
Neural Network Adaptive Control for Nonlinear Uncertain Dynamical Systems
with Asymptotic Stability Guarantees

Tomohisa Hayakawa†, Wassim M. Haddad‡, and Naira Hovakimyan∗

†CREST, Japan Science and Technology Agency, Saitama, 332-0012, JAPAN
‡School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150

∗Aerospace and Ocean Engineering, Virginia Polytechnic Institute, Blacksburg, VA 24061

Abstract

A neuro adaptive control framework for nonlinear
uncertain dynamical systems with input-to-state stable
internal dynamics is developed. The proposed framework
is Lyapunov-based and unlike standard neural network con-
trollers guaranteeing ultimate boundedness, the framework
guarantees partial asymptotic stability of the closed-loop
system, that is, asymptotic stability with respect to part of
the closed-loop system states associated with the system
plant states. The neuro adaptive controllers are constructed
without requiring explicit knowledge of the system dynam-
ics other than the assumption that the plant dynamics are
continuously differentiable and that the approximation error
of uncertain system nonlinearities lie in a small gain-type
norm bounded conic sector. This allows us to merge robust
control synthesis tools with neural network adaptive control
tools to guarantee system stability. Finally, an illustrative
numerical example is provided to demonstrate the efficacy
of the proposed approach.

1. Introduction

One of the main motivation for developing neural network
adaptive control algorithms is their capability to approximate
a large class of continuous nonlinear maps from the collective
action of very simple, autonomous processing units that are
connected in simple ways. These processing units involve
a weighted interconnection of fundamental elements called
neurons, which are functions consisting of a summing junc-
tion and a nonlinear operation involving an activation func-
tion. In addition, neural networks have attracted attention due
to their inherently parallel and highly redundant processing
architecture that makes it possible to develop parallel weight
update laws. This parallelism makes it possible to effectively
update a neural network on line. Consequently, the use of
the neural networks for system identification and control of
complex highly uncertain dynamical systems has become an
active area of research [1–9].

Unlike adaptive controllers which guarantee asymptotic
stability of the closed-loop system states associated with the
system plant states, neural network adaptive controllers guar-
antee ultimate boundedness of the closed-loop system states
[10]. This fundamental difference between adaptive control
and neuro adaptive control can be traced back to the model-
ing and treatment of the system uncertainties. In particular,
adaptive control is based on constant, linearly parameterized
system uncertainty models of a known structure but unknown
variation [11–13], while neuro adaptive control is based on
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the universal function approximation property, wherein any
continuous system uncertainty can be approximated arbitrar-
ily closely on a compact set using a neural network with ap-
propriate weights [14]. This system uncertainty parametriza-
tion makes it impossible to construct a system Lyapunov
function whose time derivative along the closed-loop system
trajectories is guaranteed to be negative definite. Instead, the
Lyapunov derivative can only be shown to be negative on a
sublevel set of the system Lyapunov function. This shows
that, in this sublevel set, the Lyapunov function will decrease
monotonically until the system trajectories enter a compact
set containing the desired system equilibrium point, and thus,
guaranteeing ultimate boundedness. This analysis is often
conservative since standard Lyapunov-like theorems used to
show ultimate boundedness of the closed-loop system states
provide only sufficient conditions, while neural network con-
trollers often achieve plant state convergence to a desired
equilibrium point.

In this paper, we develop a neuro adaptive control frame-
work for a class of nonlinear uncertain dynamical systems
which guarantees asymptotic stability of the closed-loop sys-
tem states associated with the system plant states, as well
as boundedness of the neural network weighting gains. The
proposed framework is Lyapunov-based and guarantees par-
tial asymptotic stability of the closed-loop system, that is,
Lyapunov stability of the overall closed-loop system states
and convergence of the plant states [15]. The neuro adaptive
controllers are constructed without requiring explicit knowl-
edge of the system dynamics other than the assumption that
the plant dynamics are continuously differentiable and that
the approximation error of uncertain system nonlinearities
lie in a small gain-type norm bounded conic sector. Further-
more, the proposed neuro control architecture is modular in
the sense that if a nominal linear design model is available,
then the neuro adaptive controller can be augmented to the
nominal design to account for system nonlinearities and sys-
tem uncertainty.

