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Abstract— In this paper, we study fixed order stabilizing
controllers for single-input single-output plants. Following
previous research, the controller parameters are classified into
two types: (computationally) tractable and intractable param-
eters. First, we propose to use randomized algorithms to find
the intractable parameters. Then, we present a deterministic
method to compute the values of tractable parameters. This
technique is based on matrix inversion and it is shown to be
superior (from the computational complexity point of view) to
existing methods based on linear programming.

I. INTRODUCTION

In recent years, research within systems and control
focused on difficult problems such as fixed order output
feedback design. This problem is known to have com-
putational complexity difficulties similar to static output
feedback design, see [1]. These difficulties come from NP-
hardness, see [2], and are essentially unavoidable with an
approach fully deterministic.

Even though PID design is a well-established topic, see
[3], various innovative methods for designing low order
controllers have been proposed in the last few years. These
methods generally make use of a geometric characteriza-
tion of the set of stabilizing PID gains. Subsequently, the
controller is determined either with the aid of graphical
methods, see e.g., [4], [5], [6] or by means of linear
programming, see e.g. [7].

In this paper, we study a general method to char-
acterize a fixed order stabilizing controller of a single-
input single-output plant. This approach follows previous
research, see [8], and it is based on the idea of splitting
the controller parameters into two categories, the so-called
(deterministically) tractable and intractable parameters. A
precise definition of these parameters is given in Section II.

The first part of the paper, see Section III, deals with
an approach based on randomized algorithms to determine
the intractable parameters. Two specific randomized algo-
rithms, based on the Chernoff Bound and related results,
are presented. Subsequently, in Sections IV and V, we
present a method which makes use of matrix inversions
to compute a so-called “marginal stabilizer.” A marginal
stabilizer has the property of placing some of the roots of the
closed-loop polynomial into the open left half plane and the
remaining roots on the imaginary axis. A detailed analysis is
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carried on showing that this method enjoys polynomial-time
complexity. Analytic and numerical comparisons with other
methods based on linear programming are discussed demon-
strating the superiority of this approach. Once a marginal
stabilizer is determined as described above, we then proceed
to compute a fixed order stabilizing controller. This latter
step is simply performed by means of a combination of
bisection and sensitivity methods and therefore it can be
efficiently executed.

II. PRELIMINARIES AND NOTATION

We now introduce the notation used in this paper. Con-
sider a single-input single-output strictly proper plant of the
form

P (s) =
NP (s)
DP (s)

(1)

where NP (s) and DP (s) are numerator and denominator
plant polynomials of order nN and nD, respectively. We
study a fixed order controller of the form

C(s) =
NC(s)
DC(s)

where NC(s) and DC(s) are numerator and denominator
controller polynomials, respectively. Without loss of gener-
ality, we rewrite C(s) as

C(s) =
X(s2) + sY (s2)
Z(s2) + sW (s2)

(2)

where X(s2), Y (s2), Z(s2) and W (s2) are polynomials
containing only even powers of s. These polynomials are
of the form

X(s2) = θ0 + θ2s
2 + θ4s

4 + · · · + θnX snX ;
Y (s2) = η0 + η2s

2 + η4s
4 + · · · + ηnY

snY ;
Z(s2) = α0 + α2s

2 + α4s
4 + · · · + αnZ

snZ ;

W (s2) = β0 + β2s
2 + β4s

4 + · · · + βnW snW (3)

and their orders in s are denoted by nX , nY , nZ and nW ,
respectively.

We now formally define deterministically tractable and
intractable parameters, see Section III for further discus-
sions. Four different cases are considered in the definition,
so that some flexibility is allowed in the design of fixed
order stabilizing controllers. For example, the coefficients
of X(s2) may be chosen as tractable parameters. Once this
choice is made, the intractable parameters are set, so that
they are the coefficients of Y (s2), Z(s2), W (s2). It will be
shown later in Section V that a tractable parameter value
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can be found in a computationally efficient way once the
values of intractable parameters are computed as described
in Section III.

Definition 1: [Tractable and intractable parameters]
Consider a controller C(s) expressed in the form (2)
with parameters given by (3). Then, one of the following
conditions hold:

1) The tractable parameters are the coefficients of X(s2)
and the intractable parameters are the coefficients of
Y (s2), Z(s2), W (s2);

2) The tractable parameters are the coefficients of Y (s2)
and the intractable parameters are the coefficients of
X(s2), Z(s2), W (s2);

3) The tractable parameters are the coefficients of Z(s2)
and the intractable parameters are the coefficients of
X(s2), Y (s2), W (s2);

4) The tractable parameters are the coefficients of W (s2)
and the intractable parameters are the coefficients of
X(s2), Y (s2), Z(s2).

