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Abstract— The theory of optimal control is applied to multi-
stage (i.e., multiple-layered) neural-network (NN) learning for
developing efficient second-order algorithms, expressed in NN
notation. In particular, we compare differential dynamic pro-
gramming, neighboring optimum control, and stagewise New-
ton methods. Understanding their strengths and weaknesses
would prove useful in pursuit of an effective intermediate step
between the steepest descent and the Newton directions, arising
in supervised NN-learning as well as reinforcement learning
with function approximators.

I. INTRODUCTION

We consider a discrete N-stage optimal-control prob-
lem: The state of a discrete dynamic system at stage s
(s = 1, . . . , N) is described by an ms-length state vector ys;
a transition of the system to the next state ys+1 (at stage s+
1) is determined by our choice of an ns-length control
vector θs through the following relation (with a fixed initial
state yinit):

ys+1= fs+1(ys, θs), (with y1≡yinit)

⇐⇒ ys+1
k

=fs+1
k

(ys, θs); k=1, . . . , ms+1,
(1)

where f(.) denotes some nonlinear transition function.
The performance index (i.e., the objective function) to be
minimized is given by J =

∑N−1

s=1
Ls(ys, θs) + E(yN ), where

Ls(.) is the cost at stage s and E(.) the terminal cost.
For our convenience, we define a scalar-valued discrete
Hamiltonian function Hs below:

Hs(ys, θs, λs+1) = Ls(ys, θs) + λs+1T
fs+1(ys, θs), (2)

where λs is an ms-vector Lagrange multiplier (or costate)
sequence for adjoining the equality constraints in Eq. (1) to
J , which leads to the following Lagrangian function J̃ :

J̃ =
∑N−1

s=1

{
Ls(ys, θs) + λs+1T[

fs+1(ys, θs) − ys+1
]}

+ E(yN ).

(3)
The first-order necessary conditions for obtaining an opti-
mal control θs∗ (that achieves a stationary value of J) are
given by the discrete Euler-Lagrange (EL) equations below:

(a) Adjoint equations : λs = ∂Hs

∂ys = ∂Ls

∂ys +

[
∂fs+1

∂ys

]T

λs+1,

(b) Optimality conditions : 0 = ∂Hs

∂θs = ∂Ls

∂θs +

[
∂fs+1

∂θs

]T

λs+1 = ∂J̃
∂θs ,

(c) System equations : ys+1 = fs+1(ys, θs),
(4)
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with the two-point boundary conditions below for these
three difference equations in Eq. (4):

(a) Initial state conditions : y1 = yinit (given),

(b) Adjoint boundary conditions : λN = ∂E
∂yN . (5)

This is a nonlinear two-point boundary value problem for
three unknowns: y, θ, and λ. One may solve the posed
problem in a stagewise manner by exploiting its sequential
structure (e.g., sweep methods; see Section II-C) rather than
solve it as one large set of nonlinear simultaneous algebraic
equations; for more details, refer to any standard textbook
on the subject (e.g., [3]).

Another line of attack is to use dynamic program-
ming (DP) [1]; we define the optimal value func-
tion V s(ys) as the “minimum value of the performance
index, starting at state ys at stage s (i.e., minimum cost-
to-go):” V s =

minimum
θs, ...,θN−1

∑N−1

t=s
Lt(yt, θt) + E(yN ). By Bell-

man’s principle of optimality, any point on the optimal path
can be an initial point for the remaining path; so, we obtain
the following DP recurrence relation:

V s(ys)=minθs
[
Ls(ys, θs) + V s+1(ys+1)

]
=minθsQs(ys, θs), (6)

where V s(.) is a function of the current state ys

alone, and the scalar-valued Q-function is defined as
Qs(ys, θs) = Ls(ys, θs) + V s+1(ys+1). Our objective is:
Given the initial condition y1, determine the control se-
quence {θs; s = 1, · · · , N − 1} that attains V 1. In control
engineering terminology, DP yields the optimal nonlinear
feedback control (see Chap.VIII in [1]); yet, the DP algo-
rithm becomes infeasible when ms (the number of states at
each stage s) is large due to the curse of dimensionality;
i.e., the exponential growth of algorithmic complexity with
respect to ms. In the literature of neural networks, such
an infeasible DP algorithm was described by Saratchan-
dran [23] to optimize multilayer perceptrons (MLPs).

