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Abstract— Joint probabilistic data association (JPDA) is a powerful
tool for solving data association problems. However, the exact compu-
tation of association probabilities {βjk} in JPDA is NP-hard, where
βjk is the probability that j-th observation is from k-th track. Hence,
we cannot expect to compute association probabilities in JPDA exactly
in polynomial time unless P = NP . In this paper, we present a simple
Markov chain Monte Carlo data association (MCMCDA) algorithm
that finds an approximate solution to JPDA in polynomial time. For
ε > 0 and 0 < η < .5, we prove that the algorithm finds good
estimates of βjk with probability at least 1 − η in time complexity
O(ε−2 log η−1N(N log N + log(ε−1))), where N is the number of
observations.

I. INTRODUCTION

The data association problem arises in many applications such
as computer vision, surveillance, clustering, and mobile robots.
In computer vision, the data association problem is known as the
correspondence problem in which the objective is to determine
which observation belongs to which feature [1], [2]. In target
tracking, it is the problem of determining which observation is
generated by which target or clutter.

Joint probabilistic data association (JPDA) is developed to solve
the data association problem arises in multiple-target tracking [3].
JPDA is a suboptimal single-scan approximation to the optimal
Bayesian filter, in which the associations between the “known”
tracks and the latest observations are made sequentially. At each
time step, instead of finding a single best association between
latest observations and known tracks, JPDA enumerates all pos-
sible associations between observations and tracks and computes
association probabilities {βjk}, where βjk is the probability that
j-th observation is from k-th track. Given an association, the state
of a target is estimated by a filtering algorithm and this conditional
expectation of state is weighted by the association probability.
Then the state of a target is estimated by summing over the
weighted conditional expectations. It has proved very effective
in a cluttered environment compared with the nearest neighbor
approach which finds a single best association [3].

However, the exact calculation of association probabilities
{βjk} in JPDA is NP-hard [4] since the related problem of finding
the permanent of a 0-1 matrix is #P-complete [5]. To overcome the
complexity of the problem, many approximation algorithms have
been proposed. In [6], the “cheap” JPDA algorithm is developed
and the association probabilities are estimated from a formula
based on heuristics. In [7], a single-stage data association problem
is considered and a leave-one-out heuristic is developed to avoid
the enumeration of all possible associations. Sampling methods
have been applied before. In [8], the Gibbs sampling method
is applied to track a single target using measurements from a
finite number of linear models, where the measurement to model
association is unknown. In [9], a combination of Markov chain
Monte Carlo (MCMC) and expectation-maximization (EM) is
used to simultaneously track multiple vehicles using measurements
from spatially separated sensors and learn the intrinsic parameters
of the sensors. A combination of MCMC and EM is also used in
[2] to solve the correspondence problem in computer vision. In
[10], MCMC is applied to compute the association probabilities
in JPDA and it is shown that MCMC outperforms Fitzgerald’s
cheap JPDA. Unfortunately, in all cases, the performance of an
approximation algorithm for JPDA is measured in experiment
only. The main contribution of this paper is the formal analysis
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of a simple sampling algorithm for JPDA, called the Markov
chain Monte Carlo data association (MCMCDA) algorithm. We
show that MCMCDA finds an approximate solution to JPDA in
polynomial time. For ε > 0 and 0 < η < .5, we prove that the
algorithm finds “good” estimates of βjk with probability at least
1−η in time complexity O(ε−2 log η−1N(N log N +log(ε−1))),
where N is the number of observations (the precise definition of
“good” estimates is given in Section V).

In [11], a general-purpose MCMCDA algorithm is developed
to track an unknown number of targets. It has been shown that
MCMCDA is computationally efficient compared to the multiple
hypothesis tracker (MHT) [12] and outperforms MHT under
extreme conditions, such as a large number of targets in a dense
environment, low detection probabilities, and high false alarm
rates [11]. The MCMCDA algorithm has been extended to sensor
networks in a hierarchical manner to be scalable and it has
been shown that MCMCDA is robust against sensor localization
error, transmission failures and communication delays, i.e., out-of-
sequence measurements [13]. The MCMCDA algorithm presented
in this paper can be considered as a special case of the algorithm
presented in [11] for tracking a known number of targets.

The remainder of this paper is structured as follows. We
summarize JPDA in Section II and describe the MCMC method in
Section III. The MCMCDA algorithm is presented in Section IV
and analysis about the algorithm is shown in Section V. We also
present an experiment confirming our results in Section VI.

II. JOINT PROBABILISTIC DATA ASSOCIATION

Joint probabilistic data association (JPDA) has been traditionally
used with the Kalman filter, assuming linear dynamic and mea-
surement models and a Gaussian noise model [3], and the Kalman
filter is used in this paper for demonstration purpose. However,
JPDA has been applied with a nonlinear filtering algorithm such
as a particle filter [14]. We note that the proposed algorithm is
applicable for both linear and nonlinear filters and our results can
be easily generalized to the nonlinear case.