The notation used in this paper is fairly standard. Specif-
ically, (·)T denotes transpose, tr(·) denotes the trace opera-
tor, σmax(·) denotes the maximum singular value of a matrix,
vec(·) denotes the column stacking operator for a matrix, and
‖ · ‖ denotes the Euclidean vector norm.

2. Partial Stability

In this section we present partial stability theorems for
nonlinear dynamical systems. Specifically, consider the non-
linear interconnected dynamical system

ẋ1(t) = f1(x1(t), x2(t)), x1(0) = x10, t ∈ Ix0
, (1)

ẋ2(t) = f2(x1(t), x2(t)), x2(0) = x20, (2)
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where x1 ∈ D, D ⊆ R
n1 is an open set such that 0 ∈ D,

x2 ∈ R
n2 , f1 : D × R

n2 → R
n1 is such that, for every

x2 ∈ R
n2 , f1(0, x2) = 0 and f1(·, x2) is locally Lipschitz in

x1, f2 : D × R
n2 → R

n2 is such that, for every x1 ∈ D,
f2(x1, ·) is locally Lipschitz in x2, and Ix0

� [0, τx0
),

0 < τx0
≤ ∞, is the maximal interval of existence for the

solution (x1(t), x2(t)), t ∈ Ix0
, to (1), (2). Note that under

the above assumptions the solution (x1(t), x2(t)) to (1), (2)
exists and is unique over Ix0

. The following definition intro-
duces several types of partial stability, that is, stability with
respect to x1, for the nonlinear dynamical system (1), (2).
For the following definition we assume that Ix0

= [0,∞).

Definition 2.1. i) The nonlinear dynamical system (1), (2)
is Lyapunov stable with respect to x1 uniformly in x20 if, for
every ε > 0, there exists δ = δ(ε) > 0 such that ‖x10‖< δ
implies that ‖x1(t)‖< ε for all t ≥ 0 and for all x20 ∈ R

n2 .

ii) The nonlinear dynamical system (1), (2) is asymptoti-
cally stable with respect to x1 uniformly in x20 if it is Lya-
punov stable with respect to x1 uniformly in x20 and there ex-
ists δ > 0 such that ‖x10‖< δ implies that limt→∞ x1(t) =
0 for all x20 ∈ R

n2 .

iii) The nonlinear dynamical system (1), (2) is globally
asymptotically stable with respect to x1 uniformly in x20 if it
is Lyapunov stable with respect to x1 uniformly in x20 and
limt→∞ x1(t) = 0 for all x10 ∈ R

n1 and x20 ∈ R
n2 .

Next, we present sufficient conditions for partial stability
of the nonlinear dynamical system (1), (2). For the follow-
ing result define V̇ (x1, x2) � V ′(x1, x2)f(x1, x2), where
f(x1, x2) � [fT

1 (x1, x2), f
T
2 (x1, x2)]

T, for a given contin-
uously differentiable function V : D × R

n2 → R. Further-
more, we assume that the solution (x1(t), x2(t)) to (1), (2)
exists and is unique for all t ≥ 0. It is important to note that
unlike standard theory the existence of a Lyapunov function
V (x1, x2) satisfying the conditions in Theorem 2.1 below is
not sufficient to ensure that all solutions of (1), (2) starting
in D × R

n2 can be extended to infinity since neither of the
states of (1), (2) serve as an independent variable. We do
note however that continuous differentiability of f1(·, ·) and
f2(·, ·) provides a sufficient condition for the existence and
uniqueness of solutions to (1), (2) for all t ≥ 0.

