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Abstract— We are interested in training neurocontrollers
for robustness on discrete-time models of physical systems.
Our neurocontrollers are implemented as recurrent neural
networks. A model of the system to be controlled is known
to the extent of parameters and/or signal uncertainties. Pa-
rameter values are drawn from a known distribution. For
each instance of the model with specified parameters, a
neurocontroller is trained by evaluating sensitivities of the
model outputs to perturbations of the neurocontroller weights
and incrementally updating the weights. Our training process
strives to minimize a quadratic cost function averaged over
many different models. In the end this process yields a robust
neurocontroller, which is ready for deployment with fixed
weights.

We employ a derivative-free Kalman filter algorithm pro-
posed in [1] and extended in [2] and [3] to neural network
training. Our training algorithm combines effectiveness of
a second-order training method with universal applicability
to both differentiable and nondifferentiable systems. Our
approach is that of model reference control, and it is similar
in this sense to the approach in [4]. We illustrate it with two
examples.

I. INTRODUCTION

Growing power of computers permits implementation of
ever more sophisticated models and algorithms for control
of various technological processes and mobile systems.
Increasingly more elaborate and accurate dynamical models
of physical systems to be controlled termed plants are
being developed, often at a great cost, featuring complex,
highly nonlinear and often discontinuous relationship be-
tween variables. For example, a plant model can consist
of many modules implemented in Matlab/Simulink each of
which may contain multitudes of lookup tables, deadzones,
saturation and other nonsmooth and discontinuous elements.
In spite of substantial time and money invested in their
development, many plant models are still known only
to within parametric and/or signal uncertainties. Adaptive
controllers may not always be applicable, and additional,
often costly model calibration efforts seem unavoidable,
especially if high quality control is desired.

We would like to demonstrate that precise calibration of
plant models is not necessary. Our approach is to train a
neurocontroller on instances of plant models for robustness
to uncertainties or changes of plant parameters. It has been
shown in [5] that it is possible to train a neurocontroller in
the form of a time-lagged recurrent neural network (RNN)
on several instances of an automotive engine model (idle
speed control problem: maintaining the desired speed of the
crankshaft in spite of various disturbances), where each of

Ford Research and Advanced Engineering, Dearborn, MI 48124,
dprokhor@ford.com

The author is very grateful to his colleagues Lee and Tim Feldkamp for
helpful discussions and past contributions.

the instances is different from others in values of the model
parameters. The goal of both [5] and this paper is to create
a robust neurocontroller, i.e., a neurocontroller which is
capable of delivering an acceptable performance regardless
of the true (unknown) values of the plant parameters. After
its comprehensive testing on many instances of the plant
models, the neurocontroller is supposed to be deployed with
fixed weights, with no post-deployment adaptation, thereby
bypassing a delicate issue of stable training neurocontrollers
on-line1.

In the framework of [4], plant models consist of differ-
entiable components to enable training robust neurocon-
trollers via the extended Kalman filter (EKF) algorithm.
In [4] backpropagation through time (BPTT) [7] is used
to compute derivatives of plant outputs with respect to the
neurocontroller weights. When the plant equations are not
available, the authors of [4] resort to system identification,
the well known step consisting of training a separate neural
network to act as a plant model and estimate the unavailable
derivatives via BPTT. In many cases a fairly accurate plant
model is available since it is common in industry to invest a
lot of time and money into system identification. Thus it is
highly desirable to use the already developed plant models
directly for neurocontroller synthesis (training), rather than
replace them with yet another set of models based on
differentiable neural networks only because such networks
enable the use of BPTT.

In contrast to [4], the approach described in this paper
is designed to work with any plant models, differentiable
or not, and it does not use BPTT. Our approach employs
the derivative-free Kalman filter algorithm [1]. Our earlier
work extended this algorithm to training RNN in [2] and
[3], while improving its efficiency (we also proposed to call
the algorithm of [1] the nprKF). In this paper we discuss
the use of the nprKF to controller training.

This paper consists of four sections. In Section II we
describe our method. In Section III we illustrate its applica-
tion to a simple deadzone problem and an electronic throttle
control problem, followed by conclusion in Section IV.

II. METHOD

A. Controller training with reference model

We follow the framework for neurocontrol established in
[8], [9], and we adopt the viewpoint of model reference
control, with the controller being an RNN [4].

