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ABSTRACT

We present a novel adaptive sampling scheme for tracking a
highly maneuvering target. During the maneuvering mode of a
target, estimation accuracy of the tracker is typically worse than
that during the constant velocity (benign motion) mode. Hence
it is desired to have higher sampling rate during the maneuvering
mode and relatively lower sampling rate for the benign motion
mode. In the proposed adaptive sampling policy, we predict an
expected cost function for a candidate sampling interval selected
from a predefined set of sampling intervals. We then choose the
largest sampling interval for which an expected performance met-
ric is satisfied. We use a random sampling approach coupled with
switching multiple kinematic models for target motion, to gener-
ate future (pseudo-)measurements which allows computation of
the relevant performance metric. The algorithm is illustrated via
a simulation example involving tracking of a maneuvering target
in presence of clutter and two sensors (radar and sonar). Mul-
tisensor tracking is achieved by a suboptimal filtering algorithm
developed by the interacting multiple model (IMM) filtering ap-
proach combined with the probabilistic data association (PDA)
technique and with the proposed adaptive sampling scheme.

I INTRODUCTION

Two modes of operation of surveillance radars that track mul-
tiple targets are scan-while-track (SWT) and track-while-scan
(TWS). In SWT, the search for new targets is accomplished by
scanning sections of the surveillance region between track dwells.
In TWS, tracking is accomplished by processing the detections
from scanning the surveillance region. Phased-array radars typi-
cally employ SWT, while rotating radars typically employ TWS
[16]. Sensor management, or multisensor resource allocation, in-
cludes techniques for adjusting the operations of electronically
scanned sensors for the presence of other sensors [16]. For in-
stance, in [14], instead of setting a quasiperiodic data radar for
surveillance tracking, the time at which the next measurement
is required to maintain the track is computed after every mea-
surement, and then a measurement is scheduled for the required
time. Thus, the sample period between consecutive measure-
ments is adapted giving rise to aperiodic data. The focus of this
paper is on measurement scheduling (as in [14]) for phased ar-
ray radars to maintain the tracks with largest possible sampling
intervals.

We consider the problem of multisensor tracking of a highly
maneuvering target in the presence of clutter. Since the tar-
get is maneuvering, multiple model filtering is necessary. The
switching multiple model approach has been found very effective
for modeling maneuvering targets [4]-[7],[11],[13]. Among all the
multiple model filtering algorithms, interacting multiple model
(IMM) estimator has yielded the best performance vs computa-
tional cost trade-off [4],[7],[16]. In this approach various modes
of target motion are represented by distinct kinematic models.
In a Bayesian framework, the target maneuvers are modeled by
switching among a predefined set of models where switching is
controlled by a Markov chain (transition probability matrix).
Presence of clutter introduces additional uncertainty in terms of
the measurement origin problem: i.e. how to associate the data
available at the sensor(s) with target and clutter (false measure-
ments). This problem of data association has already been con-
sidered and effectively solved in the Bayesian framework by using
probabilistic data association (PDA) technique [1],[2],[5]. The
IMM estimator combined with the PDA technique is an effective
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way to track a maneuvering target in clutter. In this paper we
consider this algorithm with a variable sampling policy.

Prior work on adaptive sampling rate for IMM/PDAF has
been reported in [5],[14],[15]. In these works, the next required
revisit (sampling) time is computed as the latest time at which
the target can be expected to be in the predicted track gate,
which is defined by the radar beamwidth, the length of the range
window used in the track mode, and maximum acceleration of
the target. These methods are based on the predicted values of
standard deviations of the azimuthal and elevation angles, which
are obtained from the predicted innovation covariance matrix.
A threshold is determined as some fraction of the radar-antenna
beamwidth. The obtained standard deviations of the azimuthal
and elevation angles are compared with the threshold and a sam-
pling interval satisfying this criterion is chosen as the next sam-
pling instance. In essence, from a predetermined set of sampling
intervals, one chooses the largest value for which the track is
likely to be maintained. Note that the decision for selecting a
sampling interval is based on the predicted states.

In this paper we propose a new sampling interval selection
approach based on random sampling where we generate sampling
interval-dependent pseudo-measurements. The basic idea is to
evaluate some cost function for the candidate sampling interval
and then to choose the largest sampling interval that satisfies
a certain performance metric. The proposed random sampling
approach coupled with switching multiple kinematic models for
target motion, to generate future (pseudo-)measurements, allows
computation of the relevant performance metric.