Theorem 2.1 [15]. Consider the nonlinear dynamical sys-
tem (1), (2). Then the following statements hold:

i) If there exists a continuously differentiable function V :
D×R

n2 → R and class K functions α(·), β(·) such that

α(‖x1‖) ≤ V (x1, x2) ≤ β(‖x1‖),

(x1, x2) ∈ D × R
n2 , (3)

V̇ (x1, x2) ≤ 0, (x1, x2) ∈ D × R
n2 , (4)

then the nonlinear dynamical system given by (1), (2) is
Lyapunov stable with respect to x1 uniformly in x20.

ii) If there exists a continuously differentiable function V :
D × R

n2 → R and class K functions α(·), β(·), γ(·)
satisfying (3) and

V̇ (x1, x2) ≤ −γ(‖x1‖), (x1, x2) ∈ D × R
n2 , (5)

then the nonlinear dynamical system given by (1), (2)
is asymptotically stable with respect to x1 uniformly in
x20.

iii) If D = R
n1 and there exists a continuously differen-

tiable function V : R
n1 × R

n2 → R, a class K function
γ(·), and class K∞ functions α(·), β(·) satisfying (3)
and (5), then the nonlinear dynamical system given by
(1), (2) is globally asymptotically stable with respect to
x1 uniformly in x20.

By setting n1 = n and n2 = 0, Theorem 2.1 special-
izes to the case of nonlinear autonomous systems of the form
ẋ1(t) = f1(x1(t)). In this case, Lyapunov (respectively,
asymptotic) stability with respect to x1 and Lyapunov (re-
spectively, asymptotic) stability with respect to x1 uniformly
in x20 are equivalent to the classical Lyapunov (respectively,
asymptotic) stability of nonlinear autonomous systems. In
particular, note that it follows from converse Lyapunov the-
ory that there exists a continuously differentiable function
V : D → R such that (3) and (5) hold if and only if V (·) is
such that V (0) = 0, V (x1) > 0, x1 �= 0, V ′(x1)f1(x1) < 0,
x1 �= 0. In addition, if D = R

n1 and there exist class K∞
functions α(·), β(·) and a continuously differentiable func-
tion V (·) such that (3) and (5) hold if and only if V (·) is such
that V (0) = 0, V (x1) > 0, x1 �= 0, V ′(x1)f1(x1) < 0,
x1 �= 0, and V (x1) → ∞ as ‖ x1 ‖→ ∞. Hence, in this
case, Theorem 2.1 collapses to the classical Lyapunov stabil-
ity theorem for autonomous systems.

In the case of time-invariant systems the Barbashin-
Krasovskii-LaSalle invariance theorem shows that bounded
system trajectories of a nonlinear dynamical system approach
the largest invariant set M characterized by the set of all
points in a compact set D of the state space where the Lya-
punov derivative identically vanishes. In the case of partially
stable systems, however, it is not generally clear on how to
define the set M since V̇ (x1, x2) is a function of both x1

and x2. However, if V̇ (x1, x2) ≤ −W (x1) ≤ 0, where
W : D → R is continuous and nonnegative definite, then a
set R ⊃ M can be defined as the set of points where W (x1)
identically vanishes; that is, R = {x1 ∈ D : W (x1) = 0}.
In this case, as shown in the next theorem, the partial system
trajectories x1(t) approach R as t tends to infinity.

Theorem 2.2 [15]. Consider the nonlinear dynamical sys-
tem (1), (2) and assume D × R

n2 is a positive invariant set
with respect to (1), (2) and f1(·, ·) is Lipschitz continuous in
x1 uniformly in x2. Furthermore, assume there exist func-
tions V : D × R

n2 → R, W,W1,W2 : D → R such
that V (·, ·) is continuously differentiable, W1(·) and W2(·)
are continuous and positive definite, W (·) is continuous and
nonnegative definite, and, for all (x1, x2) ∈ D × R

n2 ,

W1(x1) ≤ V (x1, x2) ≤ W2(x1), (6)

V̇ (x1, x2) ≤ −W (x1). (7)

Then there exists D0 ⊆ D such that for all (x10, x20) ∈ D0×

R
n2 , x1(t) → R � {x1 ∈ D : W (x1) = 0} as t → ∞. If,

in addition, D = R
n1 and W1(·) is radially unbounded, then

for all (x10, x20) ∈ R
n1 × R

n2 , x1(t) → R � {x1 ∈ R
n1 :

W (x1) = 0} as t → ∞.

