt) satisfy (6), (7), and (8). As for feasible processes

xt → 0, pt → 0, integrating the above inequality yields: for

any primal feasible (xt, ut) and dual feasible (pt, wt)∫
∞

0

1

2
xT

t CT QCxt +
1

2
uT

t Rut dt∫
∞

0

ρ(BT pt) +
1

2
wT

t Q−1wt dt ≥ −xT
0 p0

and an equality holds if and only if (xt, ut) and (pt, wt)
satisfy (6), (7), and (8). The arguments and inequalities

above form the basis for most of the results that follow.

Theorem 3.1: (open loop optimality)

(a) A feasible process (xt, ut) is optimal for CLQR if and
only if xt → 0 and there exists an arc pt such that (6),
(7) hold and pt → 0.

(b) A feasible process (pt, wt) is optimal for the dual
problem (9), (10) if and only if pt → 0 and there
exists an arc xt such that (6), (8) hold and xt → 0.

The sufficient condition in (a) can be weakened to say

only that limt→∞ x(t)T p(t) = 0, similarly for (b).

Theorem 3.2: (value function conjugacy) The following
(equivalent to each other) formulas are true:

W (p0) = supx∈IRn{−pT
0 x − V (x)},

V (x0) = supp∈IRn{−xT
0 p − W (p)}.

(13)

The first supremum is attained for every p0, while the second
is attained for every x0 such that V (x0) < +∞.

In other words, the convex functions V and W are

conjugate to each other, up to a minus sign. That is,

W (p0) = V ∗(−p0), equivalently, V (x0) = W ∗(−x0). For

any pair of convex functions, differentiability of one of the

functions is (essentially) equivalent to strict convexity of the

other; see [23], Theorem 26.3. This suggests an easy way

to show differentiability of both V and W : show that each

is strictly convex.

Lemma 3.3: (strict convexity) The function V is strictly
convex on domV . The function W is strictly convex.

We comment that for any differentiable convex function,

the gradient is continuous; see [23], Theorem 25.5.

Corollary 3.4: (differentiability of value functions) The
value function V is continuously differentiable at every
point of domV and ‖∇V (xi)‖ → +∞ for any sequence
of points xi ∈ domV converging to a point not in domV .
The value function W is continuously differentiable.

For the algorithm in Section IV, the result below, in

particular description of ∇V given by (c), is the key.

Corollary 3.5: (Hamiltonian system) The following are
equivalent:
(a) p0 = −∇V (x0),
(b) x0 = −∇W (p0),
(c) There exist arcs xt, pt on [0, +∞), originating at x0,

p0, such that (6) holds and (xt, pt) → (0, 0).
Suppose xt, pt satisfy (6). Then d

dt
H(xt, pt) = 0, where

H is the Hamiltonian (4). (The equation can be verified

directly.) As H(0, 0) = 0, if each arc converges to 0, then

H(xt, pt) = 0 for all t. In light of Corollary 3.5, we obtain:

Corollary 3.6: (Hamilton-Jacobi equations) For all x,
H(x,−∇V (x)) = 0. For all p, H(−∇W (p), p) = 0.

This can be used to find the value function for one-

dimensional problems. We do this to illustrate that V need

not be piecewise quadratic.

Example 3.7: (lack of piecewise quadratic structure)

Consider minimizing 1

2

∫
∞

0
x2(t) + u2(t) dt subject to

ẋ(t) = u(t) and u(t) ∈ [−1, 1]. The Hamiltonian is

H(x, p) = − 1

2
x2 + ρ̄(p), where ρ̄(q) = −q − 1

2
if q < −1,

1

2
q2 if −1 ≤ q ≤ 1, and q− 1

2
if 1 < q. Since by convexity

of V , ∇V is a nondecreasing function, we obtain

∇V (x) =

⎧⎨
⎩

− 1

2
(x2 + 1) if x < −1,

x if −1 ≤ x ≤ 1,
1

2
(x2 + 1) if x > 1.

Thus, ∇V is piecewise quadratic (it is not clear if this

holds in higher dimensions), and then V has the piecewise

structure, but the pieces are not quadratic.

Theorem 3.8: (feedback optimality)

(a) A feasible process (x̄t, ūt) is optimal for CLQR if and
only if ūt maximizes

−uT BT∇V (x̄t) −
1

2
uT Ru

over u ∈ U .
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(b) A feasible process (p̄t, w̄t) is optimal for the dual
problem (9), (10) if and only if w̄t maximizes

−wT C∇W (p̄t) −
1

2
wT Q−1w.

