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Abstract— This paper concerns analysis of real-
time, safety-critical, embedded software. Software
analysis is expected to verify whether the computer
code will execute safely, free of run-time errors. The
main properties to be analyzed to prove or disprove
safe execution include boundedness of all variables
and termination of the program in finite-time.
Herein the concepts of Lyapunov invariance and
associated computational procedures are brought
within the context of software analysis. Dynamical
system representations of software systems along
with specific models that are suitable for analysis
via Lyapunov-like functions are developed. General
forms for the Lyapunov-like invariants are then
constructed in a way to certify the desired prop-
erties. Convex optimization methods such as linear
programming and/or semidefinite programming are
then employed for finding appropriate functions that
fit into these general forms and therefore, automat-
ically establish the key properties of software.

Index Terms— Software, Verification, Lyapunov
Invariants, Optimization

I. INTRODUCTION

Software and software enabled control systems
are instrumental in the design and implemen-
tation of real-time, embedded control systems
operating in uncertain environments. Examples
include human operated avionic vehicles, au-
tonomous aerospace systems and multiple coor-
dinating UAVs. As functionality and performance
of these mission-critical systems rely heavily on
software, it is crucially important to verify relia-
bility and correctness of the embedded software.
The very least to require is that the software must
be free of run-time errors. On the other hand, the
dramatically growing complexity of these mod-
ern control systems demands equal growth in
the complexity of the underlying software. The
complexity issue brings significant computational
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and mathematical challenges in analysis of the
embedded software, as far as verification of cer-
tain properties is concerned.

The software properties that are critical for safe
execution include: (1) absence of variable over-
flow, (2) absence of ‘array index out-of-bounds’
calls, (3) termination of the functions and sub-
functions and if required, the program itself in
finite time. Some additional properties that might
be desired in a reliable, safety-critical software
include: (4) robustness to uncertain inputs, includ-
ing feedback from analog systems, (5) validity
of certain inequalities relating inputs and outputs,
and (6) absence of ‘dead-code’.

The first property is in some sense equivalent
to the stability property of (nonlinear) dynamical
systems, which is known to be undecidable even
for the simplest cases (for instance piecewise
linear systems). Moreover, it is well known that a
general procedure that takes a computer program
as an input and correctly decides if the program
terminates in finite time does not exist. We there-
fore, are not aiming at finding computationally
efficient algorithms that are guaranteed to work
on all instances of computer programs. Instead,
we search for efficient algorithms that work rea-
sonably well for most practical instances.

Pioneered by the works of Cousot, perhaps the
most noteworthy results in the literature that deal
with software verification are based on the notion
of abstract interpretation. See for instance [4],[6].
See also [7],[8]. Abstract interpretation is a theory
for approximating the semantics of software and
is used for statically analyzing the dynamical
properties of computer programs. According to
[4], abstract interpretation is defined as an approx-
imate program semantics derived from the domain
of concrete semantic operations by replacing it
with a domain of abstract semantic operations. In
essence, the abstraction-based techniques perform
approximate/abstract symbolic executions of the
program, until an inductive assertion which re-
mains invariant under further executions of the
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program, and thus, a system invariant is found.
In order to guarantee convergence, however, these
methods employ acceleration/extrapolation tech-
niques such as narrowing (outer approximation)
and widening (inner approximation). The intro-
duction of these narrowing or widening operators
in usually the main source of conservatism in
abstract interpretation-based methods [3].

While analysis of semantic properties of soft-
ware is under rapid growing attention in the
computer science literature, little has appeared
on this subject in control engineering literature.
In this paper we introduce a systems theoretic
framework for establishing correctness (in the
sense that some or all of the above properties
hold) of software systems. The analysis relies on
a dynamical systems interpretation of computer
programs, and the main method of verification is
based on optimization search for system invari-
ants. Convex relaxations of combinatorial opti-
mization problems, as well as the standard tools
of convex optimization, serve as the numerical
engines. The novelty of this approach is in the
transfer of fundamental concepts (Lyapunov in-
variants) and associated computational techniques
from the control systems analysis arena to soft-
ware engineering. However, it is possible that
these techniques complement existing techniques
described earlier within the context of abstract
interpretation of programs. Existence or nonex-
istence of a complementary relation between the
two methods is an open question.