1Stability analysis of closed-loop systems including RNN with fixed
weights is beyond the scope of this paper. We assume that the closed-
loop stability can always be verified in practice, similar to the viewpoint
expressed in [6]. We agree with [6] that the ultimate verification of the
control system performance including the closed-loop stability is done by
passing field tests, irrespective of the availability of theoretical guarantees.
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It is convenient to treat the entire closed-loop system
as a heterogeneous RNN including its trainable part, the
(neuro)controller. The neurocontroller weights can be ad-
justed using either gradient based methods (less effective,
first-order methods, e.g., the gradient descent, or more
effective, second-order methods, e.g., EKF with BPTT
truncated after hd time steps) or derivative-free methods. As
mentioned in Section I, we wish to utilize the most accurate
plant model available to us, regardless of its differentiability,
for training a neurocontroller directly. We assume that the
plant model is specified with some parametric uncertainties,
and that the neurocontroller is to be trained to achieve a
decreased sensitivity to such uncertainties (in addition to
parametric, structural uncertainties and other disturbances
can be handled as well). We choose the second-order
derivative-free method to remain competitive with such a
powerful training method as the EKF [10].

B. The NPR method

The nprKF (Kalman filter by Norgaard, Poulsen and
Ravn (NPR)) provides a much more accurate estimate of a
Gaussian distribution evolution under a nonlinear transfor-
mation than that of the EKF [1]. This is done by subjecting
the special vectors, which are derived from columns of
the square root of the covariance matrix P, to the same
transformation. The nprKF is derived by replacing a Taylor
expansion in the vicinity of the current weight vector with
an expansion based on Stirling’s formula for interpolating
a function over an interval. In one dimension, Stirling’s
formula may be obtained from the Taylor expansion by
replacing derivatives by divided differences. Restricting
attention to first and second orders, we can replace the first
and second derivatives about x̄, i.e., f ′(x̄) and f ′′(x̄), with

f ′

DD(x̄) =
f(x̄ + h) − f(x̄ − h)

2h
(1)

f ′′

DD(x̄) =
f(x̄ + h) + f(x̄ − h) − 2f(x̄)

h2
(2)

where h controls the interval [x̄ − h, x̄ + h] for which the
approximation is optimal. NPR argue that their approach is
advantageous because of its more accurate treatment of the
effects of nonlinearity on the Kalman filter recursion. An
important side benefit is that nonlinearities do not have to
be differentiable since derivatives are not employed.

We now describe application of the NPR method to neu-
rocontroller training. Our application, parameter estimation
under the assumption of additive measurement and process
noise, is a special case of NPR’s more general formulation.
We mainly adopt the notation of [1] and [2] for consistency.

The weight vector denoted by x is treated as the state
to be estimated (the same interpretation is adopted in the
EKF framework [10]). We denote the number of trainable
weights as L and the number of closed-loop system outputs
as M . The square root of the L-dimensional covariance
matrix P is also L × L and is denoted by S̄x. The ith
column of S̄x is denoted by sx,i. From each such column

vector we form two variations of the current weight vector
x, viz., x + hsx,i and x − hsx,i, where h =

√
3 [1]. We

must compute system outputs for each of these variations.
We denote as g(x, 0) and g(x, hd) the closed-loop system
output at the current time step and hd time steps from
the current step in the future, respectively. We denote the
jth output for the nominal weight vector as gj(x, hd), for
variation x + hsx,i as gj(x + hsx,i, hd) and for variation
x − hsx,i as gj(x − hsx,i, hd). Additional (implicit) argu-
ment of g(x, ·) is the internal states of the neurocontroller
(assuming an RNN as controller), the plant model and the
reference model. However, these serve only as memory
to be stored temporarily, similar to the way it is done in
the EKF training of RNN. Elsewhere [4], [10] we utilize
derivatives of outputs with respect to weights computed by
truncated backpropagation through time, BPTT(hd), where
hd is the truncation depth, and hd = 0 corresponds to
static backpropagation. BPTT(hd) estimates the change of
the current network outputs from a hypothetical change of
weights hd time steps in the past. In the nprKF, we achieve
effectively the same result by repropagating the network,
starting with step t − hd, where t is the current step, for
each set of weight variations. That is why the state of the
network (and the state of the plant model when dealing with
control problems of dynamical systems, and the state of the
reference model, if applicable) at step t−hd must be saved
just as in BPTT(hd), so that the network can be initialized
properly prior to each repropagation.