The maximum conditions can be alternatively written as
ut = ∇ρ(−BT∇V (xt)) and wt = −QC∇W (pt).

Most of the results stated so far can be extended to more

general convex optimal control problems, see [12], [13],

but there they require a less direct approach. Here, although

only in Theorem 3.1 and Lemma 3.3, we did take advantage

of the fact that V is quadratic near 0. Further use of this

fact, and a result of [14], lead to stronger regularity of V .

Theorem 3.9: (local Lipschitz continuity) The mappings
∇V , respectively ∇W , are locally Lipschitz continuous on
domV , respectively, on IRn.

IV. ALGORITHM

The theory of Section III suggests a numerical procedure

for computing the optimal feedback for CLQR (and thus a

stabilizing feedback for the linear system subject to input

constraints). From Theorem 3.8 and Corollary 3.5 one sees

that given the state x of the system, the optimal control is

∇ρ(BT p), where p is such that there exist a Hamiltonian

trajectory (i.e. a pair of arcs xt, pt such that (6) holds) on

[0, +∞), originating at (x, p) and converging to (0, 0). As in

a neighborhood of (0, 0) we have p = −Px, integrating the

Hamiltonian system (6) backwards from points (x,−Px)
should lead to values of the adjoint arc p corresponding

to any state in domV . More precisely, the idea of the

algorithm is as follows:

(1) Find the matrix P by solving the Riccati equation (12),
and the corresponding optimal feedback matrix for the

unconstrained problem Fu = −R−1BT P .

(2) Find a neighborhood N of 0 so that for all x0 ∈ N

one has Fux0 ∈ U and such that N is invariant under

ẋ = (A + BFu)x.

(3) For each point x on the boundary of N , find the

solution of the backward Hamiltonian system

ẋ(t) = −Ax(t) − B∇ρ(BT p(t)),

ṗ(t) = AT p(t) − CT QCx(t),
(14)

on [0, +∞), originating from (x,−Px).

Then, given any point x0 ∈ domV , the optimal feedback

is found as follows:

• Among all the stored pairs (xt, pt) corresponding to

all initial points and all times, find the one with xt

equal to x0 and let the control equal ∇ρ(BT p).

Of course, in practice one needs to pick a grid of points

on the boundary of N in step (2), use a bounded time

interval [0, T ] in step (3). With a reasonable choice of the

grid and a sufficiently large T , the x-coordinates of the

backward Hamiltonian trajectories ”fill out” any bounded

subset of domV . Then, for any x0 in this subset, to find

the optimal control, one picks xt that is closest to x0.

Lemma 4.1: (invariant set) For U = [−1, 1] and R = 1,
the set

N =
{
x ∈ IRn | xT Px ≤ (bT Pb)−1

}
meets the conditions required in step (2) of the algorithm.
In fact, the N above is the largest ellipse given by P that
meets the condition that Fux ∈ U for all x ∈ N .

The Hamiltonian system (6), and the backwards one (14),
involve the gradient of the function ρ. As ρ is given by (5),
its gradient can be found without computing ρ itself, as the

optimal value in a simple optimization problem. That is,

∇ρ(q) = argmax

{
qT u −

1

2
uT Ru | u ∈ U

}
, (15)

see Example 11.18 in [27]. This formula simplifies greatly

in many cases. In particular, for single input systems (u ∈
IR) and the standard saturation (that is, U = [−1, 1]), and

when (without loss of generality) R = 1, the gradient ∇ρ =
σ, where σ stands for the standard saturation function:

∇ρ(q) = σ(q) =

⎧⎨
⎩

−1 for q < −1,

q for −1 ≤ q ≤ 1,

1 for 1 < q.

More generally, similar formula holds whenever U is a

closed interval, and, for multiple input cases, when R is

diagonal and U is a product of intervals.

V. NUMERICAL EXAMPLES

A. Double Integrator

Consider the double integrator

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), y(t) = [ 1 0 ] x(t),

and the weights Q = 1, R = 0.1, studied in [20]. We

calculate the feedback using the algorithm outlined in the

previous section. Solving the Riccati equation (12) yields

P =

[
0.795 0.316
0.316 0.256

]
.