Let K be the number of targets moving around the surveillance
region R. The state dynamics of target k is modeled as

xk
t+1 = Ak

t xk
t + Gk

t wk
t , (1)

for t = 1, 2, . . ., where xk
t ∈ R

nx is the state of target k at time t,
Ak

t and Gk
t are matrices with appropriate sizes, and wk

t is a white
Gaussian process with zero mean and covariance Qk

t . The noisy
observation of the state of a target is measured with a detection
probability pd which is less than unity. There are also false alarms
and the number of false alarms has a Poisson distribution with a
parameter λfV where V is the volume of R and λf is the false
alarm rate per unit time, per unit volume. Let nt be the number
of observations at time t, including both noisy observations and
false alarms. Let yj

t ∈ R
ny be the j-th observation at time t for

j = 1, . . . , nt. Each target generates a unique observation at each
sampling time if it is detected. The measurement model is

yj
t =

{
Cj

t xk
t + w′j

t if yj
t is from xk

t

uj
t otherwise,

(2)

where w′j
t is a white Gaussian process with zero mean and

covariance Rj
t , Cj

t is a matrix with an appropriate size, and
uj

t ∼ Unif(R) are random processes for false alarms. Notice that,
with probability 1 − pd, the target is not detected and we call
this a missing observation. Let Yt = {yj

t : 1 ≤ j ≤ nt} and
Y1:t = {Y1, . . . , Yt}.
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Now we summarize the joint probability data association
(JPDA) filter [3]. Suppose that we have the following estimates
from the previous filtering step t − 1:

x̂k
t−1|t−1 := E

[
xk

t−1|Y1:t−1

]
P k

t−1|t−1 := E

[
sk

t−1|t−1s
k
t−1|t−1

T |Y1:t−1

]
,

where sk
t−1|t−1 = xk

t−1 − x̂k
t−1|t−1. For notational convenience,

we assume that A = Ak
t , G = Gk

t and Q = Qk
t , for all k and t,

and C = Cj
t and R = Rj

t , for all j and t.
Step 1 (Prediction): For each k, compute

x̂k
t|t−1 := E

[
xk

t |Y1:t−1

]
= Ax̂k

t−1|t−1

P k
t|t−1 := E

[
sk

t|t−1s
k
t|t−1

T |Y1:t−1

]
= AP k

t−1|t−1A
T + GQGT ,

where sk
t|t−1 = xk

t − x̂k
t|t−1.

Step 2 (Measurement Validation): The predicted observation for
target k is ŷk

t|t−1 = Cx̂k
t|t−1. For each observation j, define the

innovation vk
t (j) = yj

t − ŷk
t|t−1 and its covariance

Bk
t = E

[
vk

t (j)vk
t (j)

T |Y1:t−1

]
= CP k

t|t−1C
T + RT .

Let Ξ = [ξjk] ∈ {0, 1}nt×K be a validation matrix and ξjk = 1,
i.e., yj

t is validated for target k, if and only if

vk
t (j)T (Bk

t )−1vk
t (j) < δ, (3)

where δ is an appropriate threshold. Without loss of generality,
we assume that, for all j,

∑K
k=1 ξjk ≥ 1, i.e., all observations are

validated with at least one target. If not, we can always resize the
matrix Ξ and reduce nt to make sure that each row vector has at
least one non-zero element.

Step 3 (State Estimation): Let Ω be a set of all feasible
joint association events at time t (for notational convenience,
the subscript t is dropped). For each ω ∈ Ω, ω = {(j, k)},
where (j, k) denotes an event that observation j is associated with
target k. We represent a joint association event ω by a matrix
Ξ̂(ω) = [ξ̂jk(ω)], where ξ̂jk(ω) = 1 if the event (i, k) is true,
otherwise, ξ̂jk(ω) = 0. A joint association event is feasible when
(i) it agrees with the validation matrix, i.e., ξ̂jk(ω) ≤ ξjk(ω)
for all j and k; (ii) an observation has at most one source, i.e.,∑K

k=1 ξ̂jk(ω) ≤ 1 for all j; and (iii) a target has at most one
observation, i.e.,

∑nt
j=1 ξ̂jk(ω) ≤ 1 for all k. Notice that we use

notations different from [3]. In particular, we did not introduce an
additional column for “no target” so observation j is a false alarm
if

∑K
k=1 ξ̂jk(ω) = 0.

