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Abstract— For a class of linear switched control sys-
tems(LSCSs) with unknown inputs, we study in this paper
the unknown input observer(UIO) design problem. To design
a full(reduced) order UIO, we first design for each subsystem a
full(reduced) order UIO, and then we construct a full(reduced)
order UIO for the whole system via picking the corresponding
full(reduced) order UIO of the active subsystem according
to the switching rule. Sufficient conditions for the existence
of both full order and reduced order UIOs are derived. The
design procedures of full order UIOs and reduced order UIOs
are presented. Several stability results regarding to the state
estimation error dynamics are established. Examples are given
to show how to design UIOs for particular switched systems,
and simulation results are given to show the effect of the
designed UIOs.

I. INTRODUCTION

As a special class of hybrid systems, switched systems
have received lots of attention. The stability and stabiliza-
tion problems have been studied extensively and fruitful
results are now available. Detailed achievements in this
research field can be found in survey papers by Decarlo,
Branicky, Pettersson, and Lennartson [1] and Liberzon and
Morse [2].
Unlike the stability and stabilization problems, the observer
design problem for LSCSs received less attention and only
a few results are available.
Some researchers have designed switching observers for
non-switched systems, their main idea is to use switching to
solve observer design problem for more complex systems,
see [4], and/or to improve estimation performance, see [5].
The full order observer design problem for switched control
systems has also been studied recently. An observer for
continuous-time linear switched control system is designed
in [6] based on coprime factorization approach. The main
idea is to construct a common observer for all subsys-
tems. Inspired by the common Lyapunov function method
for stabilization problem of switched control systems [2],
observers are designed for discrete-time linear switched
control systems in [7] and for both continuous- and discrete-
time linear switched control systems in [8]. The design
problem is reduced to solve a group of linear matrix
inequalities(LMI’s) for a common solution. The advantage
of this observer design is that the stability of state estimation
error dynamics can be guaranteed for arbitrary switching
sequences. The problem is that the common Lyapunov
function may not exist for some cases. To circumvent this
problem, [10] proposed observer designs for continuous
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time linear switched control systems. By extending the
conventional observer design in a straightforward way and
without using the common Lyapunov function technique,
the designed observers can ensure the state estimation error
go to zero asymptotically under some conditions.
In the literature, UIO design problem for classical systems
was received great attention. Many results are now avail-
able, see [11] and [12] and the references listed therein.
UIO design in classical systems has proved to be very useful
in fault detection and isolation in fault diagnosis research
community. When one uses multiple linear switched sys-
tems to approximate general linear systems, the modelling
error can be naturally regarded as unknown input in each
linear subsystems. Besides this, for real systems described
by switched linear systems, external disturbances are often
unavoidable. Motivated by these observations and realized
that no UIO has been designed for LSCSs, we are trying
to extend the traditional UIO design techniques to LSCSs
in a straightforward way. Sufficient conditions are derived
for the existence of both full order and reduced order UIOs.
Design methods for both full order and reduced order UIOs
are then given. It has been found that UIO design for
LSCSs becomes much more difficult. More restrictions on
the observer gains have to be required.
The rest of paper is arranged as follows. In Section 2, we
introduce the model of LSCSs. In Section 3, we present
existence conditions of UIOs for LSCSs and derive some
sufficient conditions under which the state estimation error
dynamics is asymptotically stable. In Section 4, we present
methods to design UIOs. In Section 5, we give some
examples and simulation results. Conclusion remarks are
made in the last section.

II. LINEAR SWITCHED CONTROL SYSTEMS

We consider a class of switched linear control sys-
tems(SLCSs) with M subsystems described as

ẋ = Aσ(t)x + Bσ(t)u + Dσ(t)v, x ∈ Rn

y = Cσ(t)x, (1)

where x ∈ Rn, u ∈ Rk,v ∈ Rm, and y ∈ Rp are the state
vector, known input vector, unknown input vector and the
output vector of the system, respectively. Ai, Bi, Di, and
Ci with i ∈ S = {1, 2, · · · ,M} are n×n, n×k, n×m, and
p×n constant matrices, respectively. σ(t) : [0,∞) → S is a
piecewise constant function of time and/or outputs, called a
switching rule. The corresponding system for σ(t) = i ∈ S
is called the i−th subsystem. In such a case, we also say
that the i−th subsystem is “active”.
Assumptions
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A1– The switching rule σ(t) is fixed and can not be
designed freely. The state in (1) is continuous,
that is, the state does not jump at the switching
instants.

A2– p > m, rank Di = m and rank Ci = p for all
1 ≤ i ≤ M .

A3– rank CiDi = m for all 1 ≤ i ≤ M .

Remark 1: ¿From [11], we know that Assumptions A3
is necessary for each subsystem(which is a nonswitching
linear system) to admit a UIO(both full and reduced order
ones). To design a UIO for an SLCS, it is natural for us to
require this condition.