The paper is organized as follows. The basic problem for-
mulation and design parameters for adaptive sampling are pre-
sented in Sec. II. The proposed adaptive sampling strategy,
the algorithm to evaluate the cost function based on pseudo-
measurements and a review of the IMM/PDAF algorithm are
presented in Sec. III. A computer simulation example is pre-
sented in Sec. IV.

II PROBLEM FORMULATION

Assume that the dynamics of the target can be modeled as one of
the n hypothesized models. The model set is denoted as Mn :=
{1, 2, · · · , n}. For the target, the event that model j is in effect

during the sampling period (tk−1, tk] will be denoted by Mj
tk

.

For the j-th hypothesized model (mode), the state dynamics and
measurements of the target are modeled as

xtk = F j(Tk)xtk−1 + Gj(Tk)vj
tk−1

(1)

and
zl
tk

= hj,l(xtk ) + wj,l
tk

for l = 1, ..., q, (2)

where xtk is the system state of the target at time tk and has
dimension nx, ztk is the (true) measurement vector from sensor

l at tk and has dimension nzl, F j(Tk) and Gj(Tk) are the sys-
tem matrices when model j is in effect over the sampling period
(tk−1, tk] such that Tk = tk − tk−1, and hj,l is the nonlinear

transformation of xtk to zl
tk

(l = 1, 2, ..., q) for model j. A first-

order linearized version of (2) is given by

zl
tk

= Hj,l
tk

xtk + wj,l
tk

(3)

where Hj,l
tk

is the Jacobian matrix of hj,l evaluated at some value

of the estimate of state xtk (see Sec. III.1). The process noise

vj
tk−1

and the measurement noise wj,l
tk

are mutually uncorrelated
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zero-mean white Gaussian processes with covariance matrices

Qj
tk−1

and Rj,l
tk

, respectively.

Note that, in general, at any time tk, some measurements may
be due to clutter and some due to the target, i.e. there can be
more than a single measurement at time tk. The measurement
set (not yet validated) generated at time tk is denoted as

Zl
tk

:= {zl(1)
tk

, z
l(2)
tk

, · · · , zl(ml)
tk

} (4)

where ml is the number of measurements generated at time tk.

Variable z
l(i)
tk

(i = 1, · · · , ml) is the ith measurement within the

set. The validated set of measurements from sensor l at time
tk will be denoted by Y l

tk
, containing ml (≤ ml) measurement

vectors. The cumulative set of validated measurements from
sensor l up to time tk is denoted as

Ztk(l)
1 = {Y l

1 , Y l
2 , · · · , Y l

tk
}. (5)

The cumulative set of validated measurements from all sensors
up to time tk is denoted as

Ztk
1 = {Ztk(1)

1 ,Ztk(2)
1 , · · · ,Ztk(q)

1 } (6)

where q is the number of sensors.
At the initial time t0, the initial conditions for the system

state of the target under each model j are assumed to be Gaus-

sian random variables with the known mean x̄j
0 and the known

covariance P j
0 . The probability of target being in model j at

t0, µj
0 = P{Mj

0}, is also assumed to be known. The switch-

ing from model M i
tk−1

to model Mj
tk

is governed by a finite-

state stationary Markov chain with known transition probabili-

ties pij = P{Mj
tk
|M i

tk−1
}.

The transition probability matrix is a function of the sampling
interval and has to be selected based on the sampling interval.
Following [5], the elements of this matrix are designed based on
the expected sojourn time in each mode of the hybrid system.
The relation is [5]

τi =
Tk

1 − pii
(7)

where τi is the expected sojourn time of the ith mode, pii is the
transition probability from the ith mode to the same mode, and
Tk is the sampling interval. For each model pii is calculated as
[5]

pii = min

{
ui, max

(
li, 1 − T

τi

)}
(8)

where li (say 0.2) and ui (say 0.8) are lower and upper limits re-
spectively for the ith mode transition probability. The expected
sojourn times for the models are assumed to be as in (7). The off-
diagonal elements of the transition probability matrix depends
on the switching characteristics among the various modes. In a
typical example, in which the target motion is modeled by three
modes, evaluation of off-diagonal elements is obtained as follows:

p12 = 0.2 (1 − p11) , p13 = 0.8 (1 − p11) ,
p21 = 0.2 (1 − p22) , p23 = 0.8 (1 − p22) ,
p31 = 0.3 (1 − p33) , p32 = 0.7 (1 − p33) .

