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Abstract— Motivated by real-time solution to robotic prob-
lems, researchers have to consider the general unified formu-
lation of linear and quadratic programs subject to equality,
inequality and bound constraints simultaneously. A primal-
dual neural network is presented in this paper for the online
solution based on linear variational inequalities (LVI). The
neural network is of simple piecewise-linear dynamics, globally
convergent to optimal solutions, and able to handle linear
and quadratic problems in the same manner. Other robotics-
related properties of the LVI-based primal-dual network are
also investigated, like, the convergence starting within feasible
regions, and the case of no solutions.

Index Terms— Linear programming (LP), quadratic pro-
gramming (QP), primal-dual neural network (PDNN), linear
variational inequalities, global convergence.

I. INTRODUCTION

In view of its fundamental role arising in numerous

fields of science and engineering, the problem of solving

linear and quadratic programs has been investigated exten-

sively for the past decades. For example, about the recent

research based on recurrent neural networks (specifically,

the Hopfield-type neural networks), see [1]-[4] and the

references therein. The neural network (NN) approach is

now thought to be a powerful tool for online computation,

in view of its parallel distributed computing nature and

hardware-implementation availability [5]-[10].

In the literature, researches are usually solving linear

programming and quadratic programming problems sepa-

rately. In addition, they handle optimization problems only

subject to one or two kinds of constraints [3]. Motivated by

engineering applications of linear/quadratic programming

in robotics [4][11]-[16], however, the following general

problem formulation is preferred as the basis of discussion:

minimize xT Wx/2 + qT x, (1)

subject to Jx = d, (2)

Ax � b, (3)

ξ− � x � ξ+, (4)

where W is assumed only positive semi-definite such that

quadratic programming and linear programming are both to

be handled in this formulation.

Before proceeding, we briefly review the following ex-

isting neural networks. It is known that the early neural

model like [1][17] contains finite penalty parameters and

Y. Zhang was with the Department of Electronic & Electrical Engineer-
ing, University of Strathclyde, Glasgow G1 1QE, U.K., and is now with the
Hamilton Institute, National University of Ireland, Maynooth, Co. Kildare,
Ireland ynzhang@ieee.org

generates approximate solutions only. The Lagrange neu-

ral network may have premature defect when applied to

inequalities-constrained QP problems [18]. To always ob-

tain optimal/exact solutions, traditional primal-dual neural

networks were proposed based on the Karush-Kuhn-Tacker

condition and projection operator [19]. However, due to

minimizing the duality gap by gradient descent methods,

the dynamic equations of such primal-dual networks are

usually complicated, even containing high-order nonlinear

terms [3][15]. To reduce implementation and computation

complexities, a dual neural network has been finally devel-

oped for handling general QP (1)-(4) with simple piecewise

linearity and global convergence to optimal solutions [13].

The disadvantage of dual networks, however, is that they

require the inversion of coefficient matrix W and thus only

able to handle strictly convex quadratic programs preferably

with fixed W [3].

As the research evolves spirally, a primal-dual neural

network model has recently been “discovered” with simple

piecewise linear dynamics, global convergence to optimal

solutions, and capability of handling QP and LP problems

in the same/unified manner [4][16][20]. Because the primal-

dual neural network model is designed based on linear

variational inequalities, it is termed the LVI-based primal-

dual neural network. In view of only partial results existing

(e.g., in [4][16][20], q ≡ 0 or no inequality constraint

Ax � b), this paper presents the whole picture and further

study of the LVI-based primal-dual network for solving

QP/LP (1)-(4), including rigorous derivation, convergence

properties, and solution characteristics.

The remainder of this paper is organized in four sections.

The problem formulation, its utility and online primal-dual

neural solver are discussed in Section II. Detailed derivation

and proofs of the LVI-based primal-dual neural network

are presented in Section III. The network convergence

behavior is further investigated via numerical experiments

in Section IV. Lastly, Section V concludes this paper with

final remarks.

II. PROBLEM FORMULATION & SOLUTION

Redundant manipulators are robots having more degrees-

of-freedom (e.g., n DOF) than required to perform a given

end-effector task (e.g., m dimensional). One fundamental

issue in robotics is the inverse kinematics problem [4][11]-

[16][19]-[22]. By resolving the redundancy (i.e., n − m),

the robots can avoid obstacles, joint physical limits and

configuration singularities, and as well as optimize various

performance criteria for particular purposes.
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Fig. 1. Block diagram of LVI-based PDNN for solving (1)-(4).

