
 
Abstract This paper investigates the problem of object

transportation, particularly pushing or moving an object to a
goal location and orientation, using multiple robots. A
multi-agent architecture is established to realize effective
cooperation between multiple autonomous intelligent robots,
in carrying out the task. Machine Learning is incorporated
into the architecture. In the developed approach, the world
state of the task is established by fusing sensory information.
Two machine learning and optimization methods,
Reinforcement Learning (RL) and Genetic Algorithms (GA),
are combined to learn a cooperation strategy and based on
which, determine the optimal actions to reach the task goal.
The outputs of RL and GA are evaluated by an arbitrator
using a probabilistic method, which will resolve conflicts and
improve the overall performance. The feasibility of the scheme
is illustrated through computer simulation.

I. INTRODUCTION

N recent years multi-agent robotics has become an active
research area in the fields of robotics and computer

science [1]-[2]. In the present context, an agent is a
computer-based entity situated in some environment with
other agents who cooperate in achieving a common goal,
and is capable of taking autonomous actions in this
environment in order to reach the goal. There are many
advantages of multi-agent robotic systems. These include
improved system performance, greater efficiency, better
fault tolerance, robustness, improved cost effectiveness,
distributed sensing and action, and inherent parallelism.
A multi-robot system is usually related to multi-agent

systems. However, there exist some differences between
these two concepts. Multi-agent technology mainly focuses
on the coordination mechanism between agents in achieving
the goal of the system. The agent can be a physical entity or
a software entity, and the goal can be physical or
nonphysical as well. Meanwhile, multi-robot systems
usually use physical robots, which are hardware agents, for
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accomplishing physical tasks, in practice. Multi-agent
technology may provide a theoretical foundation and a
simulation environment for a multi-robot system; however,
a multi-robot system needs to consider physical details and
hardware such as robot structural details and configuration,
dynamics, actuators, sensors, driving systems, controllers,
and so on. A multi-agent architecture may use both
hardware agents and software agents.
A useful application of multi-robot systems is the

multi-robot object-transportation problem. In this task,
several autonomous robots move in a coordinated manner to
move an object from a given location to a goal location and
orientation, with associated performance requirements such
as speed, obstacle avoidance, and risk/damage reduction.
This task is important for several reasons. It represents a
task that needs the basic capabilities of a multi-robot system,
and hence can be used as a benchmark problem to develop a
test bed for evaluating the related technologies. Furthermore,
an object-transportation system has direct practical
applications, as in shipping, storage, construction, parts
transfer, safety and security operations, and pathway
clearing. In a transportation process, the robots may need to
detect and move some obstacles in the path. The robots in
such a system need to communicate and cooperate with each
other to determine their own optimal transportation
strategies, applied forces, directions and magnitudes of the
carried out motion steps (displacement and speed), and so
on, to complete a common goal. Vision, sound, force, torque
and motion sensors may be needed to detect the orientation
and position of the object and the robots, changes in the
environment, and local dynamic models.
In this paper we develop a multi-robot system integrated

with machine learning for carrying out object transportation.
Two approaches of machine learning, Reinforcement
Learning (RL) and Genetic Algorithms (GA), are used to
learn the optimal cooperation strategies for the multi-robot
object-transportation process. A computer simulation is
implemented in Java language and the results are evaluated.

II. RELATEDWORK
Some pioneering work has been done in multi-robot

object-transportation applications and in the machine
learning field. Mataric, et al. [3] studied the cooperative
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multi-robot object-pushing problem. In their case, two
autonomous six-legged robots were used to push an object
to a goal location. Simple communication protocols were
used for cooperation between robots. Since the approach
was based on a predefined reactive algorithm, there was no
mechanism of learning or evolution.
Rus, et al. [4] explored approaches to move furniture with

teams of autonomous robots. They showed how coordinated
pushing by robots could change the pose (position and
orientation) of objects. They presented a way to select the
active robots (robots which execute pushing motions) and
stationary robots (robots which constrain the motion of the
object by remaining fixed in place along a specified track)
and a method of role switching of the two types of robots,
over the course of a task. Their method as well lacked an
intelligent learning mechanism.
Miyata, et al. [5] studied cooperative transport by

multiple robots in unknown static environments associated
with real-time assignment. They suggested an architecture
for the task-assignment and motion-planning system.
However, intelligent learning and evolution capabilities
were not integrated into the architecture.
Stone and Veloso [6] suggested a layered learning

approach for multi-agent cooperation. They proposed to
introduce machine learning into a multi-agent system. In
their paper, neural networks were used to learn the low-level
skills of a robot and the decision tree method was employed
to learn the high-level strategies. However, their work
mainly focused on robot soccer rather than a general
multi-robot object-transportation problem.
Asada, et al. [7] studied cooperative behavior of mobile