Let nθ and nµ be the number of tractable and intractable
parameters, respectively. Let θ and µ be the vectors con-
taining the values of the tractable parameters and those
of the intractable parameters, respectively. For simplicity,
in the rest of this paper, we consider only the first case
in Definition 1. That is, the tractable parameters are the
coefficients of X(s2) and the intractable parameters are the
coefficients of Y (s2), Z(s2) and W (s2). This implies that

nθ =
nX

2
+ 1;

nµ =
nY + nZ + nW

2
+ 3;

θ =
[

θ0 · · · θnX

]T ;

µ =
[

η0 · · · ηnY α0 · · · αnZ β0 · · · βnW

]T
.

The other three cases can be treated in a similar manner.
The closed-loop polynomial p(s) is given by the Dio-

phantine equation

p(s) = NP (s)NC(s) + DP (s)DC(s)
= NP (s)(X(s2) + sY (s2)) + DP (s)(Z(s2) + sW (s2))

where the order of p(s) is assumed to be fixed. That is,
we consider the generic subset of parameters of the con-
troller coefficients which does not change the order of the
closed-loop polynomial. The main objective of this paper is
stabilization. This means finding controller parameters so
that the closed-loop polynomial p(s) has all its roots in the
open left half plane; i.e., it is stable. If this controller is
determined, we call C(s) a stabilizing controller.

III. RANDOMIZED ALGORITHMS FOR COMPUTING

INTRACTABLE CONTROLLER PARAMETERS

In Section IV, we will show that, if the values of in-
tractable parameters are fixed, the set of tractable parameter
values corresponding to stabilizing controllers enjoys some

convexity property which can be exploited for efficient
computation of the tractable parameter values. For the in-
tractable parameter values, however, no convexity is known
and their efficient computation is difficult deterministically.
In order to overcome this difficulty, we consider in this
section the use of randomized algorithms, which are known
to be effective for many deterministically difficult problems
within systems and control, see, e.g., [9].

Let us say that an intractable parameter value µ is “ad-
missible” when the set of stabilizing controllers is not empty
for that value. Here, we present a randomized algorithm to
find such a value µ. For this purpose, we introduce some
probability distribution P into the set M ⊆ Rnµ , where
we assume that all possible values µ belong to M. Let ε
and δ be any positive numbers less than unity and define

N1 =
⌈ ln(1/δ)
ln(1/(1 − ε))

⌉

where ln denotes the natural logarithm. Now we propose
the following algorithm.

Algorithm 1:
1. For i := 1, . . . , N1 do

begin
2. Draw a sample µ(i) ∈ M according to P;
3. If µ(i) is admissible then return;

end

The performance of this algorithm is guaranteed by the
following theorem, which is an immediate consequence of
the results in [10], [11]. Here, we let A denote the set of all
admissible µ in M and P(A) its measure according to P .

Theorem 1: Suppose that the measure P(A) is greater
than ε. Then, the probability that no µ(i), i = 1, . . . , N1, is
admissible in Algorithm 1 is less than δ.

This theorem means that Algorithm 1 gives an admissible
µ(i) with confidence higher than 1 − δ. Note that the
maximum number of samples N1 depends only on ε and δ.
As we will see in Section IV, Line 3 of the algorithm can
be carried out in polynomial time. Although the complexity
to execute Line 2 depends on M and P , it is usually
polynomial in the dimension nµ. Moreover, this complexity
is especially low in some cases: for example, in the case that
M is box-shaped and P is a uniform distribution or that
M = Rm and P is Gaussian distribution. Such choices are
used in many practical applications, see, e.g., [9] for further
discussions.

Next, we present a randomized algorithm to evaluate the
measure P(A). We choose positive numbers ε and δ to be
smaller than unity and define

N2 =
⌈ 1
2ε2

ln
2
δ

⌉
.

Algorithm 2:
1. Set Ns := 0;
2. For i := 1, . . . , N2 do
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begin
3. Draw a sample µ(i) ∈ M according to P;
4. If µ(i) is admissible then set Ns := Ns + 1;

end

Here, Ns counts the number of admissible µ(i) among
the N2 samples. We have the following theorem based on
the well-known Chernoff bound [9], [12].