(9)

Typically to handle all possible target motions, three modes
have been used [5],[8]: constant velocity mode, white-noise ac-
celeration mode, and Wiener acceleration mode. For each mode
of operation, selection of process noise level is determined based
on the maximum acceleration or acceleration increment corre-
sponding to that mode. For a constant velocity mode, standard
deviation of the process noise is small. For a white noise accelera-
tion mode (second order dynamic model), the standard deviation
of the process noise is of the order of maximum acceleration [5]

σv2 = α2 amax (10)

where σv2 is the process noise standard deviation, amax is the
maximum acceleration, and 0 < α2 ≤ 1. For Wiener process
acceleration mode (third order model), the standard deviation

of the process noise is a function of maximum acceleration incre-
ment and is given by [5]

σv3 = min {α3 ȧmaxTk, amax} (11)

where σv3 is the process noise standard deviation, ȧmax is the
maximum acceleration per unit time, Tk is the sampling interval
and 0 < α3 ≤ 1.

Thus, when we consider adaptive sampling for the IMM esti-
mator, transition probability matrix and process noise level for
acceleration modes vary as a function of sampling interval and
have to be chosen accordingly.

With this problem formulation, we present the IMM/PDA al-
gorithm and adaptive sampling scheme in the next section.

III ALGORITHM

This section is organized as follows. In Sec. III.1 we review the
IMM/PDA filter algorithm, in Sec. III.2 we present the pseudo-
measurement generation and cost function evaluation algorithm,
and in Sec. III.3 we present the proposed adaptive sampling al-
gorithm.

III.1 IMM/PDA filter for multisensor tracking
As the IMM/PDA filter for multiple sensors with sequential up-
dating (that is what we use in this paper) is given in detail in
[5, Sec. 4.5] (where all the underlying assumptions and approx-
imations may be found in further detail), we will only briefly
outline the basic steps in “one cycle” (i.e. processing needed to
update for a new set of measurements). First we list the main
underlying assumptions.

(1) It is assumed that the target track has been initiated, and
our objective is to maintain the track.

(2) Any measurement is either associated with a single target
or caused by clutter.

(3) Clutter is modeled as independently and identically dis-
tributed (i.i.d.) with uniform spatial distribution over the
validation region.

Assumed available: Given the state estimate x̂j
tk−1|tk−1

:=

E{xtk−1 |Mj
tk−1

,Ztk−1
1 }, the associated covariance P j

tk−1|tk−1

and the conditional mode probability µj
tk−1

= P [Mj
tk−1

|Ztk−1
1 ]

at time tk−1 for each mode j ∈ Mn, the goal is to find the
filtered state estimate for the target

x̂tk|tk
= E{xtk |Ztk

1 } (12)

and the associated error covariance matrix

Ptk|tk
= E{[xtk − x̂tk|tk

][xtk − x̂tk|tk
]′|Ztk

1 } (13)

where x′
tk

denotes the transpose of xtk .

Step 1. Interaction − mixing of the estimate from the
previous time (∀j ∈ Mn): predicted mode probability:

µj−
tk

:= P{Mj
tk
|Ztk−1

1 } =

n∑
i=1

pijµi
tk−1

. (14)

mixing probability:

µi|j := P{M i
tk−1

|Mj
tk

,Ztk−1
1 } = pijµi

tk−1
/µj−

tk
. (15)

mixed estimate:

x̂0j
tk−1|tk−1

:= E{xtk−1 |Mj
tk

,Ztk−1
1 } =

n∑
i=1

x̂i
tk−1|tk−1

µi|j .