Theorem 2.2 shows that the partial system trajectories
x1(t) approach R as t tends to infinity. However, since the
positive limit set of the partial trajectory x1(t) is a subset
of R, Theorem 2.2 is a weaker result than the standard in-
variance principle wherein one would conclude that the par-
tial trajectory x1(t) approaches the largest invariant set M
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contained in R. This is not true in general for partially sta-
ble systems since the positive limit set of a partial trajec-
tory x1(t), t ≥ 0, is not an invariant set. However, in the
case where f1(·, x2) is periodic, almost-periodic, or asymp-
totically independent of x2, then an invariance principle for
partially stable systems can be derived.

3. Stable Neuro Adaptive Control for Nonlinear Uncer-
tain Systems

In this section we consider the problem of characterizing
neural adaptive feedback control laws for nonlinear uncer-
tain dynamical systems. Specifically, consider the controlled
nonlinear uncertain dynamical system G given by

ẋ(t) = fx(x(t), z(t)) + G(x(t), z(t))u(t),

x(0) = x0, t ≥ 0, (8)
ż(t) = fz(x(t), z(t)), z(0) = z0, (9)

where x(t) ∈ R
nx , t ≥ 0, and z(t) ∈ R

nz , t ≥ 0,
are the state vectors, u(t) ∈ R

m, t ≥ 0, is the control
input, fx : R

nx × R
nz → R

nx satisfies fx(0, z) = 0,
z ∈ R

nz , fx(·, z) is continuously differentiable on R
nx

for each z ∈ R
nz , fx(x, ·) is continuous on R

nz for each
x ∈ R

nx , fz : R
nx × R

nz → R
nz satisfies fz(x, 0) = 0,

x ∈ R
nx , and G : R

nx × R
nz → R

nx×m. The dynam-
ics (9) typically describe the internal dynamics of the system
G. The control input u(·) in (8) is restricted to the class of
admissible controls consisting of measurable functions such
that u(t) ∈ R

m, t ≥ 0. Furthermore, for the nonlinear un-
certain system G we assume that the required properties for
the existence and uniqueness of solutions are satisfied, that
is, fx(·, ·), fz(·, ·), G(·), and u(·) satisfy sufficient regularity
conditions such that (8), (9) has a unique solution forward in
time.

In this paper, we assume that fx(·, ·) and fz(·, ·) are un-
known functions, and fx(·, ·) and G(·, ·) are given by

fx(x, z) = Ax + ∆f(x, z), (10)
G(x, z) = BGn(x, z), (11)

where A ∈ R
nx×nx and B ∈ R

nx×m are known matri-
ces, Gn : R

nx × R
nz → R

m×m is a known matrix func-
tion such that det Gn(x, z) �= 0, (x, z) ∈ R

nx × R
nz , and

∆f : R
nx × R

nz → R
nx is an uncertain function belonging

to the uncertainty set F given by

F = {∆f : R
nx × R

nz → R
nx : ∆f(0, ·) = 0,

∆f(x, z) = Bδ(x, z), (x, z) ∈ R
nx × R

nz}, (12)

where δ : R
nx × R

nz → R
m is an uncertain function such

that δ(·, z) is continuously differentiable on R
nx for each

z ∈ R
nz , δ(x, ·) is continuous on R

nz for each x ∈ R
nx ,

and δ(0, ·) = 0. Furthermore, we assume that (9) is input-to-
state stable with x(t) viewed as the input. It is important to
note that since δ(x, z) is continuously differentiable in x and
δ(0, z) = 0, z ∈ R

nz , it follows that there exists a contin-
uous matrix function ∆ : R

nx × R
nz → R

m×nx such that
δ(x, z) = ∆(x, z)x, (x, z) ∈ R

nx × R
nz . We assume that

the continuous matrix function ∆(·, ·) can be approximated
over a compact set Dcx×Dcz ⊂ R

nx ×R
nz by a linear in the

parameters neural network up to a desired accuracy so that

coli(∆(x, z)) = WT
i σ(x, z)+εi(x, z), (x, z) ∈ Dcx×Dcz,

i = 1, · · · , nx, (13)

ϕ(x)

x

Dcx

|slope| = γ−1

Figure 3.1: Visualization of function ϕ(·)

where coli(∆(·, ·)) denotes the ith column of ∆(·, ·), WT
i ∈

R
m×s, i = 1, · · · , nx, are optimal unknown (constant)

weights that minimize the approximation error over Dcx ×
Dcz , εi : R

nx × R
nz → R

m, i = 1, · · · , nx, are modeling
errors such that σmax(Υ(x, z)) ≤ γ−1, (x, z) ∈ R

nx × R
nz ,

where Υ(x, z) � [ε1(x, z), · · · , εnx
(x, z)] and γ > 0, and

σ : R
nx × R

nz → R
s is a given basis function such that

0 ≤ σ(x, z) ≤ 1, (x, z) ∈ R
nx × R

nz .