The state of a target can be estimated as

E(xk
t |Y1:t) =

∑
ω

E(xk
t |ω, Y1:t)P (ω|Y1:t) (4)

=

nt∑
j=0

E(xk
t |ωjk, Y1:t)P (ωjk|Y1:t),

where ωjk denotes the event {ω � (j, k)} and ω0k denotes
the event that no observation is associated with target k. Let
βjk = P (ωjk|Y1:t). E(xk

t |ωjk, Y1:t) can be computed easily by
considering it as a single target estimation problem with a single
observation. Hence, the computation of E(xk

t |Y1:t) reduces to the
computation of βjk, where

βjk = P (ωjk|Y1:t) =
∑

ω:(j,k)∈ω

P (ω|Y1:t). (5)

The computation of βjk requires a summation over the poste-
riors, hence the enumeration of all joint association events. JPDA

is a method for computing expectations such as (4) using the
association probabilities {βjk} in the presence of the identity
uncertainty. As mentioned earlier, the exact calculation of {βjk}
in JPDA is NP-hard [4] and it is the major drawback of JPDA.

Based on the parametric false alarm model, the posterior of ω
can be computed as

P (ω|Y1:t) =
1

Z
P (Yt|ω, Y1:t−1)P (ω) (6)

=
1

Z
λ

nf
f p

nd
d (1 − pd)

K−nd

nt∏
j=1

[
Nkj (y

j
t )

]τj

,

where Z is a normalizing constant; nd = #{k :
∑nt

j=1 ξ̂jk(ω) =
1} is the number of detections; nf = nt − nd is the number of
false alarms; τj =

∑K
k=1 ξ̂jk(ω); kj = k if and only if τj = 1

and ξ̂jk(ω) = 1 for given j; and Nkj (y
j
t ) is the Gaussian density

function with mean ŷ
kj

t|t−1 and covariance B
kj
t .

Let vk
t =

∑nt
j=1 βjkvk

t (j) be the combined innovation and
Kk

t = P k
t|t−1C(Bk

t )−1 be the Kalman gain. Then the state of
each target and its covariance are computed as follows (for more
detail, see [3]).

x̂k
t|t = x̂k

t|t−1 + Kk
t vk

t

P k
t|t = P k

t|t−1 −
(

nt∑
j=1

βjk

)
Kk

t Bk
t Kk

t

T

+ Kk
t

(
nt∑

j=1

βjkvk
t (j)vk

t (j)
T − vk

t vk
t

T

)
Kk

t

T
.

III. MARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) plays a significant role in
many fields such as physics, statistics, economics, and engineering
[15]. In some cases, MCMC is the only known general algorithm
that finds a good approximate solution to a complex problem in
polynomial time [16]. MCMC techniques have been applied to
complex probability distribution integration problems, counting
problems such as #P-complete problems, and combinatorial op-
timization problems [15], [16].

MCMC is a general method to generate samples from a distri-
bution π by constructing a Markov chain M with states ω and
stationary distribution π(ω). If we are at state ω ∈ Ω, we propose
ω′ ∈ Ω following the proposal distribution q(ω, ω′). The move is
accepted with an acceptance probability A(ω, ω′) where

A(ω, ω′) = min

(
1,

π(ω′)q(ω′, ω)

π(ω)q(ω, ω′)

)
, (7)

otherwise the sampler stays at ω, so that the detailed balance
condition is satisfied, i.e.,

Q(ω, ω′) = π(ω)P (ω, ω′) = π(ω′)P (ω, ω′), (8)

for all ω, ω′ ∈ Ω, where P (ω, ω′) = q(ω, ω′)A(ω, ω′) is the
transition probability from ω to ω′ for ω′ �= ω. The described
MCMC algorithm is known as the Metropolis-Hastings algorithm.
If M is irreducible and aperiodic, then M converges to its
stationary distribution by the ergodic theorem [17]. Hence, for
a given bounded function f , the sample mean f̂ of f over the
sampled states converges to Eπf(ω). Notice that (8) requires only
the ability to compute the ratio π(ω′)/π(ω), avoiding the need to
normalize π.

An ergodic chain M on state space Ω converges to its stationary
distribution asymptotically. But a practical question is how fast
M becomes close to stationarity. One way to measure the rate
of convergence of M to stationarity is the “mixing time” of the
Markov chain. Let P be the transition probabilities of M and
let P t

x(·) be the distribution of the state at time t given that M
is started from the initial state x ∈ Ω. If π is the stationary
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distribution of M, then the total variation distance at time t with
initial state x is defined as

∆x(t) = ‖P t
x − π‖ = max

S⊂Ω
|P t

x(S) − π(S)| (9)

The rate of convergence of M to stationarity can be measured
by the mixing time:

τx(ε) = min{t : ∆x(s) ≤ ε for all s ≥ t}. (10)

One approach to bound τx(ε) of a Markov chain with a complex
structure is the canonical path method [16]. In this paper, we
consider a highly complex Markov chain, hence we use the
canonical path method to bound τx(ε) of the Markov chain
simulated by the MCMCDA algorithm given in Section IV. For the
remainder of this section, we describe the canonical path method.