Theorem 2: The probability that |Ns/N2 − P(A)| > ε
holds is less than δ.

IV. AFFINE CHARACTERIZATION OF STABILITY

BOUNDARIES FOR TRACTABLE PARAMETERS

We are interested in finding a fixed order stabilizing
controller of the form given in (2) for a plant P (s) de-
fined in (1). More precisely, the objective is to determine
controller parameters of the form (3) such that the closed-
loop system corresponding to the feedback interconnection
consisting of P (s) and C(s) is stable and the closed-loop
polynomial has all its roots in the open left half plane.
Following the previous developments, we work under the
tractability assumption so that the intractable parameters are
considered as fixed. In fact, these parameters have been
chosen using the randomized algorithms developed in the
previous section.

We now state without proof a preliminary result which
gives a characterization of all fixed order stabilizing con-
trollers satisfying Definition 1 of tractable parameters.

Lemma 1: Suppose that an intractable parameter vector
µ is selected according to Algorithm 1. Then, the set of
all tractable parameter vectors θ that gives a stabilizing
controller C(s, θ) is either empty or is a union of a finite
number of polyhedral sets.

This result studies stabilization properties in controller
coefficients space for tractable parameters. Since we con-
sider the case that the coefficients of Y (s2), Z(s2) and
W (s2) are fixed, the result says that the set of all tractable
stabilizing controllers parameters of the form

C(s, θ) =
θ0 + θ2s

2 + · · · + θnX snX + sY (s2)
Z(s2) + sW (s2)

is a finite union of polyhedral sets, provided that a sta-
bilizing controller exists. In other words, the “tractable
parameters” of X(s2) enjoy a polyhedral property which
may be exploited in the development of computational
methods.

Remark 1: Lemma 1 is an extension of earlier results
available in the literature for the special case of PID
controllers, see references [3] and [7] where the set of all
stabilizing PID controllers with fixed proportional gain is
shown to be a finite union of convex polygons. In these
references, a linear programming approach for the design
of PID is also proposed, even though linear programming
is not strictly necessary since only two design parameters
are involved and therefore graphical methods can be used.

Subsequent papers along the same direction, and also ad-
dressing PID design or lead-lag compensators, are e.g. [4],
[5] and [6]. In particular, in [4] a characterization of closed-
loop polynomials with a certain even-odd structure is stud-
ied by means of the parameter space approach, see e.g. [13].
However, the characterization obtained in [4] is used only
for analyzing PID stabilizing controllers and no attempt is
made to handle more general classes of controllers. Finally,
we recall that a linear programming approach based on a
generalization of the Hermite-Biehler theorem is developed
in [14] for synthesis with fixed structure controllers.

We now state, without proof, an extension of Lemma 1
from stability to the case when a fixed number of roots in the
closed left half plane are considered. This result may have
some system and control interpretation in terms of invariant
roots within a specified region of the complex plane of a
polynomial affected by parametric perturbations, see e.g.
[15]. However, the interest here is purely technical since
Theorem 4 in Section V is based on this result. A special
case of this result is when a fixed number of roots lie on the
imaginary axis and all the remaining roots lie in the open
left half plane.

Corollary 1: Suppose that an intractable parameter vec-
tor µ is selected according to Algorithm 1. Then, the set of
all tractable parameter vectors θ such that the corresponding
closed-loop polynomial p(s, θ) has a fixed number of roots
in the closed left half plane is either empty or is a union of
a finite number of polyhedral sets.

In order to derive efficient deterministic algorithms to
handle the tractable parameters, the first step is to study
the so-called critical (or singular) frequencies. Consider the
closed-loop polynomial

p(s) = p0(s) + p1(s)X(s2)

where

p0(s)
.= sN(s)Y (s2) + D(s)(Z(s2) + sW (s2));

p1(s)
.= N(s).

For s = jω, we write

p0(jω) = R0(ω2) + jωI0(ω2);
p1(jω) = R1(ω2) + jωI1(ω2).

The set of critical frequencies is given by

Ω = {ω1, ω2, . . . , ωnf
}

where the set Ω consists of the solutions of the polynomial
equation

I0(ω2
i )R1(ω2

i ) − I1(ω2
i )R0(ω2

i ) = 0

for ωi ∈ (0,∞), and may contain 0 and/or ∞ in some
cases. To evaluate the order of this polynomial, we have the
following lemma, which follows from direct computations.
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Lemma 2: The number of critical frequencies nf is
bounded as

nf ≤deg p0(s) deg p1(s) − min {deg p0(s), deg p1(s)}
2

+ 2

where deg p0(s) and deg p1(s) are the degree of the poly-
nomials p0(s) and p1(s) which are given by

deg p0(s)
= max {nN + nY + 1, nD + max{nZ , nW + 1}} ;
deg p1(s) = nN .