Next, defining

ϕ(x, z) � δ(x, z) − WT[x ⊗ σ(x, z)], (14)

where WT � [WT
1 , · · · ,WT

nx
] ∈ R

m×nxs and ⊗ de-
notes Kronecker product, it follows from (13) and Cauchy-
Schwartz inequality that

ϕT(x, z)ϕ(x, z) = ‖∆(x, z)x − WT(x ⊗ σ(x, z))‖2

= ‖∆(x, z)x − Σ(x, z)x‖2

= ‖Υ(x, z)x‖2

≤ γ−2xTx, (x, z) ∈ Dcx ×Dcz, (15)

where Σ(x, z) � [WT
1 σ(x, z), · · · ,WT

nx
σ(x, z)]. In the case

where G does not possess internal dynamics (i.e., nz = 0),
(13) and (15) specialize to

coli(∆(x)) = WT
i σ(x)+εi(x), x ∈ Dcx, i = 1, · · · , nx,

(16)
and

ϕT(x)ϕ(x) ≤ γ−2xTx, x ∈ Dcx, (17)

respectively. This corresponds to a nonlinear small gain-type
norm bounded uncertainty characterization for ϕ(·) (see Fig-
ure 3.1).

Theorem 3.1. Consider the nonlinear uncertain dynami-
cal system G given by (8) and (9) where fx(·, ·) and G(·, ·)
are given by (10) and (11), respectively, and ∆f(·, ·) belongs
to F . Assume there exists a matrix K ∈ R

m×nx such that
As � A + BK is asymptotically stable. Furthermore, for
a given γ > 0, assume there exist positive-definite matrices
P ∈ R

nx×nx and R ∈ R
nx×nx such that

0 = AT
s P + PAs + γ−2PBBTP + Inx

+ R. (18)

In addition, assume that (9) is input-to-state stable with x(t)
viewed as the input. Finally, let Q ∈ R

m×m and Y ∈
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R
nxs×nxs be positive definite. Then the neural adaptive feed-

back control law

u(t) = G−1
n (x(t), z(t))

[
Kx(t)

−ŴT(t)[x(t) ⊗ σ(x(t), z(t))]
]
, (19)

where ŴT(t) ∈ R
m×nxs, t ≥ 0, and σ : R

nx × R
nz → R

s

is a given basis function, with update law

˙̂
WT(t) = QBTPx(t)[x(t) ⊗ σ(x(t), z(t))]TY,

ŴT(0) = ŴT
0 , (20)

guarantees that there exists a positively invariant set Dα ⊂
R

nx × R
nz × R

m×nxs such that (0, 0,WT) ∈ Dα, where
WT ∈ R

m×nxs, and the solution (x(t), z(t), ŴT(t)) ≡
(0, 0,WT) of the closed-loop system given by (8), (9), (19),
(20) is Lyapunov stable and (x(t), z(t)) → (0, 0) as t → ∞

for all ∆f(·, ·) ∈ F and (x0, z0, Ŵ
T
0 ) ∈ Dα.

