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Abstract— We study a robust identification scheme where
the output of a plant is sent over a communication channel
to a remote identifier. In particular, we are interested in using
the channel efficiently in terms of bandwidth and consider the
design of coarse quantizers. The problem is formulated under
an H∞ criterion in the discrete-time domain. By allowing feed-
back in the communication, we employ a class of quantizers
called logarithmic quantizers that has been proposed in the
context of stabilization with limited information.

I. INTRODUCTION

In digital control systems, issues related to quantization
inevitably arise and have long been studied. Recently, the
wide use of networks for the communication in control sys-
tems [1], [8] has provided new motivation and viewpoints
for this line of studies. It is indeed important in designing
such systems to find the amount of bandwidth required to
meet given control specifications. A more recent approach is
to consider efficient communication schemes suitable for the
purpose of control so as to reduce the bandwidth usage in a
systematic way. Much work has been done on stabilization
problems where the minimum data rate is established (see,
e.g., [4], [5], [7]–[10], [12], [14]).

The objective of this paper is to extend the approaches on
quantization to an identification problem. Here, the general
problem setup is that, given an unknown plant, we would
like to identify its parameters at a remote location by send-
ing measured data over a network. The measurements from
the plant are quantized (and coded) to be transmitted over
a channel and hence may be only a coarse approximation.
It is received by the identifier where real-time estimation of
the parameters as well as the states is made.

An example where such a setup arises is when micro
sensors are used to monitor a remote system. Such sensors
may have limited capacity for computation to carry out
identification and also limited power for communication.
Identification hence takes place at a base station where more
resources in terms of computation and power are available.

The problem of quantized identification was first con-
sidered in [13]. There, an optimal design is attained in a
least-squares setup to minimize the parameter estimation
error. In [6], we considered a robust parameter identification
problem in continuous time and, in particular, proposed the
use of the so-called logarithmic quantizers under a feedback
communication scheme. Such quantizers have been studied
in quadratic stabilization contexts [4], [5], [8] and are known
to be the coarsest in some sense.

In this paper, we extend our previous results in [6] to
the discrete-time domain. This approach is based on the
H∞ identification schemes developed in [3], [11] and the
problem is formulated as a worst-case noise attenuation one.
Our goal is to design an identifier and a quantizer to estimate
the unknown parameters in an l2 setting. To use the channel
efficiently, in particular, we employ feedback in communi-
cation so that the estimation generated in the identifier can
be sent to the sensor side; having in mind the micro sensor
example described above, we allow this communication to
take place without data rate constraints. We will see that,
with this structure, the choice of logarithmic quantizers is
an effective one.

Furthermore, it is shown that there is a trade-off between
the performance in identification and the required commu-
nication rate. This means that finer quantization results in
better identification, but requires more bandwidth. Under
our scheme, certain parameters in the identifier determine
this trade-off and will remain as design parameters.

The motivation to study the discrete-time case is due
to the limitation in the continuous-time formulation in [6].
There, the notion of sampling is introduced only implicitly,
and sampling is assumed to occur whenever the quantized
signal takes a different value. This may not be realistic from
the bandwidth viewpoint.

This paper is organized as follows: In Section II, we
formulate the problem of H∞ robust identification over
networks. In Section III, we extend the results in [3], [11]
to the discrete-time case. This forms the basis for solving
the problem with quantizers, which is presented in Section
IV. We present a numerical example in Section V and then
conclude the paper with some remarks.

II. PROBLEM FORMULATION

In this section, we introduce the problem of robust
identification over a network.

Consider the system shown in Fig.1. The plant is SISO
and its parameters are unknown. It is assumed to be linear
time-invariant and to have a transfer function of the form

P (z) =
bmzm + · · · + b1z + b0

zn + an−1zn−1 + · · · + a1z + a0
.

We assume that the orders m and n are given and satisfy
m < n. The coefficients an−1, . . . , a0, bm, . . . , b0 ∈ R are
to be identified.