(16)
covariance of the mixed estimate:

P 0j
tk−1|tk−1

:=

E{[xtk−1 − x̂0j
tk−1|tk−1

][xtk−1 − x̂0j
tk−1|tk−1

]′|Mj
tk

,Ztk−1
1 }
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=

n∑
i=1

{P i
tk−1|tk−1

+ [x̂i
tk−1|tk−1

− x̂0j
tk−1|tk−1

]

×[x̂i
tk−1|tk−1

− x̂0j
tk−1|tk−1

]′}µi|j . (17)

Step 2. Predicted state (∀j ∈ Mn): State prediction:

x̂j
tk|tk−1

:= E{xtk |Mj
tk

,Ztk−1
1 } = F j(Tk)x̂0j

tk−1|tk−1
. (18)

State prediction error covariance:

P j
tk|tk−1

= E{[xtk − x̂j
tk|tk−1

][xtk − x̂j
tk|tk−1

]′|Mj
tk

,Ztk−1
1 }

= F j(Tk)P 0j
tk−1|tk−1

F j′ (Tk) + Gj(Tk)Qj
tk−1

Gj′ (Tk). (19)

Using (2) and (18), the mode-conditioned predicted measure-
ment is

ẑj,1
tk

:= hj,1(x̂j
tk|tk−1

). (20)

Using the linearized version (3), the covariance of the mode-

conditioned residual ν
j,1(i)
tk

:= z
1(i)
tk

− ẑj,1
tk

is given by

Sj,1
tk

:= E{νj,1(i)
tk

ν
j,1(i)′
tk

|Mj
tk

,Ztk−1
1 } = Hj,1

tk
P j

tk|tk−1
Hj,1′

tk
+Rj,1

tk

(21)

where Hj,1
tk

is the first order derivative (Jacobian matrix) of

hj,1(.) at x̂
j(0)

tk|tk−1
. Note that (21) assumes that z

1(i)
tk

originates

from the target.

Step 3. Measurement validation for sensor 1: The vali-
dation region is taken to be the same for all models, i.e., as the
largest of them. Let (|A| = det(A))

j := arg

{
max

j∈Mn

|Sj,1
tk

|
}

. (22)

Then measurement z
1(i)
tk

( i = 1, 2, · · · , m(tk)) is validated if and

only if

[z
1(i)
tk

− ẑj,1
tk

]′[Sj,1
tk

]−1[z
1(i)
tk

− ẑj,1
tk

] < γ (23)

where γ is an appropriate threshold. The volume of the valida-
tion region with the threshold γ is

V 1
tk

:= cnz1γnz1/2|Sj,1
tk

|1/2 (24)

where nz1 is the dimension of the measurement and cnz1 is the
volume of the unit hypersphere of this dimension (c1 = 2, c2 =
π, c3 = 4π/3, etc.). Choice of γ is discussed in [5, Sec. 2.3.2].

Step 4. State estimation with validated measurements
from sensor 1 (∀j ∈ Mn): From among all the raw mea-

surements at time tk, i.e., Z1
tk

:= {z1(1)
tk

, z
1(2)
tk

, · · · , z1(m(tk))
tk

},
define the set of validated measurement for sensor 1 at time tk

as Y 1
tk

:= {y1(1)
tk

, y
1(2)
tk

, · · · , y1(m(tk))
tk

} where m(tk) is the total

number of validated measurement at time tk and y
1(i)
tk

:= z
1(li)
tk

where 1 ≤ l1 < l2 < · · · < lm(tk) ≤ m(tk) when m(tk) �= 0.
Define the events

θi
tk

={
y
1(i)
tk

is the target originated measurement, i = 1, ..., m(tk)
none of the measurements is target originated, i = 0.

(25)
Define the mode conditioned association event probabilities

βj,i,1
tk

:= P{θi
tk
|Mj

tk
,Ztk−1

1 , Y 1
tk

, m(tk)} and mode conditioned

innovations νj,i,1
tk

:= y
1(i)
tk

− ẑj,1
tk

for i = 1, ..., m(tk). Using a

diffused prior mode for clutter [1],[5], it turns out that

βj,i,1
tk

=

{
1
c′

{
(PG)−1 N

[
νj,i,1

tk
; 0, Sj,1

tk

]}
for i = 1, ..., m(tk)

1
c′

{
m(tk)(1 − PDPG)(PDPGV 1

tk
)−1

}
i = 0,

(26)

where PD is the detection probability of sensor 1, PG is proba-
bility that target is in the validation region, and c′ is a normal-

ization constant such that
∑m(tk)

i=0
βj,i,1

tk
= 1 and

N (x; y, P ) := |2πP |−1/2exp[−1

2
(x − y)′P−1(x − y)]. (27)

One can evaluate the likelihood function for each mode j as [5]