III. CONDITIONS FOR THE EXISTENCE OF UIO

In this section, we will explore under what conditions a
full order UIO and a reduced order UIO exist for system
(1), and also under what sufficient conditions the state
estimation error dynamics is exponentially stable.

Definition 1: A UIO is said to be an exponential
UIO(EUIO) if the state estimation error tends to zero
exponentially.

A. Full Order UIO

For each i, following [11], the full order observer which
could be used as a UIO is described as

żi = Nizi + Giu + Liy

x̂i = zi − Eiy (2)

Combining Theorem 1 and Theorem 2 in [11], we have
the following necessary and sufficient condition for the
existence of EUIO of the i−th subsystem.

Theorem 1: The i−th subsystem admits an EUIO of the
form (2) if and only if there exists a matrix Ei such that

(1) EiCiDi = −Di;
(2) the pair (PiAi, Ci) is detectable.
where Pi = I + EiCi.
If (2) can be designed for all i, a full order UIO for SLCS

(1) could be designed as.

ż = Nσ(t)z + Gσ(t)u + Lσ(t)y

x̂ = z − Eσ(t)y (3)

where at any switching instant ts, we let z(ts) =
limt→t−s

z(t) such that z is continuous.
So, the existence of the full order UIO given by (3)

for (1) is guaranteed by the existence of EUIOs for all
its subsystems. The problem is: Is it necessarily an EUIO?
Generally, without additional conditions, the answer is no.
In what follows, we will study under what conditions it can
be an EUIO.

Let’s define the sate estimation error as

e = x̂ − x = z − x − Eσ(t)y (4)

Since the pair (PiAi, Ci) is detectable, we can choose Ki

such that Ni = PiAi − KiCi is Hurwitz. Now, if we let

Li = Ki − NiEi and Gi = PiBi, and noticing that Pi =
I + EiCi and PiDi = 0, it follows from (1)-(3) that

ė = Nσ(t)e (5)

If e(t) is continuous, this is a standard switched system
with Hurwitz stable subsystems. Regarding to its stability,
there are many results available, see for example, those cited
in [1] and [2]. Now we need to see whether the continuity of
e(t) can be guaranteed by (3). From the definition of e(t),
we know that it is not necessarily continuous. Therefore,
we need the following condition to ensure the continuity of
e(t).

A4– E1C1 = E2C2 = · · · = EMCM .

¿From (4), we see that A4 ensures the continuity of e(t)
because of the continuity of z(t) and x(t).

In the sequel, we present two results regarding to the
stability of (5) under assumption A4. The first one is based
on the concept of dwell time [2]; the second one is based
on common Lyapunov approach.

With the help of the concept of dwell time[2], we give
a result below.

Theorem 2: Under assumptions A1-A3, assume that con-
ditions in Theorem 1 are satisfied for all 1 ≤ i ≤ M such
that A4 is true, if the dwell time τ is large enough, then the
state estimation error dynamics (5) is globally exponentially
stable.
Proof: The continuity of e(t) is ensured by assumptions A1
and A4.

For each i ∈ {1, 2, · · · ,M}, because Ni is Hurwitz, there
exist ai ≥ 0 and λi > 0 such that for all t ≥ 0 we have

‖eNit‖ ≤ eai−λit (6)

where ‖N‖ =
√

λmax(NT N) and T denotes the transpose.
Let

τ0 > max
i=1,2,···,M

{ai

λi
}

and

a = maxi=1,2,···,M{ai}, λ = mini=1,2,···,M{λi − ai

τ0
}

For any switching signal with τ ≥ τ0, by using the
continuity of e(t), it is easy to show that the state transition
matrix of Nσ(t) satisfies

Φ(t, µ) ≤ ea−λ(t−µ)

This proves the theorem. ¶
Remark 2: Note that the requirement of z being con-

tinuous is crucial for the stability of the state estimation
error dynamics. Without it, the result of the theorem is not
guaranteed. This is the main reason we require assumptions
A1 and A4.

Remark 3: To use Theorem 2, we have to face one
difficulty. It requires the knowledge of the dwell time. It
is generally not available a priori. So, the result is of more
theoretical importance than of practical importance.
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One way to overcome the difficulties mentioned in Re-
mark 3 is to use common Lyapunov function approach, and
a result is given in the following theorem.

Theorem 3: Under assumptions A1-A3, assume that con-
ditions in Theorem 1 are satisfied for all 1 ≤ i ≤ M such
that A4 is true, if there exist two symmetric positive definite
matrices P and Q such that

NT
i P + PNi ≤ −Q, 1 ≤ i ≤ M

then the state estimation error dynamics (5) is globally
exponentially stable for arbitrary switching, that is, the
observer (3) is an EUIO for arbitrary switching.