Indeed, the number of critical frequencies is a polynomial
function of nN , nD, nY , nZ and nW . We also notice that nf

does not depend on nX , i.e. nθ. For each critical frequency
ωi ∈ Ω, we can determine a hyperplane which defines part
of the stability boundary. This hyperplane has the form

ψ0(ωi)θ0 + ψ2(ωi)θ2 + · · · + ψnX
(ωi)θnX

= ν(ωi) (4)

where ψ0(ωi), ψ2(ωi), ψ4(ωi), . . ., ψnX
(ωi) and ν(ωi) are

fixed coefficients. The entire stability boundary is given
by the union of the hyperplanes obtained for all critical
frequencies. Hence, specific stabilizing controllers and the
set of all stabilizing controllers can be obtained, in principle,
by solving a number of linear programs. However, since (4)
is a linear equation, in order to study stabilizing regions, all
possible combinations of the inequalities

ψ0(ωi)θ0 + ψ2(ωi)θ2 + · · · + ψnX
(ωi)θnX

≥ ν(ωi)

and

ψ0(ωi)θ0 + ψ2(ωi)θ2 + · · · + ψnX
(ωi)θnX

≤ ν(ωi)

for ωi ∈ Ω, should be considered. In turn, this leads to an
exponential number of linear programs.

To see this more precisely, let us introduce matrices

Ψ .=

⎡
⎢⎣

ψ0(ω1) · · · ψnX (ω1)
...

. . .
...

ψ0(ωnf
) · · · ψnX

(ωnf
)

⎤
⎥⎦ , ν

.=

⎡
⎢⎣

ν(ω1)
...

ν(ωnf
)

⎤
⎥⎦ .

Note that Ψ ∈ Rnf×nθ and ν ∈ Rnf . We also consider
a diagonal matrix Si ∈ Rnf×nf each of which diagonal
element is either −1 or 1. We see that the total number
of such Si is 2nf . Thus, all possible tractable parameter
regions generated by the critical frequencies can be charac-
terized as

Ψθ ≥ Siν, i = 1, 2, . . . , 2nf .

We therefore conclude that the total number NLP (nf ) of
required linear programs in the worst-case is given by

NLP (nf ) = 2nf .

However, if the objective is to obtain a specific stabilizing
controller (and not the entire set), a more efficient and direct
procedure may be used, thus reducing the complexity of the

algorithm and avoiding the combinatoric explosion in the
number of linear programs. The first observation we make in
this regard is the fact that the stability boundaries constitute
a set of linear equations. Therefore, the issue analyzed in
the next section is how to handle this set efficiently. In
particular, the approach proposed deals with vertices, rather
than inequalities, of stabilizing polyhedral sets.

V. POLYNOMIAL-TIME ALGORITHMS FOR COMPUTING

TRACTABLE CONTROLLER PARAMETERS

The proposed approach is divided into two steps. The
first step is to compute so-called marginal stabilizers in
polynomial-time. Once this stabilizer is determined, a fixed
order controller can be subsequently determined. This sec-
ond operation can be also efficiently performed with the aid
of one-parameter optimization problem.

A. Computation of Marginal Stabilizers

We first introduce the definition of marginal stabilizer
formally.

Definition 2: A marginal stabilizer is a controller C(s)
having the property that the corresponding closed-loop
polynomial p(s) has a fixed number of roots on the imagi-
nary axis and no roots in the open right half plane.

Following the discussion in the previous section, the
fixed order marginal stabilization problem can be reduced
to solving the equation (4). In order to have a marginal
stabilizing controller, we construct a square matrix Ψi

which consists of nθ rows of the matrix Ψ and a vector
νi which consists of the corresponding nθ elements of ν.
The resulting square linear system is given by

Ψiθ = νi.