The main contribution of this paper is the intro-
duction of a novel approach for automatic verifi-
cation of computer programs of piece-wise linear
semantics. These include single flow programs
and gain scheduled piecewise linear systems, used
to control physical devices such as aerospace sys-
tems or automotive control systems. We present
modeling techniques through the introduction of
linear-like models that may represent a broad
range of computer programs of interest to this
paper. We will then introduce and design specific
Lyapunov invariants, whose properties guarantee
variable bounded-ness as well as other desired
properties, such as guaranteed program termina-
tion. These Lyapunov invariants are instrumental
for the approach taken here. That is, they provide
the behavior certificates of the computer program

relative to the (possibly many) properties to be
verified. Finally, we will show how this prob-
lem may be formulated as a convex optimization
problem, such as a linear program, or possibly a
program involving semidefinite constraints.

II. BASIC PRINCIPLES OF AUTOMATED
SOFTWARE ANALYSIS

This section introduces the fundamentals of our
approach towards verification of computer codes
through dynamical system models. Considering
computer programs as dynamical systems, we in-
troduce Lyapunov-like functions as certificates for
the behavior of these systems. We then describe
the conditions under which finding appropriate
Lyapunov functions may be formulated as a con-
vex optimization problem.

A. Dynamical systems representation of computer
programs

A computer program can be viewed as a rule for
iterative modification of operating memory, pos-
sibly in response to real-time inputs. While com-
puter code for real-time applications is expected
to run continuously, some programs are expected
to terminate in finite time. In both situations, a
computer program can be modeled as a dynamical
system.

More specifically, we will consider models de-
fined in general by a state space set X with se-
lected subsets X0 ⊂ X of initial states and X∞ ⊂
X of terminal states, and by a set-valued function
f : X �→ 2X , such that f(x) ⊂ X∞, ∀x ∈ X∞.
The dynamical system S = S(X, f, X0, X∞)
defined by X, f, X0, X∞ is understood as the set
of all sequences X = (x(0), x(1), . . . , x(t), . . . )
of elements from X satisfying

x (0) ∈ X0, x (t + 1) ∈ f (x (t)) ∀t ∈ Z+ (1)

Note that the uncertainty in the definition of x(0)
represents different dependence on parameters,
and the uncertainty in the definition of x(t + 1)
represents program’s ability to respond to real-
time inputs. From a dynamical systems viewpoint,
analysis of software means verification of certain
properties of system (1) .

Definition 1: A computer program represented
by a dynamical system S = S(X, f, X0, X∞) is
said to terminate in finite time if every solution
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X = x(t) of (1) satisfies x(t) ∈ X∞ for some
t ∈ Z+. In addition, we say that the state variables
remain bounded (do not overflow) if x(t) does not
belong to a certain (unsafe) subset X− of X for
every solution X = x(t) of (1) .

B. Abstracted models of computer programs

In addition to exact models of software systems,
we also introduce abstracted models. We say
that model S(X̂, f̂ , X̂0, X̂∞) is an abstraction
of S(X, f, X0, X∞) if X ⊂ X̂ , X0 ⊂ X̂0,
X∞ ⊂ X̂∞, and f(x) ⊂ f̂(x) for all x ∈ X .
When S(X, f, X0, X∞) is an exact model of
a computer code, the set X is finite (since it
represents computer’s memory), however, in the
abstracted models of computer programs, the state
space is not constrained to be a finite set. Ab-
stracted representations are useful for producing
simplified models of computer code. Validity of
certain properties (such as finite time termina-
tion and avoidance of overflow) in an abstraction
S(X̂, f̂ , X̂0, X̂∞) implies their validity for the
original model S(X, f, X0, X∞).