robots by using the reinforcement learning (RL) method.
Specifically, they introduced RL into multi-robot
cooperation. The method was applied to a soccer playing
situation, as before.
Liu and Wu [2] investigated multi-agent cooperative

behavior evolution in an object-pushing problem. A genetic
algorithm was employed as a machine learning tool. The
basis of the present paper is somewhat similar to their work.
However, the present paper integrates reinforcement
learning and genetic algorithms into an object pushing task,
where the problems that arise are resolved by arbitrating
these two methods.
There are some common shortcomings in the existing

work in the area of multi-robot object transportation, as
listed below:
1. Inadequate emphasis on the learning mechanism in

the object- transportation process.
2. No integration of learning and evolution. (Learning

is not optimal and also may fail in a complicated and
unknown environment.)

3. Information (model) on local dynamic/kinematic
interactions between robots and the object is not
explicitly used.

4. Control of robot contact forces is not included in the
overall control scheme.

5. Implementations on physical robots are few and not
rigorous.

The work presented in this paper undertakes to address
and correct some of these shortcomings.

III. MULTI-ROBOT OBJECT-PUSHING SYSTEM

A. Problem Definition
The system developed in the present work incorporates

two or more autonomous robots to perform coordinated
movements for transporting an object (for example, a box)
toward a goal location and orientation. Obstacles may be
present and have to be accommodated within the task. An
experimental system, which is under development in our
laboratory for this purpose, is shown in Figure 1.

Fig.1. An experimental system for cooperative object pushing.

B. Multi-agent architecture
In this paper, a newmulti-agent architecture is established,

which is suitable for multi-robot object-transportation tasks.
This architecture is shown in Fig.2.

Fig.2. Amulti-agent architecture for the cooperative object-transportation
system.
In Figure 2, there are two physical agents and four
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software agents, constituting a multi-agent cooperative
object-transportation system. The two physical robots act as
the physical agents. They communicate with the four
software agents to perform coordinated motions for
transporting the object (box) to the goal location. All agents
have their own communication subsystems and decision
systems. They relate the sensory data to their actions based
on the current internal state and the knowledge base. In
addition, the two robot-assistant agents contain a
force/position control subsystem to drive the physical robots
to the desired positions.
In the present multi-agent architecture, there is a vision

sensor agent linked to a video camera. This agent receives
and processes current video information of the system, and
broadcasts the results to all agents. The locations of the
robot end effectors and the object are monitored by the
vision agent, which also manages the video information for
further use.
Corresponding to each physical agent there is a robot

assistant software agent. The assistant agent senses data of
the corresponding physical robot, makes decisions and
generates control/actuating signal for the physical agent. It
also communicates with other software agents to obtain
current world model and determine a suitable optimal
action.
The multi-agent system has a learning/evolution agent. It
plays the role of a monitor, learner, and an advisor. This
agent receives the current world state; i.e., the data of the
goal and obstacles, from other agents; carries out local
modeling and leaning using its intelligent learning/evolution
knowledge base; reasons an optimal cooperation strategy;
and sends the suggested actions to the two robot-assistant
agents.

IV. LEARNING AND EVOLUTION
It is desirable and useful for a multi-robot system to learn
from prior experience on cooperation strategies, and
improve its future actions on this basis. A system with
learning capabilities can cope with difficulties in a dynamic
and unknown environment, and suitably adapt to complete
the expected task. Two different approaches of machine
learning and optimization, Reinforcement Learning and
Genetic Algorithms, are incorporated into the multi-robot
object-transportation system. These two approaches are
outlined next.

A. Reinforcement Learning (RL)
A key problem in a multi-robot object-transportation

system is how to select the cooperation strategy; i.e., force
location and direction of each robot, according to the current
world state, for generating an effective strategy of object
transportation. This problem can be partly solved by the
Reinforcement Learning method.
Specifically, the Q-learning algorithm, a type of

Reinforcement Learning, is used to make the robots learn
the cooperation strategies. The Q-learning algorithm is
outlined below [8]:

• For each state s and action a, initialize the table
entry ( , )Q s a to zero

• Observe the current state s
• Do repeatedly the following:

Select an action a and execute it
Receive immediate reward r
Observe the new state 's
Update the table entry for ( , )Q s a as follows:

'
( , ) max ( ', ')

a
Q s a r Q s aγ← + (1)

's s←
In this paper, the object is simplified as a rectangular box

and the state s is represented by the angle α in Fig. 3, which
describes the relative location of the goal and the box center.
The cooperative action a of the three robots is modeled as

the vector 1 1 2 2 3 3( , , , , , )θ β θ β θ β . Here, iθ represents the force

direction and iβ represents the force location of a robot.

Fig.3. The state and action representation in a multi-robot object-
transportation system.

The reward r is calculated as

1i it tr D D
−

= − (2)

where, it
D is the distance between the box center and the

goal location at time it .