If Ψi is invertible (see Lemma 3 below), we can immedi-
ately solve the system of linear equations as

θ(i) = Ψ
−1

i νi. (5)

This θ(i) gives a candidate marginal stabilizer. Then, we
can check by means of the Routh test if p(s, θ(i)) has all
its roots in the closed left half plane. If θ(i) is actually a
marginal stabilizer, then we proceed to find a stabilizing
controller, as discussed in Subsection V-B. Otherwise, we
repeat this process for another combination of rows of
Ψ and corresponding elements of ν. The total number of
square matrices Ψi and vectors νi that needs to be computed
with this procedure is given by

NMI(nf , nθ) =
nf !

nθ!(nf − nθ)!

where n! denotes the factorial of n.

Remark 2: For fixed i, θ(i) can be immediately found
by matrix inversion. This requires O(n3

θ) operations, see
e.g. [16].
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In the above procedure, invertibility of the square matrix
Ψi is required. Here we give a technical lemma which
ensures the invertibility for all i = 1, 2, . . . , NMI(nf , nθ).

Lemma 3: Suppose that nf ≥ nθ. Then, all square
matrices Ψi, i = 1, 2, . . . , NMI(nf , nθ), which consist of
nθ rows of the matrix Ψ, are invertible.

The statement of this lemma follows from the structure
of Ψ

Ψ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
1 −ω2

2 ω4
2 · · · (−1)nθ−1ω

2(nθ−1)
2

1 −ω2
3 ω4

3 · · · (−1)nθ−1ω
2(nθ−1)
3

...
...

...
. . .

...

1 −ω2
nf−1 ω4

nf−1 · · · (−1)nθ−1ω
2(nθ−1)
nf−1

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this matrix, the critical frequencies 0 and ∞ are included
as ω1 and ωnf

, and they correspond to the first row and
the last row of Ψ. In fact, this realization has a structure
similar to the Vandermonde matrix. Thus, any possible
square matrix Ψi is invertible if all values ωi are distinct,
which is always satisfied in our context.

We now further elaborate on the computational complex-
ity of the problem. To this end, using properties of the
factorial, we compute

NMI(nf , nθ) =
nf (nf − 1) · · · (nf − nθ + 1)

nθ!
. (6)

Since we study a fixed order controller problem, we observe
that the number of parameters nθ is fixed. It turns out
that, for fixed nθ, NMI(nf , nθ) is a polynomial function
of nf . Using Lemma 2, we conclude that NMI(nf , nθ) is
a polynomial function of nN , nD, nY , nZ and nW . We
therefore see that this procedure is computationally more
efficient to perform than solving a linear program because
the number of linear programs NLP (nf ) that should be
solved in the worst case is 2nf .

Here we formally state the computational complexity of
NLP (nf ) and compare it with NMI(nf , nθ).

Theorem 3: Suppose that nf ≥ nθ. Then,

NMI(nf , nθ) = O(nnθ

f ). (7)

Furthermore, for any nθ ≥ 0,

NMI(nf , nθ) ≤ NLP (nf ) (8)

where equality is attained only if nf = 0.

The equality (7) follows from (6). The inequality (8) is
a direct consequence of a well-known identity

n∑
r=0

n!
r!(n − r)!

= 2n.

which is derived from the so-called bimodal theorem.
Theorem 3 says that NMI(nf , nθ) is always smaller than

or equal to NLP (nf ). Some computations of NMI(nf , 2),

TABLE I

COMPARISON OF NLP (nf ) AND NMI(nf , nθ)

nf 8 16 32 64
NMI(nf , 2) 28 120 496 2, 016
NMI(nf , 4) 70 1, 820 35, 960 6.3538 × 105

NLP (nf ) 256 65, 536 4, 294, 967, 296 1.8447 × 1019

NMI(nf , 4) and NLP (nf ) are given in Table I for a
different number of nf . From this table, we conclude that
NMI(nf , nθ) is actually much smaller than NLP (nf ).

We now state a result regarding stabilization properties
of the controller parameters θ(i).

Theorem 4: Let p(s, θ(i)) be the closed-loop polynomial
corresponding to θ(i). There exists a marginal stabilizer if
and only if there exists θ(i), i = 1, 2, . . . , NMI , such that
p(s, θ(i)) has no roots in the open right half plane.

Remark 3: The controller parameter vector θ(i), if it
exists, is a vertex of a polyhedron of stabilizing controllers.
In this case, the nθ rows of the corresponding matrix Ψi

and the nθ elements of νi define some of the hyperplanes
generating the boundary of a polyhedron of stabilizing
controllers.