Initial points xi(0), i = 1, 2, . . . , 72 are chosen on the

boundary of the invariant ellipse

N =
{
x ∈ IR2 | xT Px ≤ 0.0398

}
.

Solutions to (14), from (xi(0),−Pxi(0)) are computed on

[0, T ] with T = 10 sec. First, we set ∆T = 0.005 sec. and

store the points (xi(j∆T ), pi(j∆T )) for i = 1, 2, . . . , 72,

j = 0, 1, . . . , 2000. The corresponding trajectories xi(t) are

shown in Figure 1, first on the square [−3, 3]× [−3, 3] (the

darker shade indicates the ”strip” in the plane where the

control is not saturated), then on the whole region they fill

out. Figure 1 also shows the trajectory starting at x(0) =
(1,−2.5) for the closed-loop system with noise.

Given the stored grid and a state of the system x,

the control u(x) is found as σ(R−1BT pi(j∆T )), where

(xi(j∆T ), pi(j∆T )) is the grid point with xi(j∆T ) closest

to x. The response of the system to this feedback, from
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Fig. 1. Double Integrator: optimal trajectories obtained via backward
integration of the Hamiltonian system.

x(0) = (1,−2.5), and the corresponding sequence of used

controls (sample time is τ = 0.25 sec.) is in Figure 2. There

are two sets of control signals and states on the figure. One

set corresponds to the system without noise, the other to

ẋ(t) = Ax(t) + Bu(x(t) + m(t)) + n(t) with zero mean

Gaussian random noises m(·) and n(·) with variances 0.01.

The response is essentially the same as in [20].

To reduce the size of the lookup table, we also solved

(14) on [0, 10] sec. with ∆T = 0.5 sec. and j =
0, 1, . . . , 20. The resulting grid of xi(j∆T )’s, restricted to

[−3, 3] × [−3, 3], is on Figure 3. Also in this figure is the

trajectory from x(0) = (1,−2.5) for a feedback with the

new grid. The response of the system is essentially the same

as that shown in Figure 2, thought the size of the feedback

table is much smaller.

Fig. 2. Double integrator: control inputs and the responses of the system
with and without noise.

Fig. 3. Double integrator: grid and response, small lookup table.

B. Unstable system

Consider the system

ẋ(t) =

[
1 1
−1 0

]
x(t) +

[
1
0

]
u(t), y(t) = x(t), (16)

and the weights Q = I , R = 1. As A is not semi-

stable, domV is not the whole plane. Thus, no matter

how large T is, the x-trajectories of (14) will not fill out

arbitrarily chosen compact sets. In Figure 4 we show the

trajectories obtained with T = 8 sec., ∆T = 0.005 sec.,

i = 1, 2, . . . , 72 and j = 0, 1, . . . , 1600. Figure 4 also

shows the closed-loop system trajectory starting at x(0) =
(0.5, 1) with the presence of noise. We also calculated

the approximate values of the value function V at the

grid points. This is possible via the formula for the time

derivative of V along optimal trajectories:

d

dt
V (xt) = −

1

2
xtC

T QCxt −
1

2
uT

t Rut
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This differential equation is included, together with the

backward Hamiltonian system (14), in the system to

be solved, while the initial points are taken to be

(xi(0),−Pxi(0), 1

2
xi(0)T Pxi(0)).

Fig. 4. Unstable system: optimal trajectories obtained via backward
integration of the Hamiltonian system.

Fig. 5. The value function for (1) with dynamics (16) and u(t) ∈ [−1, 1].

REFERENCES

[1] B.D.O. Anderson and J.B. Moore. Optimal Control – Linear
Quadratic Methods. Prentice-Hall, 1990.

[2] A. Araujo and J.A. Scheinkman. Maximum Principle and transver-
sality condition for concave infinite horizon economic models. J.
Econom. Theory, 30:1–16, 1983.

[3] V. Barbu. Convex control problems and Hamiltonian systems on
infinite intervals. SIAM J. Control Optim., 16(6):895–911, 1978.

[4] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The ex-
plicit linear quadratic regulator for constrained systems. Automatica,
38(1):3–20, 2002.

[5] L.M. Benveniste and J.A. Scheinkman. On the differentiability of
the value function in dynamic models of economics. Econometrica,
47:727–732, 1979.