We study this plant by writing it in the following linearly
parameterized state-space equation with disturbance and
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Fig. 1. Parameter identification over a network

measurement noise:

xk+1 = A2xk + A1(Cxk, uk)θ + wk,

yk = Cxk + vk.
(1)

Here, θ := [−an−1 · · · −a0 bm · · · b0]T ∈ R
r is the vector

of unknown parameters with r := n + m + 1, xk ∈ R
n is

the state with the initial condition x0, uk ∈ R is the known
bounded input, wk ∈ R

n is the unknown disturbance. The
measurement yk ∈ R is corrupted by the noise vk. The
system matrices in (1) are given as follows:

A1(z, u) := zA11 + uA12,

A2 :=
[
0(n−1)×1 In−1

0 01×(n−1)

]
, (2)

C :=
[
1 0 · · · 0

]
,

where

A11 :=
[
In 0n×(m+1)

]
,

A12 :=
[
0(n−m−1)×n 0(n−m−1)×(m+1)

0(m+1)×n Im+1

]
.

We assume that w and v are both in l2 ∩ l∞.
On the plant side, the measurement yk is quantized and

then transmitted over the channel to the identifier using a
communication scheme which will be described shortly. The
identifier receives the signal denoted by ỹk and the input
uk at each time k. It then computes the estimate θ̂k of the
parameter θ as well as the estimate x̂k of the state xk. The
identifier is formally given by

(θ̂k, x̂k) = δ(k, ỹ[0,k], u[0,k]),

where the shorthand notation y[0,k] := {yl}k
l=0 is used and

δ is assumed to be Lipschitz continuous in ỹ[0,k] and u[0,k].
Let the estimated output be ŷk := Cx̂k.

The communication scheme makes use of a feedback
link through which the estimated output ŷ is sent to the
plant side; then, the error y − ŷ is quantized to be sent to
the identifier. It is assumed that the channels are noiseless.
Then, as the signal ỹ is received by the identifier, it is
reasonable to use

ỹk = ŷk + q(yk − ŷk), (3)

where q : R → R is the quantizer, which is a piecewise-
constant function. Notice that q(yk − ŷk) is the signal
sent over the channel while ŷk is available locally at the
identifier. Similar approaches in communication have been
employed in a remote control problem [7] as well as in the
quantized identification problem in continuous time [6].

This system setup may arise, as in the micro sensor
example described in the Introduction, when the identifier

is remotely located at a base station: The transmission of
feedback information can be done over a channel with
a wider bandwidth and more power. On the other hand,
regarding the communication of the input u, there are
several possibilities: (i) One may fix it prior to operation so
that it is known to the identifier via some communication;
this may work, e.g., when simple sinusoidal signals are
used as in our example in Section V. (ii) The input may
be determined at the base station and then transmitted to
the plant via the wider channel.

Under the choice of ỹ in (3), we may employ the so-called
logarithmic quantizers, which have been found useful in
stabilization problems [4], [5], [8]. This quantization is fine
around the origin, but becomes coarser further away from
the origin. Since, in our scheme, it is the estimation error
that is quantized, it makes sense to ask for more precise
information when the signal is small. We will describe more
later how this class of quantizers arises.

The logarithmic quantizer q is defined as follows: Take
η > 1 and let ρ := (η − 1)/(η + 1). Then, let

q(z) :=

{
0 if z = 0,

±(1 + ρ)ηj if z ∈ ±[ηj , ηj+1), j ∈ Z.
(4)

We note that this is a sector-type discontinuous nonlinearity.
In fact, it satisfies the following inequality:

|z − q(z)| ≤ ρ|z|. (5)

The parameter ρ determines the size of the sector bound. It
is hence regarded as the coarseness of the quantizer.

Finally, we make a slight modification in the plant model
(1) and rewrite it as

xk+1 = A2xk + A1(yk, uk)θ + wk,

yk = Cxk + vk.

Here, the first argument Cxk of A1 in (1) is replaced by yk.
We do so with the understanding that wk can be redefined
to contain the effect of vk. A result of this change is that
now the time-varying matrix A1(yk, uk) is known.