II. STAGEWISE SECOND-ORDER ALGORITHMS IN

OPTIMAL CONTROL

To alleviate the curse of dimensionality, one may use
the (first-order) gradient algorithms: In optimal control,
Kelley and Bryson developed such a method based on a
general form of backpropagation (BP), known as adjoint
equations (4-a); see [16], [6] and references therein. Here,
the state space is limited to a vicinity of a given nominal (or
initial) state trajectory; so, the posed DP problem reduces
to a subproblem, in which we may deal with the second-
order approximation of the performance index or the DP
value function [see Eq. (8)] as well as system equations.
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In modern trust-region methods [5], [17], [18], the posed
subproblem corresponds to the trust-region subproblem,
wherein we aim at finding the best compromise between
the steepest descent step and the Newton step. In optimal
control, the second-order steps can be obtained by differ-
ential dynamic programming (DDP) [13], [12], [14] and
stagewise Newton methods [22], [15], [8]. Furthermore,
when the nominal solution (trajectory) is chosen to satisfy
the first-order necessary conditions [i.e., EL-equations (4)],
the methods are related to so-called neighboring optimum
control (see [2]; Chaps. 6 & 7 [3]; Chap. 8 [4]), also
known as guidance schemes [11], [7], wherein the asso-
ciated subproblem is called Jacobi’s Accessory Minimum
Problem (AMP) for the second variation [see Eq. (21)].

A. Differential dynamic programming (DDP)

The following summary of DDP derivations and results
is based on [13]. Given a nominal “non-optimal” control
sequence θs

now [that does not satisfy Eq. (4-b)], DDP seeks
an increment of control δθs for θs

next =θs
now+δθs to improve

the performance based on the second-order considerations.
To this end, DDP considers ∆V s, the variation of V s, due
to the variation of state vector δys resulting from the control
increment δθs. The DP recurrence relation in Eq. (6) gives

∆V s(δys) = minδθs
[
∆Ls(δys, δθs) + ∆V s+1(δys+1)

]
= minδθs∆Qs(δys, δθs),

(7)
where ∆V s(.) is a function of the variation of the cur-
rent state δys alone under the assumption that ∆V s(.)

is optimized with respect to δθs, · · · , δθN−1. Apply-
ing the second-order truncated Taylor series expan-
sion to the terms: ∆Ls(δys, δθs), ∆V s+1(δys+1), and
δys+1

k = ∆fs+1
k (δys, δθs) yields the DP subproblem. Sub-

stituting them into Eq. (7) and then neglecting the terms of
order higher than two in δys and δθs yields:

∆V s(δys)= min
δθs

{[(
∂Hs

∂ys

)T (
∂Hs

∂θs

)T][δys

δθs

]

+1
2

[
δysT

δθsT
][ As Bs

BsT
Cs

][
δys

δθs

]}
+vs+1,

(8)

where H is the Hamiltonian function in Eq. (2) with λs

replaced by λ̃
s def

=
(

∂V s

∂ys

)
; this partial derivative of the value

function with respect to the state plays the role of the
Lagrange multiplier (see p. 195 in [1]). Also in Eq. (8), vs+1

is a scalar;
(

∂Hs

∂ys

)
is an ms-length column vector;

(
∂Hs

∂θs

)
an

ns-vector; and three matrices As, Bs, and Cs are given
below with an ms+1 × ms+1 matrix Es+1 def

=

[
∂2V s+1

∂ys+1∂ys+1

]
:

As︸︷︷︸
ms×ms

=

[
∂2Qs

∂ys∂ys

]
=

[
∂ys+1

∂ys

]T
Es+1

[
∂ys+1

∂ys

]
+

[
∂2Hs

∂ys∂ys

]
, (9)

Bs︸︷︷︸
ms×ns

=

[
∂2Qs

∂ys∂θs

]
=

[
∂ys+1

∂ys

]T
︸ ︷︷ ︸
ms×ms+1

Es+1

[
∂ys+1

∂θs

]
︸ ︷︷ ︸
ms+1×ns

+

[
∂2Hs

∂ys∂θs

]
︸ ︷︷ ︸

ms×ns

, (10)

Cs︸︷︷︸
ns×ns

=

[
∂2Qs

∂θs
∂θs

]
=

[
∂ys+1

∂θs

]T
Es+1

[
∂ys+1

∂θs

]
+

[
∂2Hs

∂θs
∂θs

]
. (11)

In Eq. (10), the last ms-by-ns matrix can be computed by[
∂2Hs

∂ys
i
∂θs

j

]
=
[

∂2Ls

∂ys
i
∂θs

j

]
+

ms+1∑
k=1

λ̃s+1
k

[
∂2fs+1

k(ys,θs
)

∂ys
i ∂θs

j

]
, (12)

for i=1, ..., ms; j =1, ..., ns. Obvious modifications apply to
obtaining the last matrix in Eqs. (9) and (11).