For a finite, reversible and ergodic Markov chain M with state
space Ω, consider an undirected graph G = (V, E) where V = Ω
and E = {(x, y) : Q(x, y) > 0}. Recall the definition of Q(·, ·)
from (8). So an edge (x, y) ∈ E indicates that the Markov chain
M can make a transition from x to y or from y to x in a single
step. For each ordered pair (x, y) ∈ Ω2, the canonical path γxy

is a simple path from x to y in G. In terms of M the canonical
path γxy is a sequence of legal transitions from x to y in M. Let
Γ = {γxy : x, y ∈ Ω} be the set of all canonical paths. Now the
mixing time of the chain is related to the maximum edge loading:

ρ̄ = ρ̄(Γ) = max
e

1

Q(e)

∑
γxy�e

π(x)π(y)|γxy|. (11)

If ρ̄ is not so big, i.e., no single edge is overloaded, then the
Markov chain can move around fast and achieve the rapidly mixing
property. The main result for the canonical path method is as
follows [16], [18]:

Theorem 1: Let M be a finite, reversible, ergodic Markov chain
with loop probabilities P (x, x) ≥ 1

2
for all states x. Let Γ be a

set of canonical paths with maximum edge loading ρ̄. Then the
mixing time of M satisfies τx(ε) ≤ ρ̄(log π(x)−1 + log ε−1), for
any choice of initial state x.

IV. MCMC DATA ASSOCIATION ALGORITHM

In this section, we describe the MCMC data association (MCM-
CDA) algorithm for approximating the association probabilities
{βjk}. When applied to a filtering problem, MCMCDA follows
all the steps described in Section II except we use MCMCDA to
estimate {βjk} in step 3. While the exact computation of {βjk}
in JPDA is NP-hard, MCMCDA finds approximations to {βjk} in
polynomial time with good fidelity as shown in Section V.

We fix the time t and the time index t is dropped from now.
Let N = nt be the number of validated observations. We first
reformulate our problem as a bipartite graph. Let G = (U, V, E)
be a bipartite graph, where U = {ŷk : 1 ≤ k ≤ K} is a vertex
set of predicted observations, V = {yj : 1 ≤ j ≤ N} is a
vertex set of observations, and E = {(u, v) : u ∈ U, v ∈ V, (u −
v)T (Bκ(u))−1(u − v) < δ} with κ : U → {1, . . . , K} mapping
predicted observation u to its target index. An edge (u, v) ∈ E
represents that observation v is validated for target u according to
(3), hence, we are representing the validation matrix Ξ by E. Now
a feasible joint event is a matching in G, i.e., a subset M ⊂ E
such that no two edges in M share a vertex. The set of all feasible
joint association events Ω can be represented as Ω ⊂ M0(G) ∪
· · · ∪ MK(G), where Mk(G) is a set of k-matchings in G. The
posterior (6) of ω ∈ Ω can be rewritten as

P (ω|Y1:t) =
1

Z
λ

N−|ω|
f p

|ω|
d (1 − pd)

K−|ω| ∏
(u,v)∈ω

Nu(v), (12)

where Z is a normalizing constant and Nu(v) is the Gaussian
density function with mean u and covariance Bκ(u).

The MCMC data association (MCMCDA) algorithm is an
MCMC algorithm whose state space is the set of all feasible
joint association events Ω and whose stationary distribution is the
posterior (12). Each step of the MCMCDA algorithm is described
in Algorithm 1, where we use the sampling method from [16]. A

Algorithm 1 MCMCDA (single step)

sample U from Unif[0, 1]
if U < 1

2
then

ω′ = ω
else

choose e = (u, v) ∈ E uniformly at random
if e ∈ ω then

ω′ = ω − e
else if both u and v are unmatched in ω then

ω′ = ω + e
else if exactly one of u and v is matched in ω and e′ is the
matching edge then

ω′ = ω + e − e′
else

ω′ = ω
end if

end if
ω = ω′ with probability A(ω, ω′)

complete sampling strategy is described in Section V. In Algo-
rithm 1, A(ω, ω′) = min

(
1, π(ω′)

π(ω)

)
, where π(ω) = P (ω|Y1:t)

from (12). There are three MCMC moves and we name them for
future reference: (i) an addition move proposes ω′ = ω + e; (ii)
a deletion move proposes ω′ = ω − e; and (iii) a switch move
proposes ω′ = ω + e − e′.

V. ANALYSIS

Let M be the Markov chain simulated by Algorithm 1. Since
the self-loop probability is nonzero, M is aperiodic. It can be
easily seen that M is irreducible, i.e., all states communicate,
for example via the empty matching. In addition, the transitions
described in Algorithm 1 satisfy the detailed balance condition
(8) so M is reversible. Hence, by the ergodic theorem, the chain
converges to its stationary distribution [17].