We formulate the robust identification problem as a
worst-case disturbance attenuation one in an l2 setting. The
performance index is given by

L(δ, q) := sup
x0,θ

w[0,∞],v[0,∞]

Σ∞
k=0|θ − θ̂k+1|2Qk+1

/
(
Σ∞

k=0(|wk|2 + |vk|2) + |θ − θ̄0|2Q0
+ |x0 − x̄0|2P0

)
,

where |·|R is the Euclidean norm weighted by the matrix
R. The weights are assumed to satisfy Qk+1 ≥ 0, k ∈ Z+,
and Q0 > 0. The vectors x̄0 ∈ R

n and θ̄0 ∈ R
r represent

initial guesses by the designer for x0 and θ, respectively.
The quantized identification problem of this paper is

as follows: Given a performance level γ > 0, design an
identifier δ and a quantizer q, if they exist, so that the
performance index satisfies L(δ, q) < γ.

The difficulty in this identification problem lies in the
information structure of the overall system. The quantizer
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has access only to the output y and not to the states in
the identifier such as θ̂ and the estimated state x̂. We will
see that the feedback of ŷ becomes helpful in reducing the
information sent from the sensor to the remote identifier.

III. DISCRETE-TIME ROBUST IDENTIFICATION

In this section, we develop the robust identification
scheme for the case without any quantization and solve the
problem when ỹ ≡ y. We extend the approach in [3], [11]
for continuous-time systems to the discrete time. The results
presented in this section form the basis for the next section,
where the quantized identification problem is solved.

We follow a game theoretic approach and associate the
original problem with a soft constrained differential game
which has the following cost function:

Jγ(δ;x0, θ, w, v)

:= Σ∞
k=0

[
|θ − θ̂k+1|2Qk+1

− γ2
(|wk|2 + |vk|2

)]
− γ2

[|θ − θ̄0|2Q0
+ |x0 − x̄0|2P0

]
. (6)

In this game, the identifier δ serves as the minimizer while
the maximizer is the quadruple (x0, θ, w, v).

The problem is then cast as an affine quadratic minimax
controller design. For this purpose, we rewrite the system
as follows. Let the extended state be ξ := [θT xT ]T . Since
θ is a constant, the state equation becomes

ξk+1 = Ā(yk, uk)ξk + D̄wk,

yk = C̄ξk + vk,
(7)

where the new system matrices are given by

Ā(yk, uk) :=
[

Ir 0r×n

A1(yk, uk) A2

]
, D̄ :=

[
0r×n

In

]
,

C̄ := [01×r C].
(8)

For simplification, we sometimes use Āk for Ā(yk, uk).
For this system, the cost in (6) can be expressed as

Jγ(δ; ξ0, w, v)

= Σ∞
k=0

[
|ξk+1 − ξ̂k+1|2Q̄k+1

− γ2
(|wk|2 + |vk|2

)]
− γ2|ξ0 − ξ̄0|2Q̄0

,

where the weights are defined as Q̄k+1 := diag(Qk+1, 0)
for k ∈ Z+ and Q̄0 := diag(Q0, P0), the estimated state is
ξ̂ := [θ̂T x̂T ]T , and its initial value is ξ̄0 := [θ̄T

0 x̄T
0 ]T .

Our approach for the identifier design is based on the
so-called cost-to-come function: At time k = 0, it is given
by Wγ(0, ξ) := −γ2|ξ− ξ̄0|2Q̄0

, and at time k+1, given the
past and current measurement y[0,k], the input u[0,k], and
the estimate ξ̂[0,k], the cost-to-come function Wγ(k, ξ) is
defined by

Wγ(k + 1, ξ)

:= max
ξ0,w[0,k],v[0,k]

yl=C̄ξl+vl, l=0,...,k
ξk+1=ξ

Σk
l=0

{
|ξl+1 − ξ̂l+1|2Q̄l+1

− γ2[|wl|2 + |vl|2]
}
− γ2|ξ0 − ξ̄0|2Q̄0

, (9)

where the maximum is over the triple (ξ0, w[0,k], v[0,k])
such that the trajectory ξ[0,k] generated yields an output
coinciding with y[0,k] and the state at time k + 1 is equal
to ξ; we say that such a triple is consistent with y[0,k] and
yields ξk+1 = ξ.