Now, from Eq. (8), an ns-vector control increment, called
the DDP step, at stage s is obtained as

δθs
DDP =us

F − Ks
DDPδy

s, with

{
us

F=−Cs−1
[

∂Hs

∂θs

]
,

Ks
DDP =Cs−1

BsT
.

(13)

Here, the resulting control can be interpreted as two distinct
control actions:

• open-loop feedforward control us
F [that minimizes Hs

with respect to θs while holding ys (and λ̃
s
) fixed] to

satisfy the optimality condition in Eq. (4-b); plus
• linear state feedback control with an ms-by-ms Ks

DDP,
a stage/time-varying feedback gain matrix [with varia-
tions of y (and thus λ̃) assumed to deviate the control
from us

F ] to obtain a further improved control.

Substituting the obtained control increment δθs
DDP in Eq. (13)

into Eq. (8) and comparing to the truncated Taylor expan-
sion of ∆V s(δys)=

(
∂V s

∂ys

)T
δys+ 1

2
δysT

Esδys + vs yields:

Es def
=

[
∂2V s

∂ys∂ys

]
= As − BsCs−1

BsT
= As − BsKs

DDP, (14)

λ̃
s︸︷︷︸

ms×1

def
=

(
∂V s

∂ys

)
=

(
∂Hs

∂ys

)
−BsCs−1

(
∂Hs

∂θs

)
=

(
∂Ls

∂ys

)
+

[
∂ys+1

∂ys

]T
λ̃

s+1
+ Bsus

F ,

(15)

vs = vs+1 − 1
2

(
∂Hs

∂θs

)T
Cs−1

(
∂Hs

∂θs

)
. (16)

Boundary conditions at terminal stage N are given by:

λ̃
N︸︷︷︸

mN×1

=

[
∂E

∂yN

]
; EN︸︷︷︸

mN×mN

=

[
∂2E

∂yN ∂yN

]
=

[
∂λ̃

N

∂yN

]
; vN = 0.

(17)
The scalar quantity v1 gives a predicted reduction of the
approximate performance index (or local quadratic model)
resulting from the DDP-step in Eq.(13). In trust-region
methods [5], [17], [18], the ratio of the predicted reduction
to the actual one is used to control a trust-region radius.

B. Neighboring optimum control (NOC)

The following summary of NOC derivations and results
is based on [7] (see also Sec. 3.8 in [10]). NOC consid-
ers perturbations on the optimal state trajectory, starting
with a nominal (initially “optimal”) control sequence θs∗

(as θs
now); NOC seeks the optimal control increment δθs∗

for θs
next = θs

now + δθs∗ to improve the performance given a
state increment δys. NOC is derivable from Eq. (6): The
optimality condition, Eq. (4-b), indicates

0 =
∂Qs

∂θs =

(
∂Ls

∂θs

)
+

[
∂ys+1

∂θs

]T

λs+1

(
λs def

=

[
∂V s

∂ys

])
, (18)
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which corresponds to Eq.(3.4), p. 367 in [7]. Since the
optimal control θs∗ may change due to perturbations in ys,
the objective is to get an ns-by-ms neighboring optimum
feedback gain matrix Ks def

= −
[

∂θs∗
∂ys

]
, the rate of change in

optimal control θs∗ associated with a perturbation in the
nominal value of ys, for the following linear feedback
guidance rule on the state deviation from nominal optimum
state [compare the control in Eq. (13)]:

δθ
s∗ =

[
∂θs∗
∂ys

]
δys ⇐⇒ δθ

s∗ = −Ksδys. (19)