[6] L.M. Benveniste and J.A. Scheinkman. Duality theory for dynamic
optimization models of economics: the continuous time case. J.
Economic Theory, 27:1–19, 1982.

[7] G. Di Blasio. Optimal control with infinite horizon for distributed
parameter systems with constrained controls. SIAM J. Control Opt.,
29(4):909–925, 1991.

[8] C. Byrnes. On the Riccati partial differential equation for nonlinear
Bolza and Lagrange problems. Journal of Mathematical Systems,
Estimation, and Control, 8(1):1–54, 1998.

[9] D.A. Carlson, A. Haurie, and A. Leizarowitz. Infinite Horizon
Optimal Control: Deterministic and Stochastic Systems. Springer-
Verlag, 1991.

[10] D. Chmielewski and V. Manousiouthakis. On constrained infinite-
time linear quadradic optimal control. Systems Control Lett., 29:121–
129, 1996.

[11] A.V. Fiacco. Introduction to sensitivity aand stability analysis in
nonlinear programming. Academic Press, 1983.

[12] R. Goebel. Duality and uniqueness of convex solutions to stationary
Hamilton-Jacobi equations. Trans Amer. Math. Soc. in press.

[13] R. Goebel. Stabilizing a linear systems with saturation through
optimal control. IEEE Trans. Automat. Contr. in press.

[14] R. Goebel. Hamiltonian dynamical systems for convex problems of
optimal control: implications for the value function. In Proc. of the
41st IEEE Conference on Decision and Control, Las Vegas, 2002,
pages 728–732, 2002.

[15] R. Goebel. Stationary Hamilton-Jacobi equations for convex control
problems - uniqueness and duality of solutions. In Optimal Control,
Stabilization, and Nonsmooth Analysis, Lecture Notes in Control and
Information Sciences, pages 313–322. Springer, Berlin, 2004.

[16] M.L. Gota and L. Montrucchio. On Lipschitz continuity of policy
functions in continuous-time optimal growth models. Econom.
Theory, 14:479–488, 1999.

[17] P. Grieder, F. Borelli, F. Torrisi, and M. Morari. Computation of
the constrained infinite time linear quadratic regulator. Automatica,
40:701–708, 2004.

[18] R.F. Hartl, S.P. Sethi, and R.G. Vickson. A survey of the Maximum
Principles for optimal control problems with state constraints. SIAM
Review, 37(2):181–218, 1995.

[19] W.P.M.H. Heemels, S.J.L. Van Eijndhoven, and A.A. Stoorvogel.
Linear quadratic regulator with positive controls. International
Journal of Control, 70(4):551–578, 1998.

[20] A. Kojima and M. Morari. LQ control for constrained continuous-
time system. Automatica, 40:1143–1155, 2004.

[21] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems.
Wiley-Interscience, 1972.

[22] J.B. Rawlings and K.R. Muske. The stability of constrained receding
horizon control. IEEE Trans. Automat. Control, 38:1512–1516, 1993.

[23] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.
[24] R.T. Rockafellar. State constraints in convex control problems of

Bolza. SIAM J. Control, 10(4):691–715, 1972.
[25] R.T. Rockafellar. Saddle points of Hamiltonian systems in convex

problems of Lagrange. Journal of Optimization Theorey and Appli-
cations, 12(4), 1973.

[26] R.T. Rockafellar. Linear-quadratic programming and optimal control.
SIAM J. Control Optim., 25(3):781–814, 1987.

[27] R.T. Rockafellar and R. J-B Wets. Variational Analysis. Springer,
1998.

[28] R.T. Rockafellar and P.R. Wolenski. Convexity in Hamilton-
Jacobi theory, 1: Dynamics and duality. SIAM J. Control Optim.,
39(5):1323–1350, 2000.

[29] P.O.M. Scokaert and J.B. Rawlings. Constrained linear quadratic
regulation. IEEE Trans. Automatic Contr., 43:1163–1169, 1998.

[30] A. Seierstad. Necessary conditions for nonsmooth infinite-horizon,
optimal control problems. J. Optim. Theory Appl., 103(1):201–229,
1999.

[31] E.D. Sontag, H.J. Sussmann, and Y.D. Yang. A general result on the
stabilization of linear systems using bounded controls. IEEE Trans.
Automat. Control, 39(12):2411–2424, 1994.

1406


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ArialNarrow-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Oblique
    /Times-Roman
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