Λj,1
tk

:= p[Y 1
tk
|Mj

tk
,Ztk−1

1 ]

=
[
V 1

tk

]−m(tk)
γ0 (m (tk)) +

[
V 1

tk

]−m(tk)+1

×
m(tk)∑
i=1

P−1
G N

[
νj,i,1

tk
; 0, Sj,1

tk

]
γi (m̄(tk)) (28)

where

γi (m(tk)) :=

{
1

m(tk)
PDPG i = 1, ..., m(tk)

1 − PDPG i = 0.
(29)

Using x̂j
tk|tk−1

(from (18)), its covariance P j
tk|tk−1

(from

(19)), and νj,1
tk

=
m(tk)∑
i=1

βj,i,1
tk

νj,i,1
tk

the combined mode-

conditioned innovations, one computes the partial state update

x̂j,1
tk|tk

and its covariance P j,1
tk|tk

according to the standard PDAF

[2],[5]:
Kalman gain:

W j
tk

= P j
tk|tk−1

Hj,1′
tk

[Sj,1
tk

]−1. (30)

State estimate update:

x̂j,1
tk|tk

:= E{xtk |Mj
tk

,Ztk−1
1 , Y 1

tk
} = x̂j

tk|tk−1
+ W j

tk
νj,1

tk
(31)

Covariance of x̂j,1
tk|tk

:

P j,1
tk|tk

= P j
tk|tk−1

− (1 − βj,0,1
tk

)W j
tk

Sj,1
tk

W j′
tk

+W j
tk

(

m(tk)∑
i=1

βj,i,1
tk

νj,i,1
tk

νj,i,1′
tk

− νj,1
tk

νj,1′
tk

)W j′
tk

. (32)

Step 5. Mode-conditioned predicted measurements for
sensor 2 (∀j ∈ Mn): This step is similar to part of Step 2.
The predicted measurement is given by

ẑj,2
tk

:= hj,2(x̂j,1
tk|tk

). (33)

Using the linearized version (3), the covariance of the mode-

conditioned residual ν
j,2(i)
tk

:= z
2(i)
tk

− ẑj,2
tk

is given by

Sj,2
tk

:= E{νj,2(i)
tk

ν
j,2(i)′
tk

|Mj
tk

,Ztk−1
1 , Y 1

tk
} = Hj,2

tk
P j,1

tk|tk
Hj,2′

tk
+ Rj,2

tk

(34)

where Hj,2
tk

is the first order derivative (Jacobian matrix) of

hj,2(.) at x̂j,1
tk|tk

. Note that (34) assumes that z
2(i)
tk

originates

from the target .

Step 6. Measurement validation for sensor 2: This is
similar to Step 3 where superscript 1 now becomes 2 and nz1 is
replaced with nz2.

Step 7. State update with validated measurements for
sensor 2 (∀j ∈ Mn): This step is similar to Step 4. Using the
validated measurements obtained in Step 6 and starting from

x̂j,1
tk|tk

and P j,1
tk|tk

one computes the final state update x̂j
tk|tk

and associated covariance P j
tk|tk

. Likelihood function Λj,2
tk

is
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obtained in the similar manner of Λj,1
tk

. Finally we have the

combined likelihood [5] Λj
tk

= Λj,1
tk

Λj,2
tk

.

Step 8. Update of mode probabilities (∀j ∈ Mn):

µj
tk

:=
1

c
µj−

tk
Λj,1

tk
Λj,2

tk
(35)

where c is a normalization constant such that
∑n

j=1
µj

tk
= 1.

Step 9. Combination of the mode-conditioned estimates:
The final state estimate update at time tk is given by

x̂tk|tk
=

n∑
j=1

x̂j
tk|tk

µj
tk

(36)

and its covariance is given by

Ptk|tk
=

n∑
j=1

{
P j

tk|tk
+ [x̂j

tk|tk
− x̂tk|tk

][x̂j
tk|tk

− x̂tk|tk
]′
}

µj
tk

.