Proof. First, note that with u(t), t ≥ 0, given by (19) it
follows from (8), (10), and (11) that

ẋ(t) = Ax(t) + ∆f(x(t), z(t)) + BKx(t)

−BŴT(t)[x(t) ⊗ σ(x(t), z(t))], x(0) = x0,

t ≥ 0, (21)

or, equivalently, using (14),

ẋ(t) = Asx(t) + B
[
ϕ(x(t), z(t)) − W̃T(t)

·[x(t) ⊗ σ(x(t), z(t))]
]
, x(0) = x0, t ≥ 0, (22)

where W̃T(t) � ŴT(t)−WT. To show Lyapunov stability
of the closed-loop system (9), (20), and (22) consider the
Lyapunov function candidate

V (x, z, W̃T) = xTPx + tr Q−1W̃TY −1W̃ . (23)

Note that (23) satisfies (3) and (6) with x1 =
[xT, (vec W̃ )T]T, x2 = z, α(‖x1‖) = β(‖x1‖) =

W1(x1) = W2(x1) = xTPx + tr W̃Q−1W̃T. Now, let-
ting x(t), t ≥ 0, denote the solution to (22) and using (15),
(18), and (20), it follows that the Lyapunov derivative along
the closed-loop system trajectories is given by

V̇ (x(t), z(t), W̃T(t))

= 2xT(t)P
[
Asx(t) + B[ϕ(x(t), z(t))

−W̃T(t)[x(t) ⊗ σ(x(t), z(t))]]
]

+2tr Q−1W̃T(t)Y −1 ˙̂
W (t)

= −xT(t)(R + γ−2PBBTP + Inx
)x(t)

+2xT(t)PB
[
ϕ(x(t), z(t))

−W̃T(t)[x(t) ⊗ σ(x(t), z(t))]
]

+2tr W̃T(t)
(
BTPx(t)[x(t) ⊗ σ(x(t), z(t))]T

)T

Dcx
× R

nz × R
m×nxs

D̃α

x

W̃
T

×

0

Figure 3.2: Visualization of sets used in the proof of Theo-
rem 3.1

= −xT(t)Rx(t) − xT(t)(γ−2PBBTP + Inx
)x(t)

+2xT(t)PBϕ(x(t), z(t))

≤ −xT(t)Rx(t)

−xT(t)[γ−1BTP + γInx
]T[γ−1BTP + γInx

]x(t)

≤ −xT(t)Rx(t)

≤ 0, t ≥ 0. (24)

Next, let

D̃α �

{
(x, z, W̃T) ∈ R

nx × R
nz × R

m×nxs :

V (x, z, W̃T) ≤ α
}

, (25)

where α is the maximum value such that D̃α ⊆
Dcx × R

nz × R
m×nxs (see Figure 3.2). Now, since

V̇ (x(t), z(t),WT(t)) ≤ 0 for all (x(t), z(t),WT(t)) ∈ D̃α

and t ≥ 0, it follows that D̃α is positively invariant. Fur-
thermore, it follows from Theorem 2.1 that the solution
(x(t), z(t), ŴT(t)) ≡ (0, 0,WT) to (9), (20), and (22) is
Lyapunov stable with respect to x and ŴT (uniformly in z0)
for all ∆f(·, ·) ∈ F and (x0, z0, Ŵ0) ∈ D̃α. In addition,
since R > 0, it follows from Theorem 2.2 that x(t) → 0 as
t → ∞.

Next, since (9) is input-to-state stable with x(t) viewed as
the input, it follows from Theorem 1 of [16] that there exist
a continuously differentiable, radially unbounded positive-
definite function Vz : R

nz → R and class K functions
γ1(·), γ2(·) such that

V ′
z (z)fz(x, z) ≤ −γ1(‖z‖), ‖z‖ ≥ γ2(‖x‖). (26)

Since ‖x(t)‖ is bounded for all t ≥ 0, it follows that the set
given by

Dz �

{
z ∈ R

nz : Vz(z) ≤ max
‖z‖=γ2(sup

t≥0
‖x(t)‖)

Vz(z)
}
(27)

is also positively invariant as long as1 Dz ⊂ Dcz . Now, since
D̃α and Dz are positively invariant, it follows that

Dα �

{
(x, z, ŴT) ∈ R

nx × R
nz × R

m×nxs :

(x, z, ŴT − WT) ∈ D̃α, z ∈ Dz

}
(28)

1See Remark 3.2.
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is also positively invariant. Furthermore, since (9) is input-
to-state stable with x(t) viewed as the input, it follows from
Lemma 4.7 of [10] that the solution (x(t), z(t), ŴT(t)) ≡
(0, 0,WT) to (9), (20), and (22) is Lyapunov stable and
x(t) → 0 and z(t) → 0 as t → ∞ for all ∆f(·, ·) ∈ F

and (x0, z0, Ŵ0) ∈ Dα. �

Remark 3.1. Note that the conditions in Theorem 3.1
imply partial asymptotic stability, that is, the solution
(x(t), z(t), ŴT(t)) ≡ (0, 0,WT) of the overall closed-loop
system is Lyapunov stable and (x(t), z(t)) → (0, 0) as

t → ∞. Hence, it follows from (20) that ˙̂
WT(t) → 0 as

t → ∞.