Motivated by the real-time robotic applications, the gen-

eral QP and LP problem formulation is required as in (1)-

(4), which is simultaneously subject to equality, inequality

and bound constraints. As for its usage in robotics, the

performance index xT Wx/2 + qT x in (1) can be used for

• minimum-effort motion planning as in [12][16][19],

• minimum-energy / torque-optimization as in [4][11],

• drift-free motion planning like [13][21].

The equality constraint Jx = d in (2) usually expresses

a strong and main relation between some robotic variables;

for example, a linear relation via Jacobian matrix J between

the desired Cartesian velocity d ∈ Rm and the joint velocity

x ∈ Rn to be resolved. On the other hand, the inequality

constraint Ax � b ∈ Rdim(b) in (3) is entailed for robot

obstacle avoidance as shown in [14] and [22], respectively,

for point-obstacles and window-shaped obstacle avoidance.

The bound constraint (4) is usually used to handle the

avoidance of joint limits, joint velocity limits and joint

acceleration/torque limits, like [4][11][13].

Based on the equivalence of QP/LP, LVI and a system

of piecewise linear equations, a new type of primal-dual

neural network solver can be developed to solve online (1)-

(4). Simply saying, we can first convert QP/LP (1)-(4) to

the following linear variational inequalities: to find a vector

y∗ ∈ Ω such that ∀y ∈ Ω := {y|ς− � y � ς+} ⊂
Rn+m+dim(b),

(y − y∗)T (Hy∗ + p) � 0, (5)

where the primal-dual decision vector y and its lower/upper

bounds are defined respectively as

y =

⎡
⎣x

u
v

⎤
⎦ , ς− =

⎡
⎣ ξ−

−∞
0

⎤
⎦ , ς+ =

⎡
⎣ ξ+

+∞
+∞

⎤
⎦ , (6)

with ∞ here representing a sufficient large positive constant

(or, vector of appropriate dimensions). The coefficients in

(5) are defined as

H =

⎡
⎣ W −JT AT

J 0 0
−A 0 0

⎤
⎦ , p =

⎡
⎣ q
−d
b

⎤
⎦ . (7)

Moreover, in light of the equivalence of LVI (5) and the

ensuing system of piecewise linear equation (also called

the linear projection equation),

PΩ(y − (Hy + p)) − y = 0, (8)

it follows naturally from our neural-network design expe-

rience [3][4][11]-[16][22]-[26] that the LVI-based primal-

dual neural network solver can be of the following dynamic

equation:

ẏ = γ(I + HT ){PΩ(y − (Hy + p)) − y} (9)

where γ > 0 is the design parameter used to scale the

network convergence.

The block diagram on realizing (9) is presented in Fig.

1, where the piecewise-linear activation function PΩ(·) can

be implemented by using operational amplifiers known as

limiter [2][3][6]. As bound constraint (4) is neatly cast into

projection set Ω, the size of the LVI-based primal-dual

network (9) is only the dimension sum of equality constraint

(2), inequality constraint (3) and primal decision vector x,

smaller than the existing neural networks’ [2][15][18][19].

In addition, the LVI-based primal-dual network does not

involve matrix inversion, matrix-matrix multiplication or

high-order nonlinear computation, thus reducing the im-

plementation and computation complexity, as compared to

other recurrent neural models [2][3][15][19].

III. THEORETICAL RESULTS

For clarity and better readability, the problem formulation

(1)-(4) and its LVI-based primal-dual neural solver (9) are

given in the previous section, while the detailed deriva-

tion and theoretical analysis are separated from them and

presented as follows. Note that as a basis of theoretical

analysis, the existence of at least one optimal solution

x∗ to the optimization problem (1)-(4) is always assumed

throughout the paper unless stated otherwise.

Theorem 1 (LP/QP-LVI equivalence) Optimization prob-

lem (1)-(4) can be reformulated as the LVI problem (5).