When performing calculations with real num-
bers, a processor represents them in an approxi-
mate binary form, which complicates definitions
of even simple operations such as addition and
scaling. An abstracted model of a program which
deals with non-integer arithmetic can be defined
in terms of the “true” real numbers, which has the
potential to simplify the analysis dramatically.

C. Lyapunov functions as behavior certificates

Definition 2: A Lyapunov function for system
(1) is defined to be a function V : X �→ R such
that

V (x) < V (x) ∀x ∈ X, x ∈ f (x) : x /∈ X∞.
(2)

Thus, a Lyapunov function will strictly monoton-
ically decrease along the trajectories of (1) until
they reach a terminal state.

1) Termination in finite time:
Lemma 1: If the state space X is finite and

if there exists a function V satisfying (2) , then
a terminal state X∞ will be reached in a finite
number of steps.

Proof: Denote X1 := X and X̃1 :=
X1 \ X∞. Let i = 1 and define

xmi
= arg min

x∈ eXi

V (x) (3)

Since X̃1 is finite, xm1
exists and is well de-

fined. Recursively define Xi+1 := Xi\ {xmi
}

and X̃i := Xi \ X∞ where xmi
is defined

according to (3) . Since X is finite, only a finite
number of sets Xi can be defined in this way
and there exists z ∈ Z

+ such that Xz+1 =
∅. Now, let S denote the set of all sequences
X = (x(0), x(1), . . . , x(t), . . . ) of elements from
X satisfying (1) . Let S1 := S and denote by
S2 the set of all sequences X ∈ S1 for which
x (T ) = xm1

for some T ∈ Z
+. Let i = 1 and

until Si \ Si+1 = ∅, recursively denote by Si+2

the set of all sequences X ∈ Si \ Si+1 for which
x (T ) = xmi

for some T ∈ Z
+. Now, assume

that X ∈ Si and let x ∈ f (xmi
) . If x ∈ X̃,

then V
(
x
)

< V (xmi
) , which contradicts (3) .

Therefore, x ∈ X∞ and a terminal state has been
reached. Proof is complete.

The following lemma provides a criterion that
establishes finite-time termination in the general
case that the state space X may perhaps be not
finite.

Lemma 2: If there exists a bounded function
V : X �→ R

−, and a constant θ > 1 satisfying

V (x) < θV (x) ∀x ∈ X, x ∈ f (x) : x /∈ X∞.
(4)

then a terminal state X∞ will be reached in a
finite number of steps.

Proof: Since V is bounded, there exists
M ∈ R

+, such that −M ≤ V (x) < 0, ∀x ∈ X.
Now, assume that there exists a sequence X =
(x(0), x(1), . . . , x(t), . . . ) of elements from X
satisfying (1) that does not reach a terminal state
in finite time. I.e. x (t) /∈ X∞, ∀t ∈ Z

+. Then,
V (x (t)) < −M for

t >
log M − log |V (x (0))|

log θ
, (5)

which contradicts bounded-ness of V.
The following Proposition is a theoretical result

which may be used in proving finite-time termina-
tion of some processes. (See for instance Example
1 below.)

Proposition 1: Consider the dynamical system
S(X, f, X0, X∞) and let S denote the set of
all sequences X = (x(0), x(1), . . . , x(t), . . . )
of elements from X satisfying (1) . A terminal
state X∞ will be reached in finite-time if and
only if every sequential element X of S has a

1397



subsequence which reaches a terminal state in a
finite number of steps.

2) Absence of overflow: As described earlier,
absence of overflow can be characterized by
avoidance of an unsafe subset X− of the state
space X. Lyapunov functions defined as in (2)
can serve as the certificate for satisfaction of this
property in the following way. Define the level
sets Lr(V ) of V , by

Lr(V ) = {x ∈ X : V (x) < r}

These level sets are invariant with respect to (1),
in the sense that x(t + 1) ∈ Lr(V ) whenever
x(t) ∈ Lr(V ). We use this fact, along with the
monotonicity property of V, to establish a sepa-
ration between the reachable set and the unsafe
region of the state space. We have the following
proposition.