B. Genetic Algorithms (GA)
An approach that is particularly suitable for finding an
optimal cooperation strategy for a given world state is
Genetic Algorithms [8, 9]. Liu and Wu [2] used GA to
realize a multi-robot box-pushing system. In GA, the
solution space is represented by a chromosome space, which
is a binary code, whose bits are the genes. By mimicking
biological evolution, the algorithm finds the most optimal
chromosome; i.e., the best cooperation strategy, which
corresponds to the largest fitness function value. A typical
Genetic Algorithm can be found in [2] and is described as
follows:

Initialize p (the number of individuals in the
population), r (the fraction of the population to be
replaced by crossover at each step), m (the mutation
rate), and fitness_threshold.
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Generate p individuals at random to produce the
first generation of population P
Calculate the fitness(i) for each i (individual) in P
While thresholdfitnessifitness

i
_))(max( < ,

then repeat:
Produce a new generation Ps:
1. Probabilistically select (1-r)p members of P to
be included in Ps. The selecting probability is
given by:

=

= p

j
jFitness

iFitness
i

1
)(

)()(Pr (3)

2. Execute the Crossover operation to generate
(rp)/2 pairs of offspring and add them to Ps

3. Mutate m percent of the numbers of Ps
4. Update P Ps
5. Calculate Fitness(i) for each i in P
Return the individual with the highest fitness in P

In the present work, the above algorithm is realized to
find the optimal cooperation strategy between robots so that
the object is transported to the goal location as quickly as
possible. In Figure 3, all possible vectors of

1 1 2 2 3 3( , , , , , )θ β θ β θ β ; i.e., the cooperation strategies,
constitute a vector space 6R , which is the set of all possible
cooperation strategies between the three robots. The
objective of the Genetic Algorithm is to find the best vector
in 6R under the current world state. Here, the vector

1 1 2 2 3 3( , , , , , )θ β θ β θ β , which gives the force directions and
locations of the three cooperating robots, is used as the
individual in the genetic algorithm. In particular, it is
expressed as a 30-bit binary code in Figure 4.

First, ten individuals are generated at random to
constitute the first generation of population. Then the above
Genetic Algorithm is employed to search for the best
cooperation strategy.
The fitness function is calculated as

2/(1 cos ) / *Fitness F Sθ= + Γ (4)

Here,F is the net force magnitude of the three robots,
θ is the angle between the net force vector and the goal
location vector, Γ is the net torque, and S is the area of the
triangle formed by the three robots.
The fitness function has some physical meaning. First, the

cooperation strategy, which generates a high net force to
point to the goal location, will receive a high fitness value so
that the object will be transported towards the goal location
effectively and quickly. Second, the strategy with a low net

torque will gain a high fitness value because it will suppress
unnecessary rotation of the object and move it quickly.
Third, the one with good spacing between robots will be
encouraged because the operation difficulty would be
increased and the success probability would be decreased if
the robots clustered in a small area. In other words,
clustering of the robots is punished.
In each step of the transportation process, the GA is used

to find the best cooperation strategy between the robots
based on the current world state. Then it is employed to
move the object for a while. Next, the cooperation strategy
is searched again because the object has been moved and the
world state may have been changed. The above operations
are repeated until the object is moved to the goal location.
The Genetic Algorithms do not guarantee an optimal

output. The crowding phenomena [8], in which very similar
individuals take over a large fraction of the population, is
observed in our simulation work. It greatly slows the
evolution process and generates bad cooperation strategies.
Therefore, the Reinforcement Learning method given in
section A has to be integrated with GA to generate a more
robust strategy selection mechanism in our project.

C. Integration of learning and evolution
Reinforcement Learning may face some difficulties in the

cooperative object-transportation process. For example, the
agent runs the risk that it will over-commit to actions that are
found to have high Q values during the early stages of
training, while failing to explore other actions that also have
high values [8]. In addition, RL is unable to capture slow
environmental changes. Specifically, if the environment
changes very slowly, RL will not be able to distinguish the
difference between the world states and as a result, it will not
update the corresponding items in its knowledge base.
These limitations of RL may be overcome at least in part

by using Genetic Algorithms. Because genetic algorithms
simulate the biological evolution by using reproduction,
crossover and mutation operations, they provide means of
coping with slow environmental changes. In addition, the
mutation operation in GA makes it possible to select an
entirely different action from those found in early training to
have high Q values through a Reinforcement Learning
algorithm. Furthermore, GA provides a degree of optimality
to an action.
GA also benefits from Reinforcement Learning.

Integrated with RL, GA can expedite the evolution process
and deal with quick environmental changes. Moreover, the
crowding phenomenon and its consequences are suppressed
in part.
From the foregoing observations it is clear that

integration of learning and evolution may be useful for
decision making related to tasks in complex environments.