This function gives the worst-case cost at a given time
based on the measurements so far. The use of cost-to-come
function has been found useful in optimal control, especially
in nonlinear H∞ control and robust identification [2].

We have a few preliminary results on such functions.
Lemma 3.1: The cost-to-come function Wγ(k+1, ξ) can

be written in a recursive manner as follows:

Wγ(k + 1, ξ) = max
ζ,w,v

ξ=Ākζ+D̄w
yk=C̄ζ+v

{
Wγ(k, ζ) + |ξ − ξ̂k+1|Q̄k+1

− γ2[|w|2 + |v|2]
}

for k ∈ Z+. Moreover, W (k, ξ) has an equivalent form:

Wγ(k, ξ) = −γ2|ξ − λk|2Σk
+ mk,

where Σk ∈ R
(r+n)×(r+n) and λk ∈ R

r+n are given by

Zk+1 = Āk

(
Σk + C̄T C̄

)−1
ĀT

k + D̄D̄T , (10)

Σk+1 = Z−1
k+1 − γ−2Q̄k+1, Σ0 = Q̄0, (11)

ξ̄k+1 = Āk ξ̄k + Āk(Σk + C̄T C̄)−1C̄T (yk − C̄λk),

λk+1 =
(
I − γ−2Zk+1Q̄k+1

)−1

·
(
ξ̄k+1 − γ−2Zk+1Q̄k+1ξ̂k+1

)
, λ0 = ξ̄0,

mk+1 = mk − γ2/(1 + C̄Σ−1
k C̄T )|yk − C̄λk|

+ |ξ̄k+1 − ξ̂k+1|Q̄k+1(I−γ−2Zk+1Q̄k+1), m0 = 0.
�

Now, partition the matrix Σk as

Σk =
[
Σk,1 Σk,2

ΣT
k,2 Σk,3

]
,

where Σk,1 is an (r× r)-matrix. The following lemma will
be useful in our development.

Lemma 3.2: The update laws for the submatrices in Σk

are given as follows:

Σk+1,1 = Σk,1 − Σk,2

(
Σk,3 + CT C

)−1
ΣT

k,2 − γ−2Qk+1

− Σk+1,2

[
A1,k − A2

(
Σk,3 + CT C

)−1
ΣT

k,2

]
,

Σk+1,2 = −
[
AT

1,k − Σk,2

(
Σk,3 + CT C

)−1
AT

2

]
Σk+1,3,

Σk+1,3 = I − A2 (Σk,3 + I)−1
AT

2 ,

where Σ0,1 = Q0, Σ0,2 = 0r×n, and Σ0,3 = P0. �
We note that from (11), the update laws for the sub-

matrices of Z−1
k+1 can be obtained as well. Further, we

observe in the lemma above that Σk,3 is independent of
other elements of Σk. In particular, it has an equilibrium
Σ∗

3 = diag(1/n, 1/(n − 1), · · · , 1). These facts simplify
the update laws of the matrices Zk and Σk in (10) and
(11), especially if we choose Σ0,3 = Σ∗

3.
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We are now in a position to state the main result of this
section.

Theorem 3.3: 1) The minimum performance level γ∗ for
the robust identification problem is given by

γ∗ = inf{γ > 0 : Σk ≥ 0 for all k and

all possible y[0,∞]}.
2) For each γ > γ∗, an identifier achieving this performance
level is given by

ξ̂k+1 = Āk ξ̂k + Āk(Σk + C̄T C̄)−1C̄T (yk − C̄ξ̂k),[
θ̂k

x̂k

]
= ξ̂k, (12)

where the matrix Σk is obtained through (10) and (11),
and the initial condition is ξ̂0 = ξ̄0. If, in addition, the
persistency of excitation condition

lim
k→∞

λmin(Σk) = ∞ (13)

holds, then we have asymptotic perfect identification, that
is, limk→∞ θ̂k = θ. �

The identifier given in the theorem is essentially obtained
from (10) and (11), and we took ξ̂k ≡ ξ̄k ≡ λk. An identifier
with a similar structure will be used in the quantized version
of the problem in the next section.