Proposition 2: Consider the system (1) and let
V denote the space of all Lyapunov functions for
this system satisfying (2) . An unsafe subset X−

of the state space X can never be reached along
all the trajectories of (1) if there exists V ∈ V
satisfying

inf
x∈X−

V (x) ≥ sup
x∈X0

V (x)

D. Storage functions as behavior certificates

A useful generalization of Lyapunov functions
is given by the so-called storage functions. As-
sume that the set-valued function f(x) is defined
by

f (x) =
{
f (x, u) : u ∈ U

}
(6)

where U is a given set and f : X × U �→ X
is a given function. In other words, assume that
the uncertainty in the dynamics of x = x(t) in
(1) is caused by the presence of an external input
u = u(t) ∈ U .

Definition 3: Let V : X �→ R and σ : X ×
U �→ R be some functions. The function V is
said to be a storage function with supply rate σ
for system (1) if

V
(
f (x, u)

)
−V (x) ≤ σ (x, u) ∀x ∈ X, u ∈ U.

(7)
Storage functions can be very useful in the analy-
sis of input/output behavior of systems. In par-
ticular, one could be interested in proving that
system defined by (1) and (6) reaches a terminal

state in finite time for some inputs u = u(t), in
a situation when it is known not to be true for
an arbitrary input u = u(t). Similarly absence
of state overflow in the system (1),(6) may be
proved for some inputs u = u (t) ∈ U ⊂ U,
while an arbitrary input u (t) ∈ U, may cause an
overflow.

Example 1: Consider the system defined by (1)
and (6) , and assume that σ(x, u) = −1 for
u = 0 and σ(x, u) < 1 for all u, x. In addition
assume that the state space X is finite. Then,
finite time termination for the input u (t) = 0 is
obviously implied by (7) and Lemma (1) . On the
other hand, this storage function implies nothing
about finite-time termination for inputs of the type
u (t) = c, where c is a nonzero constant. A very
interesting case arises when the inputs u ∈ U are
such that, on average, they are zero at least half
of the time. Indeed, in this case too, finite-time
termination for the system (1),(6) is guaranteed
by (7) . To show this, first notice that ∀Ni ∈ Z

+,
∃Ni+1 > Ni, such that:

k=Ni+1∑
k=Ni

σ (x (k) , u (k)) < 0 (8)

Now, from the sequence X =
(x (0) , x (1) , ..., x (t) , ...) , extract the
subsequence X0 = (x (0) , x (N1) , x (N2) , ...)
where N1, N2, .. are such that for each two
consecutive elements, (8) is satisfied. Using (8)
the elements of this sequence satisfy (2) and by
Lemma (1) , X0 reaches a terminal state in finite
time. Employing Proposition 1, this proves that
the system (1),(6) reaches a terminal state in
finite time.

E. Convex optimization of Lyapunov functions

Our method of automated code analysis is
based on using convex optimization in the search
for Lyapunov functions certifying certain aspects
of behavior of the dynamical system defined by a
computer program.

The main difficulty in using Lyapunov func-
tions in system analysis is finding them. The
chances of finding a Lyapunov function success-
fully are increased when (2) is only required on
a subset of X \ X∞. It is tempting to replace (2)
with
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V (x) < V (x) ∀x ∈ X, x ∈ f (x) :

V (x) < 1, x /∈ X∞, (9)

while adding the constraint

V (x) < 1 ∀x ∈ X0.

This way, V is not required to decrease mono-
tonically for some of the states which cannot be
reached from X0. Unfortunately, in contrast with
(2), formulation (9) has a significant disadvantage
of being non-convex with respect to V . Thus,
finding a solution of (9) is typically much harder
than finding a solution of (2).