Various working matrices must be set up at each step of
the nprKF recursion. The matrix S

(1)
xν is L×L and diagonal,

with diagonal elements equal to Q
1

2

0 ≥ 0. The ijth element
of the M × L matrix S

(1)
yx is given by

(S(1)
yx )ij =

1

2h
(gj(x + hsx,i, hd)

− gj(x − hsx,i, hd)) (3)

The matrix S
(1)
yω is M × M and diagonal, with diagonal

elements equal to R
1

2

0 > 0. Finally, the ijth element of the
M × L matrix S

(2)
yx is given by

(S(2)
yx )ij =

(h2 − 1)
1

2

2h2
(gj(x + hsx,i, hd)

+ gj(x − hsx,i, hd) − 2gj(x, hd)) (4)

The superscripts (1) and (2) refer to first and second
orders of approximation, as discussed in [1].

C. Two nprKF recursions

It is convenient to implement the nprKF algorithm2 in
the square root form [1]. We define the M × (M + L + L)
concatenated matrix

Sy =
[

S(1)
yω S(1)

yx S(2)
yx

]
(5)

2This section contains a summary of [2].
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where the component matrices are assembled according to
(3) and (4). We reduce Sy to the lower triangular form,
e.g., using the Householder method [12]. The outer product
matrix Py = SyS

T
y is analogous to the matrix R+HTPH

of the EKF [11], where R = S
(1)
yωS

(1)T
yω (the measurement

noise covariance), and H is a matrix of derivatives of
outputs with respect to adjustable parameters (as in BPTT).

The matrix

Pxy = S̄xS
(1)T
yx . (6)

is analogous to the matrix product PH of the EKF.
The Kalman gain K is obtained by solving

KSyS
T
y = Pxy (7)

As Sy is triangular, this is easily done by a succession of
forward and back substitutions.

Weighted average outputs of the closed-loop system to
be used in the weight update are calculated from

ȳj =
h2 − L

h2
gj(x, hd)

+
1

2h2

L∑
i=1

[gj(x + hsx,i, hd) + gj(x − hsx,i, hd)] (8)

Then the weight update is given by

x+ = x + K(y − ȳ) (9)

where y is the target vector (e.g., the desired plant output),
and the plus subscript denotes the after-update value.

In the usual (not square root) implementation of the
Kalman filter, the covariance matrix is updated as

P+ = P − KPyK
T + Q (10)

where Q = S
(1)
xν S

(1)T
xν (the process noise covariance). In

the square root formulation [1], we first assemble and
triangularize the L × (M + L + L) matrix

Ŝx =
[

KS
(1)
yω S̄x − KS

(1)
yx KS

(2)
yx

]
(11)

Then we assemble the L × (L + L) matrix

S̄x+ =
[

Ŝx S
(1)
xν

]
(12)

and triangularize it to complete the update of P+ =
S̄x+S̄T

x+.
Unfortunately, the computational cost of the recursion

above scales with L3. It may be impractical for neural net-
works with many weights. Much more efficient formulation
(O(L2M)) is proposed in [2] (note that typically we have
the number of outputs M << L), which is also used for
experiments in this paper. We describe this, more efficient
recursion below.

We consider the following factored form

[
S(1)

yω S(1)
yx S(2)

yx 0

0 S̄x 0 S(1)
xν

]⎡
⎢⎢⎢⎣

S(1)T
yω 0

S(1)T
yx S̄

T

x

S(2)T
yx 0

0 S(1)T
xν

⎤
⎥⎥⎥⎦

=

[
Sy 0 0 0

KSy S̄x+ 0 0

]⎡
⎢⎢⎣

ST
y ST

y KT

0 S̄T
x+

0 0

0 0

⎤
⎥⎥⎦ (13)

which, when expanded, may be seen to reproduce ex-
pressions (5), (6), and (7). We make use of the matrix
factorization lemma [11], which implies that (13) holds if
and only if there exists a unitary matrix Θ such that[

S(1)
yω S(1)

yx S(2)
yx 0

0 S̄x 0 S(1)
xν

]
Θ

=

[
Sy 0 0 0

KSy S̄x+ 0 0

]
(14)

The matrix Θ is assembled implicitly by carrying out
Givens rotations [12] to annihilate the appropriate blocks
of the matrix on the left hand side of (14) such that it has
the same structure as the right hand side. We then identify
the nonzero blocks with those on the right hand side. We
recover the updated square root of the covariance matrix,
S̄x+, and lower triangular Sy . Once K is obtained (through
backsubstitution), the weights are updated according to (9).