Let us first take a look at the complexity of the problem. As
noted earlier, the state space of the Markov chain M is Ω ⊂
M0(G)∪ · · · ∪MK(G), where M is the Markov chain simulated
by Algorithm 1. For each k, |Mk(G)| ≤ (

K
k

)
N !

(N−k)!
with equality

if the subgraph of G with the k chosen vertices in U is a complete
bipartite graph, i.e., all observations are validated for all k chosen
targets. Hence, we can bound the size of Ω as

|Ω| ≤ |M0(G)| + · · · + |MK(G)|

≤
K∑

k=0

(
K

k

)
N !

(N − k)!
=: Ω̄. (13)

Figure 1 shows this bound for K = 5 as a function of the
number of observations. Certainly, the size of the state space
grows exponentially as the number of targets or the number of
observations increases, hence, the exact calculation of JPDA by
enumeration is not feasible when the number of targets or the
number of observations is large.

We first establish a few facts to prove the theorems below. In
(12), the normalizing constant becomes

Z =
∑
ω∈Ω

⎛
⎝λ

N−|ω|
f p

|ω|
d (1 − pd)

K−|ω| ∏
(u,v)∈ω

Nu(v)

⎞
⎠ . (14)

We can bound each likelihood term as

L ≤ Nu(v) ≤ L̄,

for all (u, v) ∈ E, where

L̄ = max
1≤k≤K

{(
(2π)ny |Bk|

)− 1
2
}

L = min
1≤k≤K

{(
(2π)ny |Bk|eδ

)− 1
2
}

.
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Fig. 1. Ω̄ as a function of the number of observations when K = 5

The lower bound L is due to the measurement validation.
For Theorem 2 below, let C =

pdL̄

λf(1−pd)
, D =

λf(1−pd)

Lpd
and

R = max{1, C, D}. Also define m1 = max{1, L̄}, m2 =
min{1, L},

m3(K, N) = max
0≤k≤K

{λN−k
f pk

d (1 − pd)
K−k},

m4(K, N) = min
0≤k≤K

{λN−k
f pk

d (1 − pd)
K−k}, and

m5(K, N) = K log
m1

m2
+ log

m3(K, N)

m4(K, N)

+

K+1∑
k=1

log k +

N∑
n=1

log n.

Remark 1: If .5 < pd < 1 and λf < 1 − pd, then
m3(K, N) = λN−K

f pK
d and m4(K, N) = λN

f (1 − pd)
K .

So m3(K, N)/m4(K, N) =
(

pd
λf(1−pd)

)K

and K is the only
remaining exponent.

Notice that the omitted proofs appear in Appendix.
Theorem 2: Suppose that λf > 0 and 0 < pd < 1. Then the

mixing time of the Markov chain M is bounded by τx(ε) ≤
4R4K2N(m5(K, N) + log ε−1) for all x ∈ Ω.

Remark 2: Let τ̄(ε) be the upper bound found in Theorem 2.
τ̄(ε) is polynomial in K and N . Under the assumptions in
Remark 1, τ̄(ε) =

O

(
K2N

(
K log

Kpd

λf(1 − pd)
+ N log N + log ε−1

))
.

If m3(K, N)/m4(K, N) does not grow fast, e.g., Remark 1,
τ̄(ε) = O(K2N(K log K + N log N + log ε−1)). If K is fixed,
τ̄(ε) = O(N(N log N + log ε−1)).

Let p(ω) be the distribution of the states of M after simulating
Algorithm 1 for at least τ̄(ε) steps. Then the total variation distance
satisfies ‖p−π‖ ≤ ε. So we can sample from p to estimate {βjk}.
However, there is a small bias in our estimates since we are not
sampling from π. The following theorem gives an upper bound
on the number of samples needed for finding good estimates.

Theorem 3: Let 0 < ε1, ε2 ≤ 1 and 0 < η < .5. Suppose
that ‖p − π‖ ≤ ε for ε ≤ ε1ε2/8. Then, with a total of
504ε−2

1 ε−1
2 �log η−1� samples from p, we can find estimates β̂jk

for βjk with probability at least 1 − η, such that, for βjk ≥ ε2,
β̂jk estimates βjk within ratio 1 + ε1, i.e., (1 − ε1)βjk ≤ β̂jk ≤
(1 + ε1)βjk, and, for βjk < ε2, β̂jk ≤ (1 + ε1)ε2.

Remark 3: Following Remark 2, for fixed K, τ̄(ε) =
O(N(N log N + log ε−1)). Combining this fact with Theo-
rem 3, the time complexity of the overall procedure is T =
O(ε−2

1 ε−1
2 log η−1N(N log N + log(ε−1

1 ε−1
2 ))). Hence, with a

total of T samples, Algorithm 1 finds estimates β̂jk for βjk with

Fig. 2. Expected observations (crosses) and observations (dots)

Fig. 3. Average variation ∆β as a function of the number of samples

probability at least 1 − η, such that, for βjk ≥ ε2, β̂jk estimates
βjk within ratio 1+ε1, and, for βjk < ε2, |β̂jk−βjk| ≤ (1+ε1)ε2.
We can simplify further by letting ε0 = ε1ε2. Then the time
complexity is O(ε−2

0 log η−1N(N log N + log(ε−1
0 ))).