151015202530

1θ
1β 2θ 3θ2β 3β

Fig. 4. The binary code expression of the individuals in the GA.
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The integration scheme used in the present work is shown in
Fig.5:

Fig. 5. The integration scheme of Reinforcement Learning and Genetic
Algorithms in action selection in the multi-robot object transportation
system.

In Figure 5, there are two mechanisms for making action
decisions. One is based on Genetic Algorithms (GA) and the
other is based on Reinforcement Learning (RL). Using this
information, the arbitrator probabilistically decides on the
action that will be performed.
A block representing local model generation and dynamic

model updating is integrated with GA and RL. The robot
force/motion sensors and the camera send their data to the
sensory fusion block, which processes this information and
establishes the world state model (The object and goal data).
Meanwhile, the models of the robots, objects and their
interactions are identified and adjusted based on their
offline counterparts in the knowledge base. Then the new
models are used to update the dynamic-model knowledge
base, which are indispensable in the physical robot control
in the low level. Moreover, RL and GA algorithms also
access this knowledge base, and benefit from the current
world model in their decision-making process.

V. SIMULATION AND RESULTS
Java language is used here to simulate a multi-robot object
transportation system based on the architecture and
learning/evolution mechanism presented in previous
sections. The environment dimension is designated as
400*400 and the object is simplified as a rectangular box
with a width of 60 and a height of 40. There are three robots,
denoted by circles in the subsequent figures, which transport
the box to the goal location. The multi-thread programming
in Java is used to realize the parallel operations of robots.
Our research is expected to be applicable not only in

transportation tasks with small displacements as in Figure 2,
but also in more challenging tasks associated with a

complex work space; for example, a planetary exploration
task, in which a team of robots search a specific type of ore
and cooperatively transport these objects to a spacecraft. In
that case, it is not easy for an agent or a robot to possess the
global information. In other words, each robot only has local
sensing capability. Furthermore, it may be difficult to have a
global decision-making agent that will tell the robots how to
cooperate. Therefore, in the present simulation, each robot
is equipped with local vision, and intelligent
decision-making capability is also embedded into them
although the object information is still assumed to be global.
In the beginning of the simulation, the locations of the

robots, the box, and the goal are selected randomly. Because
the workspace may be very large and the robots are not
given any information about the location of the box, the
random search strategy may be a good option. The three
robots will wander in the beginning; i.e., move
autonomously in random directions, to find the box. If a
robot reaches a wall or another robot, it randomly changes
the moving direction until reaching the next location. When
a robot reaches the box, it stays there and sends a message
with coordinates of the box to the other robots, who respond
by arriving at the box. Then the first robot will serve as the
leader in the robot team, in the subsequent operation of
transporting. In this manner, the wandering process
ends and the transportation process begins. The leader
robot uses the mechanism of integrated learning and
evolution, as outlined in the previous sections, to compute
the optimal cooperation strategy and sends commands to the
other robots. The command message includes the force
direction and location of each robot in the team. When the
other robots receive the command message from the leader,
they move to the designated location and inform the leader
robot that they are ready to carry out the task. This process is
incorporated in the simulation presented in Figure 6.

Fig. 6. The robots move randomly and find the box.

The leader robot checks the ready status of all robots
and broadcasts the message Begin transportation to all
the robots. The box is moved and oriented under the net
force and torque applied by the robots, as determined by the
action scheme. After moving the box through one step, the
leader robot determines the new optimal cooperation
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strategy based on the current world state and sends new
commands to the other robots, for carrying out the next step
of transportation. This process is repeated until the box is
transported to the goal location and orientation. A
simulation result of the box-transportation process is shown
in Figure 7.

Fig. 7. A simulation result of box transportation.

Fig.8 presents the special case where the goal location is
suddenly changed from (10,380) to (340,60) at t=46s. It is
seen that the robots quickly adapt themselves to this change
and select a new cooperation strategy to transport the box to
the new goal location.

Fig. 8. Due to a sudden change in the goal location from (10,380) to
(340,60) at t=46s, the robots quickly adjust their cooperation strategy and
continue to move the box to the new goal location.

These simulation results indicate the effectiveness of the
present approach of integrated learning and evolution in
multi-robot object-transportation.

VI. CONCLUSION
This paper investigated the problem of object
transportation using multiple robots. A multi-agent
architecture was established to realize effective cooperation
between multiple autonomous intelligent robots. Two
methods of machine learning and optimization,

Reinforcement Learning and Genetic Algorithms, with their
characteristic advantages, were integrated to learn the
cooperation strategy for achieving a common goal. The
integration scheme, which makes use of an arbitrator, was
able to improve the overall performance of the task.
Simulation results showed the effectiveness of the approach.
Future work will include the introduction of obstacles into
the environment, implementation using physical robots in
laboratory, and rigorous testing and evaluation of
performance.
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