Remark 3.2. Since α(‖x1‖) used in the proof of Theo-
rem 3.1 is a class K∞ function, the assumption Dz ⊂ Dcz

invoked in the proof of Theorem 3.1 is automatically sat-
isfied in the case where the neural network approximation
holds in R

nx × R
nz . Furthermore, in this case the control

law (19) ensures global asymptotic stability with respect to
x and z. However, the existence of a global neural net-
work approximator for an uncertain nonlinear map cannot
in general be established. Hence, as is common in the neu-
ral network literature, for a given arbitrarily large compact
set Dcx × Dcz ⊂ R

nx × R
nz , we assume that there ex-

ists an approximator for the unknown nonlinear map up to
a desired accuracy in the sense of (15). This assumption en-
sures that there exists a nontrivial Lyapunov level set such
that Dz ⊂ Dcz . In the case where ∆(·, ·) is continuous
on R

nx × R
nz , it follows from the Stone-Weierstrass theo-

rem that ∆(·, ·) can be approximated over an arbitrarily large
compact set Dcx ×Dcz . In this case, our neuro adaptive con-
troller guarantees semiglobal partial asymptotic stability.

Remark 3.3. Note that the neuro adaptive controller (19)
and (20) can be constructed to guarantee partial asymptotic
stability using standard linear H∞ theory. Specifically, it
follows from standard H∞ theory [17] that ‖G(s)‖∞ < γ,
where G(s) = E(sIn −As)

−1B and E is such that ETE =
Inx

+ R, if and only if there exists a positive-definite matrix
P satisfying the bounded real Riccati equation (18). It is well
known that (18) has a positive-definite solution if and only if
the Hamiltonian matrix

H =

[
As γ−2BBT

−ETE −AT
s

]
, (29)

has no purely imaginary eigenvalues.

It is important to note that the adaptive control law (19)
and (20) does not require the explicit knowledge of the opti-
mal weighting matrix W . Furthermore, no specific structure
on the nonlinear dynamics fx(x, z) and fz(x, z) is required
to apply Theorem 3.1. However, if (8) is in normal form
[18] with (9) being input-to-state stable with x viewed as the
input, then we can always construct a neuro adaptive con-
trol law without requiring knowledge of the system dynamics
fx(x, z) and fz(x, z). To see this, assume that the nonlinear
uncertain system G is generated by

q
(ri)
i (t) = fui(q(t), z(t)) +

m∑
j=1

Gs(i,j)(q(t), z(t))uj(t),

t ≥ 0, i = 1, · · · ,m, (30)
ż(t) = fz(q(t), z(t)), z(0) = z0, (31)

where q = [q1, · · · , q
(r1−1)
1 , · · · , qm, · · · , q

(rm−1)
m ]T, q(0) =

q0, q
(ri)
i denotes the rith derivative of qi, and ri denotes

the relative degree with respect to the output qi. Here we
assume that the square matrix function Gs(q, z) composed
of the entries Gs(i,j)(q, z), i, j = 1, · · · ,m, is such that
det Gs(q, z) �= 0, (q, z) ∈ R

r̂×R
nz , where r̂ = r1+· · ·+rm

is the (vector) relative degree of (30) and r̂ = nx. Further-
more, we assume that fui(·, z) is continuously differentiable
on R

nx for each z ∈ R
nz , fui(x, ·) is continuous on R

nz for
each x ∈ R

nx , and fui(0, ·) = 0. In addition, we assume that
the dynamics given by (31) is input-to-stable with q viewed
as the input.