Remark 4: Under the conditions of Theorem 3, we have
that V (e) = eT Pe is a common Lyapunov function. From
the conclusions of the theorem, we know that the difficulty
mentioned in Remark 3 is avoided. Another advantage is
that the common Lyapunov function can be found through
solving LMIs if it exists. If Ni + NT

i is negative definite
for any i, we have V (e) = eT e as a common Lyapunov
function. This is practical because we can choose the gains
of the subobservers to guarantee that Ni + NT

i is negative
definite.

Based on the above discussions, we can derive the
following result immediately.

Theorem 4: Under assumptions A1-A3 and assume that
there exist Ei and Ki for all 1 ≤ i ≤ M such that

(1) EiCiDi = −Di;
(2) Ni +NT

i is negative definite with Ni = PiAi−KiCi

also negative definite;
(3) Assumption A4 is true, then the state estimation error

dynamics (5) can be made globally exponentially stable for
arbitrary switching, that is, the observer (3) can be made
an EUIO for arbitrary switching.

To use Theorem 4, we need to design the observer gain
Ki (3) such that Ni = PiAi − KiCi and Ni + NT

i are
Hurwitz for all 1 ≤ i ≤ m. This is not always possible. We
give a sufficient condition for the existence of the observer
gain Ki such that Ni is negative definite in the following
theorem.

Theorem 5: Let Ci = ( 0 Ip×p ), Ki =
(

Ki
1

Ki
2

)
and

PiAi =
(

Ai
11 Ai

12

Ai
21 Ai

22

)
, where Ai

12 is an n−p by p matrix.

If Ai
11 is negative definite, then Ki can be chosen such that

Āi is negative definite.
Proof: Since Āi = PiAi − KiCi, we have

Āi =
(

Ai
11 Ai

12 + Ki
1

Ai
21 Ai

22 + Ki
2

)

If we choose
Ki

1 = (Ai
21)

′ − Ai
12

and
Ki

2 = Hi
22 − Ai

22 + Ai
21(A

i
11)

−1(Ai
21)

′

where Hi
22 can be any negative definite matrix, then it can

be shown that Āi is negative definite. ¶

B. Reduced Order UIO

Similar to last subsection, in this subsection, we first give
conditions of the existence of reduced order UIO for system
(1). Then, we derive sufficient conditions under which the
state estimation error dynamics resulted from the UIO is
asymptotically or exponentially stable.

To design the reduced order UIO, we need the following
assumption.

A5– C1 = · · · = CM .
Under assumption A5, after state transformation, the

design of reduced order UIO can be reduced to the case
C1 = · · · = CM = [I 0]. Therefore, for simplicity, we
only present the reduced order UIO design for the case
C1 = · · · = CM = [I 0].

For each i, we partition the state vector as

x =
[

x1(t)
x2(t)

]
, x1 ∈ Rn−m x2 ∈ Rm (7)

Because Ci = [I 0], we have y = x1. Therefore, we do not
need to estimate x1 because y is measured, and we only
need to estimate x2.

Corresponding to the state vector partition, we partition
Ai, Bi, and Di as[

Ai
11 Ai

12

Ai
21 Ai

22

]
,

[
Bi

1

Bi
2

]
,

[
Di

1

Di
2

]

Following [12], the reduced order UIO for the i−th
subsystem can be constructed as.

żi = Nizi + Giu + Liy

x̂i
2 = zi + Eiy (8)

where
Ni = Ai

22 − EiA
i
12

Gi = Bi
2 − EiB

i
1

Li = NiEi + Ai
21 − EiA

i
11

If we define ei = zi + Eiy − x2, we have

ėi = Nie
i + (Di

2 − EiD
i
1)v(t)

¿From the above equation, we can get a straightforward
condition for the existence of reduced order EUIO for the
i−th subsystem as in following theorem.

Theorem 6: The i−th subsystem admits an EUIO of the
form (8) if and only if there exists a matrix Ei such that
(1) Di

2 − EiD
i
1 = 0;

(2) Ni is Hurwitz.
By combining Theorem 1 and Theorem 2 in [12], we

can give a more checkable condition for the existence of
reduced order EUIO for the i−th subsystem.

Theorem 7: If rankCiDi = rankDi(that is,
rankDi

1=rankDi) and the triple (Ci, Ai, Di) has stable
invariant zeros, then the i−th subsystem admits an EUIO of
the form (8). Furthermore, if (Ci, Ai, Di) has no invariant
zeros, the eigenvalues of the UIO of the form (8) can be
arbitrarily assigned.
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If we use the same idea for the full order observer design,
with (8) at hand, the reduced order observer for SLCS (1)
would be given as

ż = Nσ(t)z + Gσ(t)u + Lσ(t)y

x̂2 = z + Eσ(t)y (9)

where at any switching instant ts, we let z(ts) =
limt→t−s

z(t) such that z is continuous.
The existence of the reduced order UIO given by (9) for

(1) is guaranteed by the existence of reduced order EUIOs
for all its subsystems. The problem is: Is it necessarily an
EUIO? Generally, without additional conditions, the answer
is no. In what follows, we will study under what conditions
it can be an EUIO.