The dominant computational term of operations of the
new recursion scales with L2M , provided that the Givens
rotations are performed carefully in a certain order [2].
However, rigorous annihilation of S(1)

xν > 0 still requires
operations that scale with L3. Instead of carrying out the
full annihilation of the S(1)

xν block, we may zero the diagonal
elements only, ignoring the nonzero off-diagonal elements
that arise as side effects of the Givens rotations (we only
need to perform L quadrature additions). Thus, we avoid
the unacceptable scaling with L3 [2].

D. Summary of nprKF algorithm for controller training

We summarize the nprKF application to controller train-
ing in the algorithmic form:
0. Initialize diagonal S̄x, S

(1)
xν and S

(1)
yω to P

1

2

0 I, Q
1

2

0 I

and R
1

2

0 I, respectively, where P0, Q0 and R0 are problem
dependent values (see Section III and [2] for example
values).
1. Choose an instance of the plant model (e.g., randomly
initialize parameters of the model).
2. Choose a segment of the reference trajectory provided
by the reference model starting at time t − hd.
3. Initialize (or restore from step t− hd) states of the plant
model, the reference model and the neurocontroller; set k =
t − hd.
4. For neurocontroller weights x and each of their variations
x ± hsx,i, h =

√
3, i = 1, 2, ..., L:

4a. Perform repropagation through the closed-loop sys-
tem (forward propagation of signals through the controller,
the plant model and the reference model) from step k to
step k + hd to obtain g(x, hd) and g(x ± hsx,i, hd) and
populate matrices (3) and (4).

4b. Restore states of the closed-loop system from step k
to prepare for the next repropagation.
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5. Assemble the vector ȳ according to (8).
6. Carry out updates (14) and (9).
7. Move ahead by one time step; t = t + 1.
8. Continue from step 3 until the end of the reference
trajectory segment.
9. Choose a new segment (go to step 2) and/or a new in-
stance of the plant model (go to step 1) and continue training
until a required level of performance, e.g., a sufficiently low
root-mean-square (RMS) error, is attained.

We employ a multi-stream version of the algorithm above.
A concept of multi-stream was proposed in [5] for improved
training of RNN via EKF. It amounts to training Ns

copies (Ns streams) of the same RNN with Nout outputs.
Each copy has the same weights but different, separately
maintained states. With each stream contributing its own
set of outputs, every update (9) is based on information
from all streams, with the total effective number of outputs
increased to M = NsNout. The multi-stream training is
especially effective for heterogeneous data sequences, and
it counters the tendency to improve local performance at
the expense of performance in other regions.

The multi-stream is naturally suitable for the nprKF
algorithm, as shown in [2], and here we resort to the multi-
stream nprKF for training controllers for robustness. We
assign a separate stream to each instance of the plant model
(possibly, with its own segment of the reference trajectory)
and carry out steps 1 though 5 for all Ns streams. (All
streams share the weights of the neurocontroller, while
maintaining their differences of states of the closed-loop
system components as well as parameters of the plant
models.) We then execute steps 6 and 7 and repeat the
multi-stream training process from step 8. Thus, our neu-
rocontroller is trained simultaneously on Ns plant models.

There are two straightforward ways of training on multi-
ple plant models. First, several sets of plant model param-
eters may be chosen purposefully and kept constant during
training. In fact, different plant models may reflect distinct
operation modes of the plant. They may differ not only in
parameters but also structurally. Second, we can generate
parameters of plant models at random, assuming no prior
knowledge of parameter uncertainties except their ranges.

Training on randomly chosen plant models is akin to
training with a continuous flow of data. Examples are
never repeated. Making the most of each example (e.g.,
minimizing the RMS error for a random selection of Ns

plant models) may not be appropriate because it may well be
detrimental to training on other examples (a manifestation
of the well-known stability-plasticity dilemma). We intend
to synthesize a robust neurocontroller, i.e., a neurocontroller
which can deliver an acceptable performance for any ex-
ample. We attempt to balance the duration and intensity of
training on each selection of plant models with the duration
of the entire training session and the total number of plant
model selections utilized in training. We recognize that the
optimal balance may always remain problem dependent (see
also [4]), but we are encouraged by our results thus far

suggesting that an adequate balance can be achieved with a
modest amount of experimentation, as demonstrated in the
next section.