Next, define xi �

[
qi, · · · , q

(ri−2)
i

]T

, i = 1, · · · ,m,

xm+1 �

[
q
(r1−1)
1 , · · · , q

(rm−1)
m

]T

, and x �
[
xT

1 , · · · ,

xT
m+1

]T
, so that (30) can be described by (8) with

A =

[
A0

0m×nx

]
, ∆f(x, z) =

[
0(nx−m)×1

fu(x, z)

]
,

G(x, z) =

[
0(nx−m)×m

Gs(x, z)

]
, (32)

where A0 ∈ R
(nx−m)×nx is a known matrix of zeros

and ones capturing the multivariable controllable canoni-
cal form representation [19], fu : R

nx × R
nz → R

nx

is an unknown function and satisfies fu(0, ·) = 0, and
Gs : R

nx × R
nz → R

m×m. Note that ∆f(·, ·) ∈ F with
B = [0m×(nx−m), Im]T and δ(x, z) = fu(x, z). In this case,
Gn(x, z) ≡ Gs(x, z). Furthermore, since A is in multivari-
able controllable canonical form, we can always construct K
such that A + BK is asymptotically stable.

4. Illustrative Numerical Example

In this section we present a numerical example to demon-
strate the utility of the proposed neuro adaptive control
framework for adaptive stabilization. Specifically, consider
the uncertain controlled Liénard system given by

q̈(t) + c(q(t))q̇(t) + k(q(t)) = bu(t),

q(0) = q0, q̇(0) = q̇0, t ≥ 0, (33)

where c : R → R and k : R → R are unknown, contin-
uously differential functions. Note that with x1 = q and
x2 = q̇, (33) can be written in state space form (8), (9), and

(15) with x = [x1, x2]
T, z = Ø, A =

[
0 1
0 0

]
, ∆f(x) =

[0, −c(x1)x2−k(x1)]
T, B = [0, b]T, and Gn(x) = 1. Here,

we assume that the unknown function ∆f(x) can be written
as ∆f(x) = Bδ(x), where δ(x) = 1

b
[−c(x1)x2 − k(x1)]

is an unknown, continuously differentiable function. Next,
let K = 1

b
[k1, k2], where k1, k2 are arbitrary scalars, so that

As = A + BK =

[
0 1
k1 k2

]
. Now, with the proper choice

of k1 and k2, it follows from Theorem 3.1 that if there exists
P > 0 satisfying (18), then the neuro adaptive feedback con-
troller (19) guarantees that x(t) → 0 as t → ∞. Specifically,
here we choose k1 = −1, k2 = −1, γ = 3, and R = I2, so
that P satisfying (18) is given by

P =

[
3.1586 1.0627
1.0627 2.3765

]
. (34)
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With c(x1) = 2(x4
1 − 1), k(x1) = x1 + tanh(x1), b = 3,

Q = 1, Y = 0.1I12, σ(x) =
[

1
1+e−a1x1

, · · · , 1
1+e−3a1x1

,

1
1+e−a2x2

, · · · , 1
1+e−3a2x2

]
, where a1 = a2 = 0.5, and initial

conditions x(0) = [1, 1]T and Ŵ (0) = 012×1, Figure 4.3
shows the phase portrait of the controlled and uncontrolled
system. Note that the neuro adaptive controller is switched
on at t = 10 sec. Figure 4.4 shows the state trajectories
versus time and the control signal versus time. Finally, Fig-
ure 4.5 shows the neural network weighting functions versus
time.

5. Conclusion

A neuro adaptive control framework for adaptive stabi-
lization of nonlinear uncertain dynamical systems was de-
veloped. In particular, using Lyapunov methods along with
the robust control techniques and partial stability notions, the
proposed framework was shown to guarantee partial asymp-
totic stability of the closed-loop system, that is, asymptotic
stability with respect to part of the closed-loop system states
associated with the plant. Furthermore, in the case where
the nonlinear system is represented in normal form with
input-to-state stable internal dynamics of unknown order, the
neuro adaptive controllers were constructed without requir-
ing knowledge of the system dynamics other than the fact that
the plant dynamics are continuously differentiable. Finally,
an illustrative numerical example was presented to show the
utility of the proposed neuro adaptive stabilization scheme.
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