Take partial derivatives of Eq. (18) with respect to ys,
obtaining

0 =
∂

∂ys

(
∂Qs

∂θs

)T
︸ ︷︷ ︸

ms×ns

=

[
∂θs∗

∂ys

]T
︸ ︷︷ ︸
ms×ns

∂

∂θs

(
∂Qs

∂θs

)T
︸ ︷︷ ︸

ns×ns

+

[
∂2Qs

∂ys∂θs

]
︸ ︷︷ ︸

ms×ns

=

[
∂θs∗

∂ys

]T

︸ ︷︷ ︸
ms×ns

Cs︸︷︷︸
ns×ns

+ Bs︸︷︷︸
ms×ns

,

which yields the desired guidance scheme in Eq. (19)
with Ks = Cs−1

BsT

. To obtain recursions for λs

on the nominal optimum path, take partial derivatives
of V s =Qs =Ls+V s+1 with respect to ys and use Eq. (18),
which yields BP-formula (4-a). To get recursions for[

∂2V s

∂ys∂ys

]
, differentiate BP-formula (4-a) with respect to ys:[

∂2V s

∂ys∂ys

]
= As +

[
∂θs∗
∂ys

]T
∂

∂θs

(
∂Qs

∂ys

)T
= As − KsT

BsT
= As − BsCs−1

BsT
,

(20)

which corresponds to Eq.(3.8), p. 368 in [7]; see also
Eq. (14). The posed guidance control scheme could be
employed for re-training an optimized NN model when a
small change occurs in input data (or training data).

C. Sweep methods for NOC with discrete Riccati equations

What follows in this and the next subsections is largely
attributable to ref. [4]. A discrete version of the AMP
subproblem for neighboring optimum control is given by

min
δθs

∆J ≈ 1
2

∑N−1

s=1

[
δysT

δθsT
]⎡⎣ ∂2Hs+1

∂ys∂ys
∂2Hs+1

∂ys∂θs

∂2Hs+1

∂θs
∂ys

∂2Hs+1

∂θs
∂θs

⎤⎦⎡⎣δys

δθs

⎤⎦
+ 1

2
δyNT

[
∂2E

∂yN ∂yN

]
δyN,

(21)
subject to

δys+1 =

[
∂fs+1

∂ys

]
δys +

[
∂fs+1

∂θs

]
δθs, δy1 = δyinit = 0. (22)

From Eq. (4), the associated discrete EL-equations (with
multiplier δλs) become⎡⎢⎢⎢⎢⎣

δλs

0

δys+1

⎤⎥⎥⎥⎥⎦ =

⎛⎜⎜⎜⎜⎜⎜⎝

[
∂2Hs

∂ys∂ys

] [
∂2Hs

∂ys∂θs

] [
∂ys+1

∂ys

]T

[
∂2Hs

∂θs
∂ys

] [
∂2Hs

∂θs
∂θs

] [
∂ys+1

∂θs

]T

[
∂ys+1

∂ys

] [
∂ys+1

∂θs

]
0

⎞⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎣
δys

δθs

δλs+1

⎤⎥⎥⎥⎥⎦ ,

(23)

which is a two-point boundary value problem for δys, δλs,
and δθs. To solve this, use a sweep method with a linear
homogeneous relation between the costate and state vectors:

δλ
s = Esδys (with an ms-by-ms matrix Es). (24)

To obtain a recurrence relation, use Eq. (22) to write
δλs+1 = Es+1δys+1 = Es+1

{[
∂f s+1

∂ys

]
δys +

[
∂f s+1

∂θs

]
δθs

}
, and

then substitute it in Eq. (23), yielding⎡⎢⎣δλs

0

⎤⎥⎦=

⎧⎪⎨⎪⎩
⎛⎜⎝
[

∂2Hs

∂ys∂ys

] [
∂2Hs

∂ys∂θs

]
[

∂2Hs

∂θs
∂ys

] [
∂2Hs

∂θs
∂θs

]
⎞⎟⎠

+

⎛⎜⎝
[
∂ys+1

∂ys

]T
[
∂ys+1

∂θs

]T
⎞⎟⎠Es+1

([
∂ys+1

∂ys

] [
∂ys+1

∂θs

])⎫⎪⎬⎪⎭
⎡⎢⎣δys

δθs

⎤⎥⎦ ,

which can be written in the compact form below:[
δλs

0

]
=

[
As Bs

BsT
Cs

][
δys

δθs

]

⇐⇒
{

δθs =−Cs−1
BsT

δys =−Ksδys,

δλs =

[
As − BsCs−1

BsT
]
δys =[As − BsKs]δys.