III. EXAMPLES

Our first example is a simple control problem with the
deadzone:

x1(t + 1) = x2(t) (15)

x2(t + 1) = x2(t) − αx2(t)/(1 + x2
1(t)) + u(t)(16)

where

u(t) =

⎧⎨
⎩

u(t) − β, if u(t) − β > 0
u(t) + β, if u(t) + β < 0

0, otherwise

In contrast with the example in [13], the parameters α and
β are assumed to be uncertain, and they are drawn from
the uniform random distributions in [0.0938, 0.2813] and
[0.3, 0.9], respectively. Thus we have the case of infinitely
many plants with parametric uncertainties. Our goal is to
train a neurocontroller for robustness to uncertainties in α
and β when tracking slowly-varying references. Our con-
troller is the 3-5R-1 RNN which stands for the architecture
with three inputs (two state variables and the reference x2d),
a fully recurrent hidden layer of five nodes, and one output.
Applying our method to training our network with Ns = 5,
hd = 10, P0 = 0.05, R0 = P0 and Q0 = 10−5P0 for
300 epochs (one epoch is based on 250-point trajectory
segments starting from x1(0) and x2(0) drawn from the
uniform random distribution in (−1, +1)) results in the
maximum RMS of 0.045 and the mean RMS error of
0.033 (averaged over 1000 plants). Our typical performance
is shown in Figure 1. Switching between plants occurs
at t = 4000. The differences in tracking two different
plants are slight. Similar results can be obtained for other
references and larger selections of plants.

Our second example deals with a problem of electronic
throttle control (ETC). The ETC is gaining popularity in
the automotive industry due to its capabilities for achiev-
ing improvements in fuel economy, drivability and other
crucial performance factors. In conventional vehicles the
driver pedal is linked to the engine throttle mechanically.
The ETC vehicles are “drive-by-wire” vehicles, meaning
that the throttle is driven by an electric motor controlled
electronically through an appropriate interpretation of the
driver pedal position.

The ETC is an electromechanical system consisting of
a DC motor, a gear mechanism and a throttle valve with
a dual spring system. In the neutral position, both springs
are relaxed, and the throttle valve is slightly open. This
is called the “limp-home” position, and it is critical in the
case of power failure allowing the engine to operate in a low
power mode. The two springs have substantially different
stiffness. The first spring affects the throttle valve motion
at angles exceeding the “limp-home” angle, whereas the
second spring counteracts the motor moment for angles
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Fig. 1. Tracking of the sine reference by the trained robust neurocontroller
of the first example (a fragment of much longer file). Switching from one
pair of the plant parameters α and β to another occurs at t = 4000. After a
brief transient the controller continues very good tracking, with somewhat
larger deviations and spikier controls in the deadzone region (the reference
output x2d is solid, and the actual output x2 is dashed).
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Fig. 2. Block diagram of electronic throttle. The controller (not shown)
senses the throttle valve position θ (and, possibly, the motor speed ωm)
and puts out the voltage u.

smaller than the “limp-home”. The second spring’s stiffness
must be higher to provide higher angular resolution at small
angles.

The ETC model consists of several components (Figure
2). It includes the DC motor dynamics, with the armature
time constant Ta, the armature gain Ka, the emf constant
Kv, and the torque constant Kt. The gear ratio is Kl, and
the overall inertia is J . Our control signal is the motor
voltage u, and it is limited between umin and umax. The
throttle valve plate position is measured by a potentiometer,
which is the only sensor available in practice for position
control. Finally, a nondifferentiable model of friction due
to ball bearings, the gear mechanism and the dual spring
system is based on [14] and [15].

It is projected that the massive use of the ETC in automo-
tive industry in the near future will expedite the utilization
of relatively cheap components with substantial spread of
parameters around their nominal values. For example, the
friction model parameters or the spring stiffness may have
their true values significantly different from nominal, or
they may deviate significantly during the throttle service
time. The ETC pervasiveness will also mean that it is too
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Fig. 3. Tracking of a four-second segment of the sin function around
the “limp-home” angle. The reference signal is solid, and the plant output
is dashed (top panel). The bottom panel shows the corresponding output
of the neurocontroller. The RMS error is 0.002 rad, and instantaneous
errors are almost indiscernible. The sampling for control values Ts is
1 ms. The controller is a 3-2R-1 RNN (inputting the current angle, its
desired (reference) value, and the motor speed), and it is implemented
easily in a vehicle on-board computer. The RMS error deteriorates slightly
(to 0.003 rad) when no speed measurements (or inference based on the
first difference of angles) are provided to the controller.

costly to calibrate any model-based control algorithm with
fixed parameters. On the other hand, an adaptive control
algorithm may be very difficult to apply because it will have
to cope with too many uncertainties entering the control
equations nonlinearly. We illustrate how to employ a robust
neurocontroller trained via the nprKF algorithm for the ETC
problem.