In general, finding the minimum performance level γ∗

is hard because of the difficulty in checking the condition
Σk ≥ 0 for all possible output y given in 1) of the
theorem. We note that this is a natural consequence of the
inverse design, which arises in adaptive robust control and
regular (i.e., without quantization) worst-case identification;
see also [3], [11]. However, there is one choice of weight
functions Qk+1 for which we can obtain γ∗ explicitly:

Qk+1 = (1 + (CΣk,3C
T )−1)−1Σk,2Σ−1

k,3C
T CΣ−1

k,3Σ
T
k,2.

(14)

In this case, for γ ≥ 1, Σk ≥ 0 holds regardless of the
response of the system, and hence γ∗ = 1.

The results in this section show that an analogue of the
approach in the continuous time can be developed at the
general level presented in [11]. We note however that the
formulae obtained here are overall more involved.

IV. QUANTIZED ROBUST IDENTIFICATION

In this section, we extend the discrete-time robust iden-
tification scheme to the quantized input case. The main
limitation introduced in this setup is that the identifier
receives the quantized output ỹ defined in (3). The presence
of the quantizer requires us to take an approach based on a
variant of the cost-to-come function.

Let the quantization error be ek := yk − ỹk. Following
the notation in (7), we can write the extended plant with
the state ξ = [θT xT ]T as

ξk+1 =
(
Ãk + ekF

)
ξk + D̄wk,

yk = C̄ξk + vk,

ỹk = ŷk + q(yk − ŷk),

where Ãk := Ā(ỹk, uk) and

F :=
[

0r×r 0r×n

−A11 0n×n

]
.

Note that the matrix Ãk uses ỹk and not yk. Thus, it is
known to the identifier while Āk is not. Clearly, there is a
relation Ãk + ekF = Āk by (2) and (8).

For the quantized identification problem, it is difficult
to find an explicit formula for the cost-to-come function
as defined in (9). Instead, our approach is to find the so-
called structured cost-to-come function, which bound the
cost-to-come function from above. Such functions were
introduced in [2] and are useful in practice because of their
less stringent requirements.

For a given identifier δ and a quantizer q, we say that a
function W̃γ(k + 1, ξ; ỹ[0,k], u[0,k]) is a structured cost-to-
come function if it satisfies the following two conditions:
1) For any given (ξ, k + 1, ỹ[0,k], u[0,k]) and any (ζ, w, v)
that are consistent with (ξ, k + 1, ỹ[0,k], u[0,k]), that is, ξ =
Ākζ + D̄w and yk = C̄ξk + vk, it holds that

− W̃γ(k + 1, ξ) + W̃γ(k, ζ)

+ |ξ − ξ̂k+1|Q̄k+1
− γ2[|w|2 + |v|2] ≤ 0,

where ξ̂[0,k+1] is the estimation made by δ.
2) For any ξ, ξ̄0, W̃γ(0, ξ) ≥ −γ2|ξ − ξ̄0|2Q̄0

.
Based on these functions, a sufficient condition for the

quantized identification problem can be obtained as shown
in the following lemma.

Lemma 4.1: Given an identifier δ and a quantizer q,
suppose that there is a structured cost-to-come function
W̃γ(k, ξ) for the overall system and moreover that this
function is nonpositive. Then, the quantized identification
problem is solvable for the performance level γ. �

For the quantized problem, we use the identifier of the
following form:

Z̃k+1 = Ãk

(
Σk + C̄T C̄

)−1
ÃT

k + D̄D̄T ,

Σk+1 = Z̃−1
k+1 − γ−2Q̄k+1 − νI, Σ0 = Q̄0, (15)

ξ̂k+1 = Ãk ξ̂k + Ãk(Σk + C̄T C̄)−1C̄T (ỹk − C̄ξ̂k),

where ξ̂0 = ξ̄0 and ν > 0. Its output is [θ̂T
k x̂T

k ]T = ξ̂k.
The main differences between this identifier and the one

in Theorem 3.3 (12) are that (i) Āk is replaced with Ãk

and that (ii) there is an additional negative term −νI in
(15). This term −νI clearly determines the growth rate of
Σk. As shown in the persistency of excitation condition
in Theorem 3.3, this growth rate dominates the rate in
identification. Hence, smaller ν implies that Σk becomes
large faster, which in turn implies that faster identification
is achieved.