(25)

Here, δθs is the guidance control in Eq. (19), and
As, Bs, and Cs are defined in Eqs. (9), (10), and (11),
respectively, but λs for Eq. (12) is updated by BP-
formula (4-a) [rather than Eq. (15)], as described in Sec. II-
B. Comparing the last equation in Eq.(25) with Eq. (24)
yields the same recurrence relation as Eqs. (14) and (20):
Es =As − BsCs−1

BsT
, which is called the discrete Riccati

equation in this context (e.g., see Chap. 8 in [4]). The
Riccati matrix Es is the “Schur complement matrix of
block Cs in matrix

[
As Bs

BsT
Cs

]
associated with the δys vari-

able,” resulting from block Gaussian elimination (i.e., block
Cholesky in this context due to symmetry; see Section III).

D. Discrete-time stagewise Newton Methods

In the literature, the earliest reference of discrete-time
stagewise Newton method is often cited as Pantoja 1984 [21]
or 1988 [22], but we have recently recognized that an LQ-
subproblem approach developed by Dreyfus 1966 [8] is a
discrete-time stagewise Newton method. A different (but
equivalent) LQ-subproblem approach was also described by
Dunn & Bertsekas later in [9] independently; see [20].

Stagewise Newton begins with a given nominal “non-
optimal” path, as DDP does in Section II-A. The linear
homogeneous relation between the costate and state vectors
in Eq. (24) is replaced by the inhomogeneous one:

δλs = Esδys + hs (with an ms-by-ms matrix Es) (26)

because the optimality condition, Eq. (4-b), is not satisfied;
hence, the left-hand-side zero vector 0 in Eq. (23) is
replaced by δ

(
∂Hs

∂θs

)
. Stagewise Newton takes the next two
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actions simultaneously to deal with non-zero δ
(

∂Hs

∂θs

)
:

• feedforward control to make
(

∂Hs

∂θs

)
+δ

(
∂Hs

∂θs

)
=0 for a

nominal “optimum” path, and
• linear state feedback control [as the neighboring opti-

mum guidance control in Eq. (19)].
Hence, the stagewise Newton step is δθs

N = us
F − Ksδys,

where the open-loop feedforward control us
F is given with

a gradient vector gs ≡
(

∂Hs

∂θs

)
=−δ

(
∂Hs

∂θs

)
(see Chap. 8 in [4]) as

us
F = −Cs−1

[
∂ys+1

∂θs

]T
hs+1−Cs−1

gs

= −Cs−1
[
∂ys+1

∂θs

]T(
hs+1+λs+1

)
−Cs−1(∂Ls

∂θs

)
.

(27)

One gets a recurrence relation of hs, following the same
procedures for Eq. (25): Write Eq. (26) as

δλs+1 = Es+1δys+1 + hs+1

= Es+1

{[
∂f s+1

∂ys

]
δys +

[
∂f s+1

∂θs

]
δθs

}
+ hs+1,

where Eq. (22) is used, and then substitute it in Eq. (23),
where δ

(
∂Hs

∂θs

)
= −
(

∂Hs

∂θs

)
used on the left-hand side:

hs =

{[
∂ys+1

∂ys

]
−
[
∂ys+1

∂θs

]
Cs−1

BsT
}T

hs+1 − BsCs−1
(

∂Hs

∂θs

)
=

[
∂ys+1

∂ys

]T
hs+1 + Bsus

F . (28)

In summary, this version of stagewise Newton (see
pages 325-326 in [4]) employs Eq. (28) for hs as well
as Es =As−BsCs−1

BsT
=As−BsKs, and the boundary

conditions are hN =0 plus Eq. (17). Notice here that λs is
sequenced backward by BP-formula (4-a) separately from
hs, which is backpropagated by Eq. (28).

A slightly different version of stagewise Newton [8], [21],
[22], [9] defines a sensitivity vector ζs ≡ (∂V s

∂ys

)
=hs + λs,

where V s is a non-optimal value function (of course, hs =0

on the optimal path); then, stagewise Newton uses ζs+1 in
Eq. (27) and ζs (and ζs+1) in place of λ̃

s
(and λ̃

s+1
) in

Eq. (15) as well as BP-formula (4-a) for λs in Eq. (12);
hence, Eq. (28) is not needed. Starting with the boundary
condition in Eq. (17) plus ζN =λN at terminal stage N , se-
quence the discrete Riccati equation backward (to propagate
second derivatives) together with BP-formula (4-a) down
to the first stage 1. Then, the posed two-point boundary
problem reduces to an initial value problem. In the next
section, we apply this algorithm with ζs to NN-learning.