VI. SIMULATION RESULTS

In this section, we show a simulation confirming our findings
from last section. Since our goal is to estimate the association
probabilities, we define the variation distance between two sets of
association probabilities βjk and β̂jk by ∆β = maxj,k |βjk−β̂jk|.
A simple case is chosen to demonstrate MCMCDA, in which two
predicted observations are located at [0, 1]T and [0,−1]T with
Bk = diag(1, 1) for k ∈ {1, 2}. There are 15 observations as
shown in Figure 2. Other parameters are: δ = 4, V = 16, λf =
.8125, and pd = .98. In Figure 3, the average variation distance
between two sets of association probabilities βjk and β̂jk from 10
independent runs is shown as a function of number of samples.
βjk are computed exactly by JPDA and β̂jk are estimated by
MCMCDA.

VII. CONCLUSIONS

JPDA is a powerful tool for solving data association problems
but the exact computation of association probabilities in JPDA
is NP-hard. Hence, for a large problem, we need to seek for
an approximation algorithm. In this paper, we have presented
an efficient approximation algorithm for JPDA based on Markov
chain Monte Carlo data association (MCMCDA) and proved that
the time complexity of the algorithm is polynomial in the size of
the problem.
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IX. APPENDIX

The proofs shown here parallel the proofs by Jerrum and
Sinclair [16] in both structure and details; the main difference
is the introduction of the non-uniform likelihood function into the
posterior, allowing us to understand the relationship between the
parameters in JPDA and the mixing time of the Markov chain.

A. Proof of Theorem 2

To prove Theorem 2, we need the following lemmas.

Lemma 1: Let C =
pdL̄

λf(1−pd)
and D =

λf(1−pd)

Lpd
. For any

ω0, ω1, ω2 ∈ Ω, if ω1 = ω0 − e0, for some edge e0 ∈ ω0,
and ω2 = ω1 − e1, for some edge e1 ∈ ω1, then the following
inequalities hold:

π(ω0)/π(ω1) ≤ C
π(ω0)/π(ω2) ≤ C2 and

π(ω1)/π(ω0) ≤ D
π(ω2)/π(ω0) ≤ D2.

Proof: ω0 and ω1 are identical except that ω1 is missing the
edge e0. So |ω0| = |ω1| + 1. If e0 = (u, v) and k = |ω0|,

π(ω0)/π(ω1) =
λN−k

f pk
d (1 − pd)K−k

λ
N−(k−1)

f pk−1
d (1 − pd)K−(k−1)

Nu(v)

=
pd

λf(1 − pd)
Nu(v) ≤ C.

On the other hand,

π(ω1)/π(ω0) =
λ

N−(k−1)

f pk−1
d (1 − pd)K−(k−1)

λN−k
f pk

d (1 − pd)K−k

1

Nu(v)

=
λf(1 − pd)

pd

1

Nu(v)
≤ D.

Since π(ω0)/π(ω2) = π(ω0)/π(ω1) × π(ω1)/π(ω2), by re-
peating the above argument twice, we get π(ω0)/π(ω2) ≤ C2.
Similarly, we have π(ω2)/π(ω0) ≤ D2.

Lemma 2: Let R = max{1, C, D}, where C and D are defined
in Lemma 1. Then the maximum edge loading of the Markov chain
M is bounded as ρ̄ ≤ 4R4K2N .

Proof: For each pair of matchings X, Y in G, we define the
canonical path γXY as in [16]. Consider the symmetric difference
X ⊕Y , where X ⊕Y = (X −Y )∪ (Y −X). X ⊕Y is a disjoint
collection of paths in G including closed cycles, each of which
has edges that belong to X and Y alternately. Suppose that we
have fixed some arbitrary ordering on all simple paths in G, and
designate a “start vertex” to each of the paths, which is arbitrary if
the path is a closed cycle but must be an endpoint otherwise. This
gives a unique ordering P1, P2, . . . , Pm on the paths appearing in
X ⊕ Y . The canonical path from X to Y involves “unwinding”
each of the Pi in turn as follows. We need to consider two cases:

(i) Pi is not a cycle. Let Pi consist of the sequence
(v0, v1, . . . , vl) of vertices with the start vertex v0. If
(v0, v1) ∈ Y , perform a sequence of switching moves
replacing (v2j+1, v2j+2) by (v2j , v2j+1) for j = 0, 1, . . .,
and finish with an addition move if l is odd. If (v0, v1) ∈ X ,
remove (v0, v1) and proceed as before for the reduced path
(v1, . . . , vl).