(37)

III.2 Adaptive Sampling: Pseudo-measurement
Generation and Cost function Evaluation

State estimates obtained by the filter represents the best infer-
ence made about the true state of the target from the noisy
measurements obtained by the sensors. The associated error co-
variance matrix represents the estimation accuracy and is a mea-
sure of how close the estimated value is to the true state of the
target. This estimation accuracy increases as the sampling rate
at which the observations are made is increased and decreases
if the sampling rate is reduced. This is reflected in the error
covariance matrix. We utilize this fact to select the future sam-
pling intervals. Using this error covariance control approach, we
can select the future sampling interval such that it will maintain
the state covariance matrix below a certain desired level. Let
Pdesired be the desired level for the state covariance submatrix
for a subvector of target states; e.g. suppose we desire to con-
trol the covariance of the target position estimates only, rather
than that of the entire state vector. Let Axtk denote the desired
nA×1 subvector of the target state xtk ; here A is a nA×nx ma-

trix with entries of ones or zeros. Let x̂
(δ)

tk+1|tk+1
denote the state

estimate and P
(δ)

tk+1|tk+1
denote the associated error covariance

matrix at time tk+1 for the selected sampling interval δ. Let the
difference matrix be obtained as:

�P = Pdesired − AP
(δ)

tk+1|tk+1
A′. (38)

Then we may pick the maximum sampling interval δ such that
the minimum eigenvalue of the difference matrix �P is positive.
Since neither xtk+1 nor the measurement at time tk+1 (hence

P
(δ)

tk+1|tk+1
) is available, the cost function cannot be evaluated.

Therefore, a pseudo-state and pseudo-measurement generation
scheme based on a random sampling approach (Monte Carlo
methods) is presented next.

At the end of time tk, the IMM/PDA filter updates the state
using sequential update of actual measurements obtained from
multiple sensors. Now the objective is to generate the pseudo-
measurements at time tk+1 = tk + Tk+1 (Tk+1 is a variable sam-

pling interval), when given the updated mode probabilities (µj
tk

),

the mode conditioned state estimates (x̂j
tk|tk

) and the associ-

ated mode-conditioned state covariance matrices (P j
tk|tk

). The

updated mode probabilities at time tk give us the probabilis-
tic information about the mode in which the target most likely
was for the duration (tk−1, tk]. On the other hand, evolution
of the mode from time tk to tk+1 is governed by the transition
probability matrix. Since we know these two probability dis-
tributions of modes and distribution of mode-conditioned state,
pseudo-state and pseudo-measurement can be obtained by a ran-
dom sampling approach as outlined next. The evolution of the

state, modeled as a Gauss-Markov process is governed by eqn.(1).
Pseudo-measurement for each sensor is then obtained by nonlin-
ear measurement model given by eqn.(2). More details are given
below.

Step 1. Randomly sample a mode considered to be active during
(tk−1, tk] as j̃(m) (m denotes the mth random sample) from

the distribution of modes governed by µj
tk

.

Step 2. Having selected mode j̃(m) for time (tk−1, tk], randomly

select mode ĩ(m) for time (tk, tk+1] from the mode distri-
bution governed by the transition probabilities pj̃(m)i.

Step 3. Randomly sample state xtk from the distribution

N
(

x̂j̃
tk|tk

, P j̃
tk|tk

)
as x̃

(m)
tk

. Similarly, generate the process

noise v
ĩ(m)
tk

from the distribution N
(
0, Qĩ

tk

)
.

Step 4. Generate a sample of the pseudo-state xtk+1 denoted by:

x̃
(m)
tk+1

= F ĩ(m)

(tk+1,tk)x̃
(m)
tk

+ G
ĩ(m)

(tk+1,tk)
v

ĩ(m)
tk

(39)

Step 5. Generate a pseudo-measurement sample z̃
l(m)
tk+1

for each sen-

sor by the equation

z̃
l(m)
tk+1

= hl(x̃
(m)
tk+1

) + w̃
l(m)
tk+1

(40)

where the measurement noise sample w
l(m)
tk+1

is obtained

from N
(

0, Rl
tk+1

)
with l = 1, 2, ...q sensor indices and

m = 1, 2, ...N sampling indices.

Step 6. Carry out state estimation at time tk+1 to obtain sequen-

tially updated state x̂
(δ)(m)

tk+1|tk+1
and associated error covari-

ance P̃
(δ)(m)

tk+1|tk+1
, by using the pseudo-measurements z̃

l(m)
tk+1

and the IMM/PDA filter.