In view of the remark following Lemma 3.2, we take the
initial value Σ0,3 to be a solution of the equation:

Σ0,3 = I − A2(Σ0,3 + I)−1AT
2 − νI. (16)
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In this case, Σk,3 remains constant. We assume that ν is
small enough that Σ0,3 is positive definite. It can be shown
that Σ0,3 is a diagonal matrix; for later use, we introduce
the notation diag(σ1, . . . , σn) := Σ0,3. Also, let Φk :=
[Σk,1 − Σk,2(Σ0,3 + CT C)−1ΣT

k,2]
−1.

Finally, we follow the approach in the previous section,
and use a structured cost-to-come function given by

W̃γ(k, ξ) = −γ2|ξ − λk|2Σk
.

We now present the design of the quantizer:
1) Take positive numbers Σ̄2, Φ̄, ā, q̄, ν > 0, and µ ∈ (0, ν).
2) Let

ē ∈
(

0,
1
c

(
−Σ̄2 +

√
Σ̄2

2 + cµ

)]
,

where c := |(1/µ)(Σ0,3 + νI)2 − (Σ0,3 + νI)|.
3) Take ρ > 0 small enough that

ρ ≤
√

(ν − µ)p
∣∣∣∣[h̄0

0

]
+

[
x1 x2

x2 x3

] [
h̄1

h̄2

]∣∣∣∣−1

,

where

p :=
(

1 +
1
σ1

+
1
σ2

1

Σ̄2
2Φ̄

)−1

,

h̄0 :=
1

σ1 + 1
Σ̄2

(
1 +

1
σ2

Σ̄2
2Φ̄

)
, h̄1 :=

1
σ1 + 1

Σ̄2Φ̄,

h̄2 :=
1

σ1 + 1
Σ̄2Φ̄

(
Σ̄2

σ1 + ν
+ q̄

)
+ ā,

x1 :=
(

1
σ1 + ν

+
1
σ2

)
Σ̄2

2 + µ, x2 := Σ̄2, x3 := 1 − µ.

4) Let the quantizer q be a logarithmic one (as in (4))
satisfying

|z − q(z)| ≤ min{ρ|z|, ē} for all z ∈ [−q̄, q̄].

The following is the main result of the paper.
Theorem 4.2: For a scalar γ > 0, construct the identifier

as in (15) and the quantizer as above. Suppose that Σk

satisfies the following conditions:

1) |Σk,2| ≤ Σ̄2,
2) |Φk| ≤ Φ̄,
3) Σk > 0

for all k ∈ Z+ and for all possible pairs (ỹ[0,∞], u[0,∞])
of output and input of the plant. Moreover, assume that
|âk| ≤ ā and |yk − C̄ξ̂k| ≤ q̄ for all k. Then, the identifier
achieves the performance level γ. Further, if in addition
the persistency of excitation condition in (13) holds, then
limk→∞ θ̂k = θ. �

We have several remarks regarding this result. The log-
arithmic quantizer seems to be a natural choice in our
approach. This is mainly due to the quadratic cost arising in
the robust identification problem. On the other hand, there
is a trade-off between the performance in identification and
the coarseness in the quantizer. This is determined by the
parameter ν. While smaller ν means faster identification

−2 −1 0 1 2

−2

−1

0

1

2

z

q
(z

)

Fig. 2. Logarithmic quantizer with deadzone

as we saw earlier, for the parameter ρ representing the
coarseness of the quantizer, smaller ν implies smaller ρ.