Alternatively, (2) can be replaced by

V (x) < V (x) ∀x ∈ X, x ∈ f(x) : x ∈ Xv,

where Xv is a fixed subset of X which does
not contain any terminal points. Since V does
not enter into any conditioning (of x) here, this
set of constraints is convex with respect to V.
This technique, along with partitioning of the
state space into appropriate subspaces of smaller
size, and assigning different functions Vi to each
subspace Xvi

leads to systematic improvement of
analysis.

At a basic level, the search for V involves
selecting a finite dimensional linear parameteri-
zation

V (x) = Vτ (x) =
k=n∑
k=1

τkVk (x) ,

τ = (τk)
N

k=1 , τk ∈ R (10)

of a Lyapunov function candidate V , where Vk :
X �→ R are fixed functions, used as a basis of
a linear subspace of the vector space of all real-
valued functions V : X �→ R. For every τ =
(τk)N

k=1 let

φ(τ) = max
x∈X,x∈f(x): x �∈X∞

Vτ (x) − Vτ (x)

(assuming for simplicity that the maximum does
exist). Since φ is a maximum of a family of linear
functions, φ is a convex function of its argument.
If minimizing φ over the unit circle |τ | = 1 yields
a negative minimum, the optimal τ defines a valid
Lyapunov function Vτ (x) for (2). Otherwise, no

linear combination (10) yields a valid Lyapunov
function for (2).

Efficiency of the proposed convex optimiza-
tion approach depends heavily on computability
of φ and its subgradients. While φ is convex
with respect to its argument, the same does not
necessarily hold for Vτ (x) − Vτ (x). In fact, even
very simple computer codes lead to non-convex
optimization as the problem to calculate the max-
imum of Vτ (x) − Vτ (x).

As the main tool for resolving this problem,
we propose convex relaxations, which, in general,
means replacing maximization of a function h :
Z �→ R by maximization of the linear functional

ĥ(pξ) = Eh(ξ)

over an affine subset of the set of all probability
distributions pξ of random variables ξ with values
in Z . Various versions of the convex relaxations
method, including using sums of squares in pos-
itivity verification, S-procedure lossless-ness in
robustness analysis, and semidefinite relaxations
of combinatorial problems, have already been
used successfully in a number of applications.

III. SYSTEM INVARIANTS CERTIFYING
BOUNDEDNESS AND/OR FINITE-TIME

TERMINATION

Herein, we propose general forms for system
invariants which establish the desired properties
of computer programs and suitably fit in a convex
optimization framework. Among several proper-
ties of a reliable software mentioned earlier, ab-
sence of overflow along with finite-time termina-
tion is desired in most applications.

Proposition 3: Consider the dynamical system
S = S(X, f, X0, X∞) defined by (1) and assume
that there exists a real-valued function V : X �→
R such that

V (x) < θV (x) ∀x ∈ X, x ∈ f (x) : x /∈ X∞.

(11)

V (x) < 0 ∀x ∈ X0. (12)

V (x) >
∥∥∥ x

M

∥∥∥2

− 1 ∀x ∈ X. (13)

where θ ∈ R
+ is a constant, and no constraint

on finiteness of the state space X is imposed.
Then, every solution X = x (t) of (1) remains
bounded in the safe region defined by |xi| < M,

1399



where each xi is a component of the state vector
x. Moreover, if θ > 1, every solution X = x (t)
reaches a terminal state X∞ in finite time.