(ii) Pi is a cycle. Let Pi consist of the sequence
(v0, v1, . . . , v2l+1) of vertices, for l ≥ 1, where v0 is
the start vertex, and (v2j , v2j+1) ∈ X for j = 0, . . . , l,
with remaining edges belonging to Y . We first remove
the edge (v0, v1). Now we are left with an open path O
with endpoints v0, v1, with the start vertex vk of O, for
k ∈ {0, 1}. Then we unwind O as in (i) above but treating
v1−k as the start vertex to identify that it was a cycle.

Let t be an arbitrary edge in the Markov chain M, i.e., a
transition from ω to ω′ �= ω. Let cp(t) = {(X, Y ) : γXY � t}
be the set of canonical paths that use t. We define a function

ηt : cp(t) → Ω as in [16],

ηt(X, Y ) =

⎧⎪⎨
⎪⎩

X ⊕ Y ⊕ (ω ∪ ω′) − eXYt ,
if t is a switch move and

the current path is a cycle;
X ⊕ Y ⊕ (ω ∪ ω′), otherwise,

where eXYt is the edge in X adjacent to the start vertex that
was removed first in (ii) above. ηt(X, Y ) is always a matching in
G and ηt is injective as shown in [16]. Notice that the bipartite
graph G considered here is a subset of the graphs considered in
[16] so the arguments about ηt can be directly applied here.

Notice that

Q(t) = Q(ω, ω′) = π(ω)P (ω, ω′)

=
1

2|E| min{π(ω), π(ω′)}. (15)

Next, we bound π(X)π(Y ) and we need to consider four cases:
(i) t is a deletion move. We have ω′ = ω − e and ηt(X, Y ) =

X ⊕ Y ⊕ (ω ∪ ω′). Since ω ∪ ηt(X, Y ) and X ∪ Y are
identical when viewed as multisets,

π(X)π(Y ) = π(ω)π(ηt(X, Y ))

=
2|E|Q(t)

min{π(ω), π(ω′)}π(ω)π(ηt(X, Y ))

= 2|E|Q(t)max

{
1,

π(ω)

π(ω′)

}
π(ηt(X, Y ))

≤ 2R|E|Q(t)π(ηt(X, Y )),

where we used the identity (15) in the second equality and
Lemma 1 for the last inequality.

(ii) t is an addition move. We have ω′ = ω+e and ηt(X, Y ) =
X⊕Y ⊕(ω∪ω′). Since ω∪ηt(X, Y ) and X∪Y are identical
when viewed as multisets, using the arguments from (i),

π(X)π(Y ) ≤ 2R|E|Q(t)π(ηt(X, Y )).

(iii) t is a switch move and the current path is a cycle. Suppose
ω′ = ω + e− e′. Let ω1 = ω + e. Then ω′ = ω1 − e′. Since
π(ω)
π(ω′) = π(ω1)

π(ω′)
π(ω)
π(ω1)

, by Lemma 1, π(ω)
π(ω′) ≤ CD ≤ R2.

Since ηt(X, Y ) = X ⊕ Y ⊕ (ω ∪ω′)− eXYt , the multisets
ω ∪ ηt(X, Y ) differs from X ∪ Y only in that e and eXYt

are missing from it. Hence, by Lemma 1,

π(X)π(Y ) ≤ C2π(ω)π(ηt(X, Y ))

= 2C2|E|Q(t)max

{
1,

π(ω)

π(ω′)

}
π(ηt(X, Y ))

≤ 2R4|E|Q(t)π(ηt(X, Y )).

(iv) t is a switch move and the current path is not a cycle. This
case is similar to (iii) but the multisets ω∪ηt(X, Y ) differs
from X ∪ Y only in that e is missing from it. Hence, by
Lemma 1,

π(X)π(Y ) ≤ Cπ(ω)π(ηt(X, Y ))

= 2C|E|Q(t)max

{
1,

π(ω)

π(ω′)

}
π(ηt(X, Y ))

≤ 2R3|E|Q(t)π(ηt(X, Y )).

In summary, we have, in all cases,

π(X)π(Y ) ≤ 2R4|E|Q(t)π(ηt(X, Y )).

Thus, for any transition t,
1

Q(t)

∑
γXY �t π(X)π(Y )|γXY |

≤ 2R4|E|∑γXY �t π(ηt(X, Y ))|γXY |
≤ 4R4K|E|∑γXY �t π(ηt(X, Y ))

≤ 4R4K|E|
≤ 4R4K2N

where the second inequality follows from the fact that the length
of any canonical path is bounded by 2K, the third equality is due
to the fact that ηt is injective and π is a probability distribution,
and the last inequality follows from |E| ≤ KN . Hence, ρ̄ ≤
4R4K2N .