Proof. It follows from [27] that the Lagrangian dual

problem of (1)-(4) can be derived as

max. − 1
2
xT Wx + dT u − bT v + ξ−T ν− − ξ+T ν+ (10)

s.t. Wx + q − JT u + AT v − ν− + ν+ = 0, (11)

with u unrestricted, v � 0, ν− � 0, ν+ � 0. (12)

where u ∈ Rm, v ∈ Rdim(b), ν− ∈ Rn and ν+ ∈ Rn are

the corresponding dual decision variables. Then, a necessary

and sufficient condition for optimum (x∗, y∗, v∗, ν±∗) of

primal problem (1)-(4) and its dual problem (10)-(12), is
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[27]

Primal feasibility:

Jx∗ − d = 0, (13)

− Ax∗ + b � 0, (14)

ξ− � x∗ � ξ+;
Dual feasibility:

Wx + q − JT u + AT v − ν− + ν+ = 0, (15)

u unrestricted, v � 0, ν− � 0, ν+ � 0;
Complementarity:

v∗T (−Ax∗ + b) = 0, (16)

ν−∗T (−x∗ + ξ−) = 0, (17)

ν+∗T (−ξ+ + x∗) = 0. (18)

To simplify the above necessary and sufficient formu-

lation, we further study dual variable vectors ν−∗ and

ν+∗ in eqns. (15), (17) and (18), which correspond to

bound constraint (4). It follows from (17) and (18) that

[11][13][28][29]⎧⎪⎨
⎪⎩

x∗
i = ξ+

i iff ν+∗
i > 0, ν−∗

i = 0,
ξ−i < x∗

i < ξ+
i iff ν+∗

i = 0, ν−∗
i = 0,

x∗
i = ξ−i iff ν+∗

i = 0, ν−∗
i > 0.

By defining ν∗ = ν−∗−ν+∗, dual feasibility constraint (15)

becomes

Wx∗ + q − JT u∗ + AT v∗ = ν∗

⎧⎪⎨
⎪⎩

� 0, x∗
i = ξ+

i

= 0, x∗
i ∈ (ξ−i , ξ+

i )
� 0, x∗

i = ξ−i

which equals the following linear variational inequality

[23][30]-[32]: to find an x∗ ∈ Ω1 such that ∀x ∈ Ω1,

(x − x∗)T (Wx∗ + q − JT u∗ + AT v∗) � 0, (19)

where Ω1 := {x|ξ− � x∗ � ξ+}. Similarly, defining Ω2 :=
{v|v � 0}, we have the following LVI for (14) and (16): to

find a v∗ ∈ Ω2 such that

(v − v∗)T (−Ax∗ + b) � 0, ∀v ∈ Ω2; (20)

and equality constraint (13) is equivalent to the following

LVI: to find a u∗ ∈ Ω3 := {u|u ∈ Rm} such that

(u − u∗)T (Jx∗ − d) � 0, ∀u ∈ Ω3. (21)

Define Ω = Ω1 × Ω2 × Ω3 = {y := (xT , uT , vT )T ∈
Rn+m+dim(b)|ξ− � x∗ � ξ+, u unrestricted, v � 0, }
[30][33]. Linear variational inequalities (19)-(21) can be

combined into one LVI problem formulation; i.e., to find

u∗ ∈ Ω such that ∀y := [xT , uT , vT ]T ∈ Ω,⎛
⎝

⎡
⎣x

u
v

⎤
⎦ −

⎡
⎣x∗

u∗

v∗

⎤
⎦

⎞
⎠

T ⎛
⎝

⎡
⎣ W −JT AT

J 0 0
−A 0 0

⎤
⎦

⎡
⎣x∗

u∗

v∗

⎤
⎦ +

⎡
⎣ q
−d
b

⎤
⎦

⎞
⎠

� 0.

After defining ς±, H and p respectively as in (6) and (7)

for notation and implementation simplicity, the above LVI

is exactly in the same compact matrix form as in (5), being

the equivalence of QP (1)-(4). �

Theorem 2 (PDNN convergence) Starting from any

initial state, the state vector y(t) of the primal-dual neural

network (9) is convergent to an equilibrium point y∗, of

which the first n elements constitute the optimal solution

x∗ to the QP problem (1)-(4). Moreover, the exponential

convergence can be achieved, provided that there exists a

constant � > 0 such that

‖y − PΩ(y − (Hy + p))‖2
2 � �‖y − y∗‖2

2

Proof. The proof can be generalized from [12][13][23].