Proof: Note that (12) and (11) imply non-
positivity of V (x) on X \ X∞. Moreover, by
(13) , V (x) is bounded from below by −1. There-
fore, V (x) ∈ (−1, 0) . By Lemma 2, (11) implies
finite-time termination. Also, the unsafe region
X− is defined by |xi| ≥ M. Therefore,

∥∥∥ x

M

∥∥∥2

≥ 1, ∀x ∈ X−,

inf
x∈X−

V (x) = 0 ≥ 0 = sup
x∈X0

V (x)

Proposition 2 then completes the proof.
Remark 1: Appropriate choice of the constant

θ, can determine the success or failure of the
optimization algorithm to some extent. Larger val-
ues of θ in (11) imply/require faster convergence.
This can be seen more explicitly in formulae (5)
where the bound on the maximum number of
iterations is proportional to the reciprocal of log θ.
Intuitively, This means that larger values of θ
are more restrictive and make it more difficult to
satisfy (11) − (13) . Therefore, choosing smaller
values of θ close to 1 is recommended for more
successful analysis.

Particularly, by choosing θ < 1, only bounded-
ness will be established.

Remark 2: As mentioned in the Introduction,
absence of ‘array index out-of-bounds’ calls is
crucial in safety of software. Essentially, this
property is equivalent to bounded-ness of some
integer variables (array indices) in a much smaller
region of the state space determined by the size
of the array or matrix in general. Therefore, this
property as well, can be verified by employing
Proposition 3.

Remark 3: By imposing a quadratic form on V,
the search for a Lyapunov-like function satisfying
(11)− (13) reduces to semidefinite programming
[1]. Another possibility is to let V be a polynomial
function of the state variables xi. In this case,
the search for system invariants restricted to the
class of polynomials with real coefficients can be
formulated as a sums of squares problem [9],[10].

IV. CONCLUSIONS

A novel approach towards analysis of real-
time software was introduced. It was shown that

software, as a rule for iterative modification of
computer memory, can be modeled as a dynamical
system. Specific models carrying this task were
also suggested. System invariants, found by La-
grangian relaxations and convex optimization of
certain Lyapunov-like functions prove the desired
properties of the dynamical system/software. The
properties include bounded-ness of all variables
within acceptable ranges and finite time termina-
tion of the program in most cases. It was shown
through a numerical example that the method
works successfully. However, scalability of the
technique needs to be improved for applications to
large computer programs with thousands of lines
of code.

REFERENCES

[1] S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnan.
Linear Matrix Inequalities in Systems and Control The-
ory. Society for Industrial and Applied Mathematics,
1994.

[2] D. Bertsimas, and J. Tsitsikilis. Introduction to Linear
Optimization. Athena Scientific, 1997.

[3] M. A. Colon, S. Sankaranarayanan, H. B. Sipma. Linear
invariant generation using non-linear constraint solving.
In Computer Aided Verification (CAV 2003), vol. 2725
of Lecture Notes in Computer Science, Springer Verlag,
pp. 420-433.

[4] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proc. 4th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’77, pages 238–252,
1977.

[5] P. Cousot, and R. Cousot. Systematic design of program
analysis frameworks. In Conference Record of the Sixth
Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 269–282, San
Antonio, Texas, 1979. ACM Press, New York.

[6] P. Cousot. Semantic foundations of program analysis.
In S. Muchnick and N. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 10, pages
303–342. Prentice-Hall, 1981.

[7] D. Dams. Abstract interpretation and partition refinement
for Model Checking. Ph.D. Thesis, Eindhoven University
of Technology, 1996.

[8] D. Monniaux. Abstract interpretation of programs as
Markov decision processes. In Static Analysis Sym-
posium, volume 2694 in Lecture Notes in Computer
Science, pages 237-254, Springer Verlag, 2003.

[9] P. A. Parrilo. Minimizing Polynomial Functions. In Algo-
rithmic and Quantitative Real Algebraic Geometry, DI-
MACS Series in Discrete Mathematics and Theoretical
Computer Science, Vol. 60, pp. 83–99, AMS.

[10] K. Gatermann, and P.A. Parrilo. Symmetry groups,
semidefinite programs, and sums of squares. Journal of
Pure and Appl. Algebra, Vol. 192, No. 1-3, pp. 95-128,
2004.

1400


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ArialNarrow-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Oblique
    /Times-Roman
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