The ETC closed-loop system is modeled with the fixed
time step of 0.1 ms. For our ETC experiments in this paper,
we specify the uncertainty ranges for all 15 ETC parameters
as ±20% around their nominal values, although the uncer-
tainties might eventually be set to parameter specific values.
When the control sampling rate Ts = 1 ms, the motor speed
is measured or inferred (e.g., from the first difference of
angles), and no angular measurement errors are present,
a very accurate position control is achieved easily with
a small RNN using the nprKF training algorithm for any
set of plant model parameters kept constant throughout the
neurocontroller training (see Figure 3 for typical results; the
network 3-2R-1 has only 15 weights); cf. [15].

Even with a small-size neurocontroller, the control sam-
pling rate Ts = 1 ms might be too demanding for the
hardware implementation. For the more challenging sam-
pling rate Ts = 10 ms, we carry out the nprKF training
for robustness. We choose a larger two-hidden-layer RNN,
2-5R-3-1 (62 weights) (its inputs are the current angle
and the desired angle). We train according to the six-
stream nprKF algorithm (hd = 10) in which each stream
is assigned to a particular instantiation of the ETC model,
with parameters drawn from a uniform random distribution
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Fig. 4. Performance comparison of the 2-5R-3-1 neurocontroller trained
for robustness with Ts = 10 ms (black bars) with the same neurocontroller
trained on the nominal ETC model only (white bars). The top panel shows
the 40-second reference signal. The mean RMS error is 0.007 vs. 0.010
for the nominal neurocontroller. The maximum RMS error is 0.023 vs.
0.026 for the nominal neurocontroller (see the bottom panel).

around their nominal values. Similar to [4], our training
reference trajectory is chosen as random levels between
0.14 and 1.57 rad maintained for a random duration between
0.25 s and 1.0 s. Changes between levels are commanded as
ramps up or down, with the rise or fall limits consistent with
physical limitations of the ETC. Each stream is assigned to
its own 100-point segment of the reference trajectory, with
the starting point chosen at random. All parameters of every
ETC model are redrawn every five training epochs, each
epoch consisting of processing all 100 points for all streams.
We train for 200 epochs total (about 20000 weight updates)
with P0 = 10−4, R0 = 0.001P0 and Q0 = 10−4P0.

We compare our results of training for robustness with
those of the same neurocontroller trained on the nominal
ETC model via the nprKF algorithm. We test both con-
trollers on the same reference trajectory and 1000 ETC
models (Figure 4). On average, our tracking RMS error
(0.007 rad) is almost 30% smaller than that of the nom-
inal neurocontroller, and our individual RMS errors are
always smaller than those of the nominal neurocontroller,
sometimes by as much as 60%. Similar results indicating
advantages of our robust neurocontroller are obtained for
other reference trajectories.

IV. CONCLUSION

This paper introduces a promising method for practical
controller synthesis. We choose a sufficiently accurate
model of the plant (e.g., reflecting all major physical
phenomena) and make a practically reasonable assumption
that the plant parameters are known only in some ranges
around their nominal values. We train a neurocontroller on
many instances of plant models with different parameters.
We propose the application of a derivative-free Kalman

filter algorithm (nprKF) to training neurocontrollers for
robustness in the model reference control setting. Our
neurocontrollers are discrete-time recurrent neural networks
to be deployed with fixed weights. They have been known
as very flexible computational structures capable of
exhibiting a rich spectrum of behaviors. We rely on the
power of RNN and effectiveness of the nprKF algorithm
to synthesize (train) controllers which are able to handle
gracefully modeling uncertainties in nontrivial control
problems.
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mode controller for a class of linear systems with unmatched uncer-
tainties,” in Proceedings of the Conference on Decision and Control,
Las Vegas, 2002, pp. 967–972.

1342


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ArialNarrow-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Oblique
    /Times-Roman
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