To show the convergence, the finally useful inequality (25)

needs to be obtained through (22) and (23).

First, it follows from the projection inequality (PΩ(ω)−
�)T (ω − PΩ(ω)) � 0, ∀ω ∈ Rn+m+dim(b),� ∈ Ω
[12][23][29] that

(PΩ(y − (Hy + p)) − y∗)T ×
(y − (Hy + p) − PΩ(y − (Hy + p))) � 0

or written as follows for consistency,

(y∗ − PΩ(y − (Hy + p)))T ×
(Hy + p − y + PΩ(y − (Hy + p))) � 0.

(22)

Second, it follows from the projection-equation formulation

of linear variational inequalities, (8), that

(y∗ − PΩ(y − (Hy + p)))T (−Hy∗ + p) � 0. (23)

Summing up (22) and (23) yields

(y∗ − PΩ(y − (Hy + p)))T ×
(H(y − y∗) − y + PΩ(y − (Hy + p))) � 0;

and

(y∗ − y + y − PΩ(y − (Hy + p)))T ×
(H(y − y∗) − y + PΩ(y − (Hy + p))) � 0.

(24)

Then extending (24) gives

(y − y∗)T (I + HT )(y − PΩ(y − (Hy + p)))

� ‖y − PΩ(y − (Hy + p))‖2
2 + (y − y∗)T H(y − y∗).

Noting that H is positive semidefinite (not necessarily

symmetric) [23][33] in terms of

yT Hy = yT H + HT

2
y = yT

[
W 0
0 0

]
y � 0,

we have

(y − y∗)T (I + HT )(y − PΩ(y − (Hy + p)))

� ‖y − PΩ(y − (Hy + p))‖2
2 + ‖y − y∗‖2

H � 0.
(25)
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Fig. 2. Global and exponential convergence of PDNN (9) to x∗ starting from random initial states
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Fig. 3. Exponential-convergence factor �̃(t) of PDNN (9) starting from random initial states

Define the Lyapunov function V (y) = ‖y − y∗‖2
2 � 0.

Its time derivative along the primal-dual neural network

trajectory (9) is

dV (y)
dt

= (
∂V (y)

∂y
)T dy

dt
(26)

= (y − y∗)T γ(I + HT )(PΩ(y − (Hy + p)) − y)
= −γ(y − y∗)T (I + HT )(y − PΩ(y − (Hy + p)))
� −γ‖y − PΩ(y − (Hy + p))‖2

2 − γ‖y − y∗‖2
H

� 0

By Lyapunov theory, the network state y(t) is stable and

globally convergent to an equilibrium y∗ in view of V̇ = 0
being ẏ = 0 and y = y∗. It follows from Theorem 1 and Eq.

(8) that y∗ is the solution to the linear variational inequality

problem (5) and the first n elements of y∗ constitute the

optimal solution x∗ to quadratic programming (1)-(4).

As for the exponential convergence, review V (y) and

V̇ (y). From (26) and the extra condition called exponential-

convergence condition (i.e., if there exists a � > 0 such that

‖y − PΩ(y − (Hy + p))‖2
2 � �‖y − y∗‖2

2), we have

dV (y)
dt

� −γ‖y − PΩ(y − (Hy + p))‖2
2 − γ‖y − y∗‖2

H

� −γ�‖y − y∗‖2
2 − γ‖y − y∗‖2

H

= −γ(y − y∗)T (�I + H)(y − y∗)
� −λV (y)

where λ = �γ > 0 is the convergence rate. Note that the

existence of the exponential-convergence condition can be

justified in practice by considering the equivalence of y −
PΩ(y − (Hy + p)) = 0 and y = y∗, and that it is analyzed

in [3][12][14][34] and the references therein. Thus we have

V (y) = O(e−λ(t−t0)), ∀t � t0, and hence ‖y − y∗‖2 =
O(e−λ(t−t0)/2), ∀t � t0, which completes the exponential

convergence property of this primal-dual network. �

IV. NUMERICAL STUDIES

Theoretical results about primal-dual neural network (9)

depicted in the previous section are substantiated and sup-

plemented by the following numerical observations. The

first subsection is about the global convergence and ex-

ponential convergence. The second subsection is about the
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Fig. 4. The solution procedure may shift out of the feasible region, though started from it.

solution behavior starting from initial states within feasible

region. The third subsection is about the convergence of

the LVI-based PDNN under the circumstance of no x∗

solutions. The last subsection is to show the incapability of

a model simplified from this LVI-based primal-dual neural

approach.