Compared to the continuous-time counterpart in [6], the
formulae obtained in this section are far more involved
though the basic ideas used are very similar. We hence do
not carry out some of the ideas in [6]. For example, it was
shown there that under the simpler communication scheme
where y is quantized directly (without feeding back ŷ) and
ỹk = q(yk) is used, we obtained uniform quantizers. This
quantization is fine throughout the input space and hence
requires high bandwidth in the communication. It is likely
that similar results hold also in the discrete time.

V. NUMERICAL EXAMPLE

In this section, we present a numerical study that illus-
trates the robustness and the use of logarithmic quantiza-
tion in H∞ identification. The objective is to show that
the proposed scheme is robust against measurement noise
introduced by very coarse logarithmic type quantizers; this
is motivated by the observation in the last section. The
performance of the scheme becomes clear by comparing it
with a conventional least-squares one based on pre-filtering.

As the plant, we first chose the continuous-time, second-
order system given by

Pc(s) =
2

s2 + 3s + 4
,

and then discretized it with zero-order hold using sampling
period T = 0.2; hence the discrete-time plant is

P (z) =
0.0327z + 0.0267

z2 − 1.43z + 0.549
.

The input we used is uk = 20 sin(0.4kT )+10 sin(1.5kT )+
0.5 sin(4kT ).

In the proposed identifier, the weight in the cost was
chosen as the one given in (14) and for its initial value
Q0 = 0.01I was used. As discussed in Section III, with this
cost function, the optimal performance level is γ∗ = 1 when
there is no quantization. In our design, the value γ = 1.2
was employed. Also, as the initial value for Σk,3, we used
the one that satisfies (16); in this case, Σk,3 is constant.

Next, we constructed a standard, prefiltering-based iden-
tifier for comparison. The prefilter is 1/z2 while the initial
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Fig. 3. Response of the proposed identifier

condition for the covariance matrix is 20I . These parameters
were chosen so that its performance when no quantization
is used in identification is similar to the one of our design.

For the quantizer, we chose a logarithmic one with some
modification. Its graph is shown in Fig. 2. It has a deadzone
around the origin in the interval [−0.15, 0.15]. Outside this
region, it has a logarithmic characteristic; the dotted lines
are the sector-type bound envelope given in (5), where the
constant ρ is taken as 0.2. The initial condition for the plant
was chosen to be x0 = [1 −2]T and those for the two
identifiers were x̂0 = [0 0]T . The disturbance w and the
noise v were taken as Gaussian white noises with variances
0.04 and 0.02, respectively.

The responses of the proposed identifier and the conven-
tional one are shown in Figs. 3 and 4, respectively. In both
cases, the first plot shows the quantized signal q(yk − ŷk).
the second one is the state estimation errors, and the third
one is the parameter estimates. Overall, the response of the
proposed scheme in Fig. 3 is good and is actually similar
to that without quantization. In particular, we observe very
good parameter identification in the third plot. Moreover,
as shown in the first plot, after 20 seconds, the quantized
signal takes zero most of the time; we may interpret that,
after t = 20, little information is transmitted and hence
little communication is needed. In contrast, the performance
of the conventional scheme is degraded by quantization in
Fig. 4. We note also that more communication is required
in the sense described above.

VI. CONCLUSION

In this paper, we considered the design of a quantizer in
a robust identification setup. By allowing feedback in the
communication, we obtained a class of nonuniform quantiz-
ers, the so-called logarithmic quantizers. We observed that
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Fig. 4. Response of the prefilter-based identifier

there is a trade-off between the performance in identification
and the coarseness in the quantizer.
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[7] H. Ishii and T. Başar. Remote control of LTI systems over networks
with state quantization. Systems & Control Letters, 54:15-31, 2005.

[8] H. Ishii and B. A. Francis. Limited Data Rate in Control Systems
with Networks, volume 275 of Lect. Notes Contr. Info. Sci. Springer,
Berlin, 2002.

[9] D. Liberzon. On stabilization of linear systems with limited infor-
mation. IEEE Trans. Autom. Control, 48:304–307, 2003.

[10] G. N. Nair and R. J. Evans. Exponential stabilisability of finite-
dimensional linear systems with limited data rates. Automatica,
39:585–593, 2003.
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