B. Computation of a Stabilizing Controller

We now address a subsequent crucial problem: given a
marginal stabilizer, determine a fixed order stabilizing con-
troller which places the roots of the closed-loop polynomial
in the open left half plane. To this end, we consider the
sensitivity of zeros of p(s, θ) against perturbation on θ.
This kind of approach has been presented for the case of
PID controllers in [17], and the method proposed here is an
extension to the general case.

Suppose that θ is a marginally stabilizing parameter so
that p(s, θ) has k, where 1 ≤ k ≤ deg p(s, θ), simple zeros
on the imaginary axis and all the other zeros lie in the open
left half plane. Let us consider one imaginary zero jωi and
study how jωi moves when we perturb θ by ∆θ. Since
jωi is simple, there exists an analytic function zi(∆θ) in
‖∆θ‖ < ε for some positive ε such that zi(0) = jωi and
p(zi(∆θ), θ + ∆θ) = 0. By differentiating the last equality
at ∆θ = 0, we have

∂zi

∂θj
= −

(∂p

∂s

∣∣∣
s=jωi

)−1 ∂p

∂θj

∣∣∣
s=jωi

.

Notice that the quantities on the right-hand side can be
easily computed because the inverse of (∂p/∂s)|s=jωi is
just the reciprocal of a complex number. Since we want ∆θ
moving all the imaginary zeros inside the left half plane,
we consider to solve
⎡
⎢⎢⎣

Re ∂z1
∂θ0

· · · Re ∂z1
∂θnz

...
. . .

...

Re ∂znz/2+1

∂θ0
· · · Re ∂znz/2+1

∂θnz

⎤
⎥⎥⎦

⎡
⎢⎣

∆θ0

...
∆θnz

⎤
⎥⎦ =

⎡
⎢⎣

−1
...

−1

⎤
⎥⎦ .

(9)
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Under the assumption that the matrix on the left-hand side
is invertible, we can immediately obtain the desired ∆θ.

After we obtain the desired ∆θ, we consider a parameter
θ + α∆θ for a positive α. Although a small α gives a
stabilizing controller, a large α can be used as well. One
recommendable procedure is to use a bisection method for
the parameter α.

Remark 4: The above procedure requires polynomial-
time operations for nθ because there is no combinatorial
operation involved.

As we have seen, the proposed method may be used
under the conditions that p(s, θ) has simple zeros on the
imaginary axis and the matrix on the left-hand side of (9)
is invertible. Notice that these conditions are generically
satisfied. Otherwise, we may use a randomization based
method as an alternative approach. In fact, as a consequence
of Theorem 4, the following fact holds true: given a ball (for
example �2) of radius ε > 0 centered around θ(i), then there
exists a fixed order stabilizer θ(k) within the ball. Using this
observation, we can find θ(k) using randomization. That
is, we generate N points within the ball until we find a
stabilizer. This procedure is guaranteed to converge because
a stabilizer exists within the ball.

However, with this alternative approach, randomization
is performed only within a “small” ball of radius ε; i.e.
the search for a fixed order stabilizer is made only locally
around a marginal stabilizer. The consequence is that the
stabilizer found with this approach is close in some sense
to a marginal stabilizer and it may be fragile. On the other
hand, the deterministic procedure previously derived in (9)
leads to finding stabilizers which may lie “deeply inside”
the stability region and do not suffer from this drawback.

In closing this section, we summarize the proposed
algorithm which looks for a stabilizing controller when
an intractable parameter µ(i) is determined according to
Algorithm 1.

Algorithm 3:
1. Construct Ψ and ν for given µ(i);
2. For j := 1, . . . , NMI(nf , nθ) do

begin
3. Compute θ(j) according to (5);
4. If θ(j) gives a marginal stabilizer then

begin
5. Compute ∆θ according to (9);
6. If a stabilizing parameter θ(j) + α∆θ is

found then stop;
end

end

VI. CONCLUSION

In this paper, we studied fixed order stabilization of
single-input single-output plants. To this end, we presented
a polynomial-time algorithm based on randomized algo-
rithms and matrix inversions. A detailed complexity analysis
has been also performed.

Subsequent research will be carried on along several
directions. In particular, we plan to extend the results of
this paper to the design of controllers which guarantee
an H∞ bound on the sensitivity and complementary sen-
sitivity functions. Another research direction is to extend
the methods given here to uncertain plants P (s, q), where
q represents parametric uncertainty. Finally, we will also
consider stabilization of plants P (s, τ) affected by a fixed
delay τ > 0.
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