Step 7. Execute steps 1-6 for m = 1, 2, · · · , N . The expected cost
function for the selected sampling interval is then obtained
by:

�̂P = Pdesired − (1/N) A

(
N∑

m=1

P̃
(δ)(m)

tk+1|tk+1

)
A′. (41)

Selection of Desired Covariance Matrix: A straightfor-
ward approach to select the desired covariance matrix Pdesired
can be to use raw measurement errors of the state components.
Since the purpose of the estimator is to provide better inferred
value of the state than the directly measured value, this fact can
be used to set the upper limit on the estimation error. It is de-
sired to have the estimation error of the filter smaller than the
raw measurement errors. Then the desired covariance matrix is
a diagonal matrix with squared raw measurement errors being
the variances of the state components.

III.3 Adaptive Sampling Policy:
As in [5],[14]-[16], we select sampling intervals Tk+1 from among

a predeteremined set, {δi}L
1 where δ1 < δ2 < · · · < δL. The

sampling interval for time tk+1 = tk + Tk+1 (where Tk+1 ∈
{δi}L

1 ) is selected as follows:

(1) At the end of the IMM/PDA state update at time tk, select
the largest sampling interval Tk+1 = δL for time tk+1.

(2) Evaluate the cost function �̂P for this sampling interval by
using the algorithm described in the Subsection III.2. The
transition probability matrix and the process noise level are
selected according to the sampling interval, as discussed in
sec.II.

(3) If the minimum eigenvalue of �̂P is positive, then select the
sampling interval δL for time tk+1. Carry out state estima-
tion with the IMM/PDA filter and actual measurements.
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(4) If the minimum eigenvalue of �̂P is negative, then select
the next maximum sampling interval and repeat the steps

(1) to (3). If the minimum eigenvalue of �̂P is negative for
all the sampling intervals (which might happen during onset
and termination of the maneuvering mode), then select the
minimum sampling interval.

IV SIMULATION EXAMPLE

We now consider a example of highly maneuvering target in pres-
ence of clutter. The set of candidate sampling rates was taken
to be {δ1 = 1s, δ2 = 2s, δ3 = 3s } .
The True Trajectory: The target starts at location [21689
10840 40] in Cartesian coordinates in meters. The initial velocity
is [-8.3 -399.9 0] in m/s. Target stays at constant altitude with a
constant speed of 400 m/s. Its trajectory is a straight line with
constant velocity between 0 and 20 sec., a coordinated turn of
0.15 rad/s with a constant acceleration of 60 m/s2 between 20
and 35 s, a straight line with a constant velocity between 35 and
55 s, a coordinated turn of 0.1 rad/s with a constant acceleration
of 40 m/s2 between 55 and 70 s, and finally a straight line with
a constant velocity between 70 and 90 s.
The Target Motion Models: In each mode, target dynamics
are modeled in Cartesian coordinates with state of the target
being position, velocity and acceleration in each of the three
Cartesian coordinates (x, y and z). Thus xtk is of dimension 9
(nx=9). Three models are considered and the system matrices
F and G are defined as

F =

[
Fb 0 0
0 Fb 0
0 0 Fb

]
and G =

[
Gb 0 0
0 Gb 0
0 0 Gb

]
.

• Model 1: nearly constant velocity model with zero mean
perturbation in acceleration.

F 1
b =

[
1 Tk 0
0 1 0
0 0 0

]
and G1

b =

[
T2

k
2

Tk
0

]
where Tk is the sampling period. The standard deviation
of the process noise of M1 is 5m/s2.

• Model 2: Wiener process acceleration (nearly constant ac-
celeration motion)

F 2
b =

[
1 Tk

T2
k
2

0 1 Tk
0 0 1

]
and G2

b =

[
T2

k
2

Tk
1

]
.

The standard deviation of the process noise of M2 is
7.5m/s2.

• Model 3: Wiener process acceleration (model with large
acceleration increments, for the onset and termination of
maneuvers), with F 3

b = F 2
b and G3

b = G2
b . The standard

deviation of the process noise of M3 is selected as a function
of the sampling interval discussed in Sec. II and is set to
min{30Tk, 70}m/s2 with maximum acceleration being set
to 70m/s2.