The foregoing discussions lead to a conclusion that the
DDP step δθs

DDP in Eq. (13) is not the Newton step δθs
N

above (e.g., see [22]); that is, observe the following three
facts in the DDP procedure: First, λ̃

s
itself is updated &

backpropagated by Eq. (15)
(
without using BP-formula (4-

a); see p.95 in [13]; p.189 in [12]
)
, and employed all the

way for computing
(

∂Hs

∂θs

)
, As, Bs, and Cs. Second, gs is

never computed exactly
[
gs �=

(
∂Hs

∂θs

)]
. Third, Ks

DDP in Eq. (13)
and Ks above differ because Eq. (12) for matrices of
second derivatives makes a difference. Also, for this reason,
Eq.(3.118) on p.70 in [10] yields the DDP step, although it
is called the Newton-Raphson method.

III. APPLICATION TO MULTILAYER PERCEPTRON

(MLP) LEARNING

The aforementioned optimal-control algorithms are ap-
plicable to an N-stage multilayer perceptron (MLP) with
N−2 hidden layers and Ps nodes at stage s (s=1, · · · , N ;
the first input layer is stage 1). Here, an ns-length decision
vector θs (s=1, · · · , N−1) corresponds to an ns-vector
of the parameters [ns =(1+Ps)Ps+1 including thresholds]
between layers s and s+1, and an ms-length state vector ys

at stage s to an ms-vector of node outputs at layer s, where
ms =Ps in on-line learning and ms =PsD in batch learning
when D training data involved. Using two-hidden-layer
MLP-learning (N =4), we compare two methods: stagewise
Newton and standard Newton with Cholesky factorization.
Both seek the same Newton step δθN (subscript N de-
notes Newton) by solving differently the Newton formula:
H δθN =−g, where both the gradient vector g and the
Hessian matrix H are stagewise-partitioned, as shown below

H=

[
H3,3 H2,3T

H1,3T

H2,3 H2,2 H1,2T

H1,3 H1,2 H1,1

]
, δθN =

[
δθ3

N

δθ2
N

δθ1
N

]
, g=

[
g3

g2

g1

]
. (29)

A. Discrete-time stagewise Newton step

First, we show the step obtainable from the stagewise
Newton method δθs

N = us
F − Ksδys below by three passes:

(1) forward to get node outputs; (2) backward to get
matrices As, Bs, Cs, and Ks with Eq. (27) (using ζs) to
get us

F ; and (3) forward with Eq. (22) to get δys and δθs
N:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δθ1
N = −C1−1

[
∂y2

∂θ1

]T
ζ2; (ζs ≡ hs + λs)

δθ2
N = −C2−1

[
∂y3

∂θ2

]T
ζ3 − K2δy2;

δθ3
N = −C3−1

[
∂y4

∂θ3

]T
ζ4 − K3δy3,

(30)

where we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
δy2 =

[
∂y2

∂θ1

]
δθ1

N;

δy3 =

[
∂y3

∂θ2

]
δθ2

N +

[
∂y3

∂y2

]
δy2;

ζ4 = λ4.

(31)

After a little algebra, the stagewise Newton step obtained
here can be rewritten in terms of the original Hessian blocks
and the gradient vector in Eq. (29), as shown next:⎧⎪⎪⎨⎪⎪⎩

δθ1
N =−

[
Ĥ1,1−Ĥ1,2Ĥ2,2−1

Ĥ1,2T
]−1

ĝ1;

δθ2
N =−Ĥ2,2−1

ĝ2 − Ĥ2,2−1
Ĥ1,2T

δθ1
N;

δθ3
N =−H3,3−1

g3− H3,3−1
H1,3Tδθ1

N− H3,3−1
H2,3Tδθ2

N,

(32)

where hatted terms are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ĝ2 =g2−H2,3H3,3−1
g3,

ĝ1 =g1−H1,3H3,3−1
g3−Ĥ1,2Ĥ2,2−1

ĝ2,

Ĥ1,1 =H1,1−H1,3H3,3−1
H1,3T

,

Ĥ1,2 =H1,2−H1,3H3,3−1
H2,3T

,

Ĥ2,2 =H2,2−H2,3H3,3−1
H2,3T

,
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because C1, C2, and C3 in Eq. (30) can be expressed as⎧⎪⎨⎪⎩
C3 =H3,3;

C2 =Ĥ2,2 =H2,2−H2,3H3,3−1
H2,3T

;

C1 =Ĥ1,1−Ĥ1,2Ĥ2,2−1
Ĥ1,2T

.