A. Global Convergence

The PDNN model (9) for solving QP/LP (1)-(4) is

simulated with randomly generated coefficient matrices and

vectors, randomly generated initial states y(0), and without

loss of generality, n = 7, m = 3, dim(b) = 1, γ = 104.

Assuming the existence of x∗, the global convergence of

primal-dual network (9) is illustrated in Fig. 2 where the

usual convergence time is less than 4 × 10−3 second. As

shown in Fig. 3, the exponential-convergence factor �̃ is

estimated online as ‖y − PΩ(y − (Hy + p))‖2
2/‖y − y∗‖2

2,

∀y �= y∗, and otherwise, limy→y∗ ‖y − PΩ(y − (Hy +
p))‖2

2/‖y−y∗‖2
2. The value of � in the proof of Theorem 2

can thus be chosen as mint(�̃(t)). This typical simulation

result justifies the exponential convergence property of the

LVI-based PDNN model. Furthermore, the x∗ values are

also compared with those by MATLAB QP routines: the

difference is less than 10−7.

B. Feasible-Region Solutions

As in the robotic applications, the initial state x(0) (being

the initial joint velocity, acceleration or torque variables) is

usually within the feasible region constituted by constraints

(1)-(4). Thus, we may be interested in the question whether

the network output x(t) starting from such an x(0) will

always be within the same feasible region. If not, what

measurements could we adopt? Fig. 4 shows the typical

situation where only ϕ = 0 corresponds to within the

feasible region. That is, x(t) sometimes does go out of

the region. In light of the exponential convergence, this

weakness can be remedied easily by increasing design

parameter γ as large as hardware permits (like, γ = 107,

such that the shifting period is only of level 10−7sec), or

using a limiter to force the network output x(t) between

[ξ−, ξ+]. This numerical result also applies to other neural

networks design for robot manipulators and might be the

source of the small end-effector positioning error of level

10−4 ∼ 10−7m in [4][11]-[16][19]-[22][26][34].

C. No-Solution Case

Another interesting topic of using the PDNN (9) is

about the case of no optimal/theoretical solutions x∗ to the

original QP/LP problem (1)-(4). If such, what convergence

behavior will the network illustrate? Nonexistence of x∗

actually means the feasible region being empty. In robotics,

this is an extreme case, but does happen, like to command

the robot arm to do an impossible task of positioning or

lifting. Though theoretical result does not cover this case,

a large number of random numerical tests shows that the

network output x(t) is always convergent (while the dual

variables u and v are not). Due to space limitation, there

is no figures to show. The typical x(t) convergence is

similar to Fig. 2. This numerical result is also applicable

to other neural networks design for robot manipulators,

and might explain why no divergence of joint variables

was observed even in the extreme case (instead, a jump or

loss of integration precision may occur) [4][11]-[16][19]-

[22][26][34].

D. Incapacity of A Simplified Model

Review eq. (8). Based on the dual neural network design

experience [3][11]-[15][22][34], we may hope to further

simplify the PDNN dynamic equation (9) as the following

by removing term (I+HT ): ẏ = γ{PΩ(y−(Hy+p))−y}.

However, due to the asymmetry of H , the above simplified

model may not work well. For example, for solving the

LP problem with W = 0, the simplified model is typically

oscillating and not convergent to any x∗, as shown in Fig.

5. Failure is also possible in using this simplified model to

solve QP problems. That means the simplified model has

lost the capability of handling QP and LP effectively and

simultaneously.
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Fig. 5. The incapability of a simplified model for solving (1)-(4).

V. CONCLUSIONS

Robot motion planning and control have motivated the

online solution to general QP/LP problems [4]. In this

paper, the LVI-based primal-dual neural network has been

investigated thoroughly for such an online solution. The

network is with piecewise linear dynamics, global expo-

nential convergence, and handling QP/LP at the same time.

The numerical results and discussion have provided some

insights and answers to related robotic problems [20][34].
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