1287



We now prove Theorem 2. M is a finite, reversible, ergodic
Markov chain with loop probabilities P (x, x) ≥ 1

2
for all states

x (see Section IV). Hence, by Theorem 1, we have

τx(ε) ≤ ρ̄(log π(x)−1 + log ε−1). (16)

The upper bound for ρ̄ is computed from Lemma 2. Now we just
need to find the upper bound for π(x)−1. From (14),

Z ≤
∑
ω∈Ω

mK
1 m3(K, N)

= mK
1 m3(K, N)|Ω|

≤ mK
1 m3(K, N)

K∑
k=0

(K

k

) N !

(N − k)!

≤ mK
1 m3(K, N)(K + 1)!N !,

where the second inequality is by (13). Although this bound on
Z is not tight, it will serve our purpose. For any ω ∈ Ω, π(ω) ≥
1
Z

mK
2 m4(K, N) so

1

π(ω)
≤ Z

mK
2 m4(K, N)

≤
(

m1

m2

)K m3(K, N)

m4(K, N)
(K + 1)!N !.

Hence,

log
1

π(ω)
≤ log

((
m1

m2

)K m3(K, N)

m4(K, N)
(K + 1)!N !

)

= m5(K, N).

Putting all together, we have, for all initial state x ∈ Ω, τx(ε) ≤
4R4K2N(m5(K, N) + log ε−1).

B. Proof of Theorem 3
Let βε2 = {(j, k) : βjk ≥ ε2}. For now, assume (j, k) ∈ βε2 ,

i.e., βjk ≥ ε2. Let Xjk(ω) = I((ŷk, yj) ∈ ω) where I is an
indicator function. Notice that Eπ(Xjk) = π(ωjk) = βjk, where
ωjk = {ω ∈ Ω : (ŷk, yj) ∈ ω}. Since ‖p − π‖ ≤ ε,

|p(ωjk) − π(ωjk)| ≤ ε ≤ ε1π(ωjk)

8

|Varp(Xjk) − Varπ(Xjk)| ≤ 3ε ≤ 3ε1π(ωjk)

8
. (17)

Let β̄jk = 1
s

∑s
i=1 Xjk(ωi) be the sample mean of s samples

from p. Then E(β̄jk) = p(ωjk) and Var(β̄jk) = 1
s
Varp(Xjk). By

Chebyshev’s inequality,

P
(∣∣β̄jk − p(ωjk)

∣∣ >
ε1

3
p(ωjk)

)
≤ 9

ε21s

Varp(Xjk)

p(ωjk)2
. (18)

Now if |β̄jk − p(ωjk)| ≤ ε1
3

p(ωjk), from (17),

|β̄jk − π(ωjk)| ≤ |β̄jk − p(ωjk)| + |p(ωjk − π(ωjk|
≤ ε1

3
p(ωjk) +

ε1

8
π(ωjk)

≤ ε1

2
π(ωjk) (19)

and β̄jk estimates π(ωjk) within ratio 1 + ε1. Since ε1 < 1 and
Varπ(Xjk) ≤ π(ωjk),

Varp(Xjk)

p(ωjk)2
≤ Varπ(Xjk) + 3

8
π(ωjk)(

7
8
π(ωjk)

)2
≤ 2

π(ωjk)
. (20)

Hence, by choosing s = 72ε−2
1 ε−1

2 and using (18) and (20),

P
(
|β̄jk − p(ωjk)| >

ε1

3
p(ωjk)

)
≤ 1

4
, (21)

that is, β̄jk estimates π(ωjk) within ratio 1+ ε1 with probability
at least 3/4.

Now consider repeating the above experiment by an odd number
t times, independently. Let β̂jk be the median of the resulting t
values of β̄jk. By (21), the probability that β̂jk fails to approximate
βjk within ratio 1 + ε1 is at most

t∑
i=(t+1)/2

(t

i

) (
1

4

)i (
3

4

)t−i

≤
(

1

4

)t/2 (
3

4

)t/2 t∑
i=(t+1)/2

(t

i

)

≤
(

3

16

)t/2

2t =

(
3

4

)t/2

.

Now let t = 6�log η−1�+ 1, this probability is bounded above
by η. Hence, with a total of st samples, β̂jk estimates π(ωjk)
within ratio 1 + ε1 with probability at least 1 − η for βjk ≥ ε2.
Notice that st is upper bounded by 504ε−2

1 ε−1
2 �log η−1�.

Now consider βjk that are smaller than ε2. With probability at
least 1 − η, for (j, k) ∈ βε2 , (1 − ε1)βjk ≤ β̂jk ≤ (1 + ε1)βjk.
So if β̂jk ≥ (1 + ε1)ε2, we must have (j, k) ∈ βε2 . Hence,
β̂jk ≤ (1 + ε1)ε2 for βjk < ε2.
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