Clearly, when the off-diagonal Hessian blocks Hs,t (s �= t)
are all ignored, then δθ3

N in Eq. (32) reduces to the open-
loop feedforward control −H3,3−1

g3 alone with no state
feedback guidance control.

B. Standard Newton step by block Cholesky factorization

Next, we show the standard Newton method: We
first need to form explicitly H and g both in such a
stagewise-partitioned format as shown in Eq. (29), where
for H, we need to form three off-diagonal blocks and
only the lower half of three diagonal blocks; totally, six
blocks Hs,t(1 ≤ s ≤ t ≤ 3). Each block Hs,t includes Hes-
sian elements with respect to pairs of one parameter at
stage s and another at stage t (see [19]). We then perform
block-Cholesky factorization on it; that is, H = LLT , where
L denotes the lower-triangular Cholesky factor below:

L=

[
UT

3
X UT

2
Y Z UT

1

]
.

After that, the Newton step δθN can be obtained by solving
the two triangular systems: Lp=−g and p = LT δθN. This
algorithm can be summarized below:

Algorithm: A standard Newton method with block-Cholesky
factorization.
(0) Compute g and H in Eq. (29) (e.g., see [19]) to form

the Newton formula;
(1) Perform Cholesky on the first diagonal block:

H3,3 = UT
3 U3;

(2) Solve a triangular system (no need to invert U3):
X = H2,3U−1

3 ;
(3) Solve a triangular system (without inverting U3):

Y = H1,3U−1
3 ;

(4) Compute a Schur complement matrix V2 (using X)
by: V2 = H2,2 − XXT ;

(5) Perform Cholesky on V2 = UT
2 U2;

(6) Solve a triangular system (without inverting U2):
Z =

[
H1,2 − YXT

]
U−1

2 ;
(7) Compute a Schur complement matrix V1 (using Y

and Z) by: V1 = H1,1 − YYT − ZZT ;
(8) Perform Cholesky on V1 = UT

1 U1;
(9) Solve a lower-triangular system Lp=−g by forward

substitution;
(10) Solve an upper-triangular system LT δθN =p by back

substitution.

The desired full Newton step δθN [see Eq. (29)] is given
below as the solution to the two triangular systems:⎧⎪⎨⎪⎩

δθ1
N = U−1

1 p1;

δθ2
N = U−1

2

(
p2 − ZT δθ1

N

)
;

δθ3
N = U−1

3

(
p3 − XT δθ2

N − YT δθ1
N

)
;

(33)

where we have⎧⎪⎨⎪⎩
p1 = −U−T

1

[
g1,2 − YU−T

3 g3,4 − ZU−T
2 ĝ2,3

]
;

p2 = −U−T
2

(
g2,3 − XU−T

3 g3,4
)

= −U−T
2 ĝ2,3;

p3 = −U−T
3 g3,4.

It is easy to verify that this resulting Newton step is equiv-
alent to the stagewise Newton step in Eq. (30) [i.e., (32)],
but obtained differently. Stagewise Newton computes ex-
actly the first diagonal block H3,3 at Stage 3 [see H in
Eq. (29)]. At later subsequent stages, however, it calculates
no Hessian blocks explicitly; instead, it computes Cs, which
is identical to the Schur complement matrix Vs, because,
in this example, we have

V2 = H2,2−XXT =H2,2−
(
H2,3U−1

3

)(
H2,3U−1

3

)T
= H2,2−H2,3H3,3−1

H2,3T
=C2,

V1 = H1,1−YYT −ZZT =Ĥ1,1−Ĥ1,2 V−1
2 Ĥ1,2T

=C1.