The set of sampling interval used is Tk = {1, 2, 3} s and the
mean sojourn times {τi}3

1 assumed for three modes are 15,4 and
2 sec. respectively. The initial model probabilities for the target
are: µ1

0 = 0.8 and µ2
0 = 0.1 and µ3

0 = 0.1. The mode switching
probability matrix for the target is obtained as per the discussion
in Sec.II and is given by[

p11 p12 p13
p21 p22 p23
p31 p32 p33

]
=

[
0.8 0.04 0.16
0.05 0.75 0.2
0.15 0.35 0.5

]
:for Tk=1s

[
p11 p12 p13
p21 p22 p23
p31 p32 p33

]
=

[
0.8 0.04 0.16
0.1 0.5 0.4
0.24 0.56 0.2

]
:for Tk=2s[

p11 p12 p13
p21 p22 p23
p31 p32 p33

]
=

[
0.8 0.04 0.16
0.15 0.25 0.6
0.24 0.56 0.2

]
:for Tk=3s

The Sensors: Two sensors, (radar and infrared) are used
to obtain the measurements. The measurements are range and
azimuth from radar. Azimuth and elevation angles from the
infrared. The range, azimuth and elevation transformations, re-
spectively, are given by

r = (x2 + y2 + z2)1/2, a = tan−1(y/x), e = tan−1[z/(x2 + y2)1/2].

The measurement noise wj,l
k

for sensor l(l = 1, 2) is assumed to be

zero-mean white Gaussian with known covariance matrices R1 =
diag[400m2, 49mrad2] and R2 = diag[4mrad2, 4mrad2]. The
sensors are assumed to be located at the origin of the coordinate
system. It was assumed that the probability of detection PD = 1
for both sensors.
The Clutter: For generating false measurements in simula-
tions, the clutter was assumed to be Poisson distributed with
expected number of λ1 = 5 × 10−6/m mrad for sensor 1 and
λ2 = 3.5 × 10−4/mrad2 for sensor 2. These statistics were used
for generating the clutter in all simulations. However, a non-
parametric clutter model was used for implementing all the al-
gorithms for target tracking.
Other Parameters: The gates for setting up the validation
regions for the sensor were based on the threshold γ = 16. With
the measurement vector of dimension 2, this leads to a gate prob-
ability PG = 0.9997 (see p. 96 of [5]). The desired state covari-
ance matrix used in the proposed adaptive sampling scheme, was
set to Pdesired = 104I3×3 where I3×3 is a 3 × 3 identity matrix
for x, y and z position components of the state vector. That is,
while evaluating the cost function, we consider only the covari-
ance matrix of the position components of the state vector. We
allow the maximum of 100m (selected based on raw measurement
error) mean square error (MSE) in position in each direction (x,
y and z).

Simulation Results: The results were obtained from 200
Monte Carlo runs for actual state estimation (based on actual
data) and 100 Monte Carlo runs for random sampling (N = 100).
During the initial phase of tracking (for first 5 sec period) sam-
pling rate of 1 sec was used and then adaptive sampling scheme
was applied. Fig. 1 shows the true trajectory of the target. Figs.
2 and 3 show the RMSE (root mean-square error) for the filtered
position estimate for the target as a function of time with and
without adaptive sampling rate. It is seen from Fig. 4 that dur-
ing non-maneuvering mode the average sampling rate chosen by
the adaptive sampling scheme is higher (close to 2sec) whereas
during maneuvering mode it is close to minimum sampling rate
(1sec). The average sampling interval for tracking with adaptive
sampling was found to be 1.4364 s, which is 43.64 percent higher
than the minimum sampling rate. Tracking with fixed 1 sec sam-
pling rate has 0/200 track loss and with the adaptive sampling
track losses were found to be 2/200. For 2 sec sampling rate,
track losses were found to be 12/200 and for 3 sec sampling rate
it were 64/200.

V CONCLUSIONS

We proposed a new adaptive sampling scheme for tracking a
highly maneuvering target using IMM/PDA filter. In the pro-
posed scheme, we first predict the cost function for the can-
didate sampling interval and then choose the largest sampling
interval that satisfies a certain performance metric. We used
a random sampling approach coupled with switching multiple
kinematic models for target motion, to generate future (pseudo-
)measurements which allows computation of the relevant perfor-
mance metric. The proposed scheme is applicable to the mul-
tisensor tracking scenario. The multisensor IMM/PDAF algo-
rithm combined with the proposed adaptive sampling scheme
was illustrated via a simulation example involving tracking of a
maneuvering target in presence of clutter and two sensors (radar
and infrared).
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