Note that the overall cost to get δθN with the posed block
Cholesky that factors an ns-by-ns block Hs,s per stage
is essentially the same as that with standard Cholesky
that factors one large n-by-n H [17]; hence, O(N 3) due
to linear-equation solving in the parameter (i.e., decision)
space alone. By contrast, stagewise Newton computes the
Schur complement matrices Cs in the parameter space, but
propagates the second-order information through the state
space; therefore, it works in O(N) to get the same Newton
step δθN without forming the Newton formula explicitly.

IV. DISCUSSION

Optimal-control problems can be viewed as NN-learning
problems involving only a single training datum (D=1);
yet, the associated Hessian H can be “full-rank” because

• the number of decision variables at each stage is not
larger than that of states;

• stage costs generate extra residuals (on top of the usual
terminal residuals).

In MLP-learning, those two situations correspond to the two
“uncommon” cases below:

• using weight-sharing and weight-pruning combined;
• presenting desired outputs at hidden nodes (i.e.,

hidden-node teaching; see [16]).
To alleviate rank-deficiency of H, one can

• add some (positive) diagonal matrix to Cs per stage in
stagewise Newton or DDP;

• prepare a training data set (yielding multiple terminal
residual sets).

The first idea is related to the Levenberg-Marquardt method
in nonlinear least squares sense [5], [17], [18], and the
second is ubiquitous in supervised MLP-learning. If on-line
second-order learning is adopted, then one must use the
first idea for MLP-learning: In the nonlinear least squares,
for instance, if we omit matrices of second derivatives
[e.g., Eq. (12)], then the method reduces to a so-called
incremental Gauss-Newton method [or stagewise version
of natural gradient learning (under certain assumptions)];
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here, the posed on-line stagewise implementation could be
done by updating Cholesky factor of approximate H (e.g.,
with a MATLAB command cholupdate) on each datum.

Batch-mode MLP-learning (with D data) conceptually
corresponds to optimal-control problems, in which a posed
MLP model is copied and concatenated D times; so, there
are totally ms =PsD states at each stage s, while the
number of decision parameters remains the same as ns

per stage because all the D MLPs (i.e., D copies of our
MLP model) share the same parameter set (i.e., weight-
sharing). In this setting, all the D data go through all those
juxtaposed D MLPs (MLP d; d = 1, · · · , D) simultaneously,
as if a single state vector (including all the D data)
goes to one large system. Therefore, stagewise Newton
must deal with very large matrices (e.g., an ms-by-ms

As) since ms =PsD can be arbitrarily large and N � D

holds typically in MLP-learning; hence, stagewise Newton
progresses in O(D3). This situation can be illustrated with
a classification benchmark called the letter recognition
problem (available at the UCI machine learning repository),
which involves 16 inputs (features), 26 outputs (alphabets),
and 16,000 training data (i.e., D=16,000). This problem
can be attacked with a 16-70-50-26 MLP [18]; that is,
P1 =16; P2 =70; P3 =50; P4 =26; n1=1,190; n2=3,550; and
n3=1,326. Hence, ms =PsD become very large. In addition,
the node outputs of any single MLP d (for datum d) have
nothing to do with those of the other MLPs i (�= d)
because there is no connection between adjacent MLPs.
Consequently, in MLP batch-learning, stagewise Newton
may not work more efficiently than standard Newton that
forms and then solves the Newton formula in O(D), where
stagewise second-order BP [19] processes one datum after
another to obtain H; hence, ms = Ps regardless of D.

V. CONCLUSION

We have described a class of second-order optimal con-
trol methods for NN-learning, and applied stagewise New-
ton to MLP-learning. The following results are highlighted:
(1) The Newton step consists of open-loop feedforward

control plus state feedback guidance control;
(2) No use of off-diagonal Hessian blocks results in open-

loop feedforward control alone;
(3) Differentiating BP-formula (4-a) with respect to the

state yields a discrete Riccati equation;
(4) Stagewise implementation leads to on-line second-

order learning (or approximate Newton methods);
(5) In batch-learning, stagewise Newton may not be more

efficient than standard Newton (with stagewise second-
order BP [19]).

The posed second-order optimal-control methods can be
applied to temporal-difference reinforcement learning [24]
with differentiable NN function approximators. In any con-
text, we recommend trust-region frameworks [5], [17],
[18] to pursue a good compromise between the steepest
descent step (by Kelley-Bryson gradient method [16]) and
a second-order step (e.g., by stagewise Newton). Further

analysis available in control engineering could prove useful
in developing more elaborate NN-learning algorithms.
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