If we define e = x̂2−x2 = z−x2+Eσ(t)y, to analyze the
stability of the state error dynamics, we need to make e(t)
continuous. To this end, we need the following assumption.

A6– E1 = E2 = · · · = EM

Note that z, x2, and y are all continuous, assumption A6
guarantees that e(t) is continuous.

If conditions in Theorem 6 are satisfied for all 1 ≤ i ≤
M , then it is easy to derive

ė = Nσ(t)e (10)

Compare the above equation with the equation (5), we
see that they have exactly the same form. Therefore, all the
stability results obtained for full order UIOs can also be
derived here. We give the results without proof as follows.

Theorem 8: Under assumptions A1-A3 and A5, assume
that conditions in Theorem 6 are satisfied for all 1 ≤ i ≤ M
such that A6 is true, if the dwell time τ is large enough,
then the state estimation error dynamics (10) is globally
asymptotically stable.

Theorem 9: Under assumptions A1-A3 and A5, assume
that conditions in Theorem 1 are satisfied for all 1 ≤ i ≤ M
such that A6 is true, if there exist two symmetric positive
definite matrices P and Q such that

NT
i P + PNi ≤ −Q, 1 ≤ i ≤ M

then the state estimation error dynamics (10) is globally
exponentially stable for arbitrary switching, that is, the
observer (9) is an EUIO for arbitrary switching.

Theorem 10: Under assumptions A1-A3 and A5, assume
that rankCiDi = rankDi and also that Ei for 1 ≤ i ≤ m
can be chosen such that Ni + NT

i , 1 ≤ i ≤ m are negative
definite and A6 is true, then the state estimation error
dynamics (10) can be made globally exponentially stable
for arbitrary switching, that is, the observer (9) can be made
an EUIO for arbitrary switching.

Remark 5: All the remarks made for full order UIOs can
be made here for reduced order UIOs. The reason we give
the design of reduced order UIO is that it needs stronger
conditions than the full order one.

IV. THE DESIGN OF UIO

In this section, we will give the design procedure of both
full order and reduced order UIOs.

A. The Design Procedure Of Full Order UIO

According to Subsection III-A, to design the full order
UIOs, we have to find Ei for all 1 ≤ i ≤ M such that

DF1– EiCiDi = Di for each 1 ≤ i ≤ M
DF2– E1C1 = · · · = EMCM

DF3– (PiAi, Ci), that is, ((I + EiCi)Ai, Ci) is de-
tectable or observable for each 1 ≤ i ≤ M

According to DF1-DF3, we give a design procedure
below.

Step 1– Solve EiCiDi = Di to get its general solution
as

Ei = −Di(CiDi)+ + Yi(Ip − (CiDi)(CiDi)+)

for each 1 ≤ i ≤ M , where

(CiDi)+ = ((CiDi)T (CiDi))−1(CiDi)T

and Yi is an arbitrary matrix of suitable dimension.
Step 2– Define a set for each 1 ≤ i ≤ M as

Si = {Ei(Yi)Ci|for all Yi},
then let S =

⋂M
i=1 Si.

Step 3– Choose any element in S denoted as X such that
((I + X)Ai, Ci) for all 1 ≤ i ≤ M are detectable
or observable. Since X ∈ S, there exists a Yi for
each 1 ≤ i ≤ M such that Ei(Yi)Ci = X .

Step 4– Choose for each 1 ≤ i ≤ M a matrix Ki such
that the eigenvalues of Ni = (I + X)Ai − kiCi

are all stable if ((I +X)Ai, Ci) is only detectable
or all negative and different if observable.

Step 5– Compute Li = ki − NiEi with EiCi = X and
Gi = (I + X)Bi.

Step 6– Now, we have designed Ni, Gi, Li, Ei for all
1 ≤ i ≤ M , therefore the full order UIO given by
(3) can be implemented.

Remark 6: In the above design procedure, the most dif-
ficult parts are Step 2 and Step 3. Generally, there is no
systematic way to accomplish them, and we have to do them
case by case. However, for some special cases, a systematic
way is possible, which is given after this remark.

If we have C1 = · · · = CM = C and D1 = · · · = DM =
D, we have S1 = · · · = SM . Step 2 can be done trivially.
Under this condition, we also have

E = E(Y ) = −D(CD)+ + Y (I − (CD)(CD)+)

For simplicity, we let U = −D(CD)+ and V = I −
(CD)(CD)+, we have E = U + Y V . Now, we can carry
out Step 3 and Step 4 simultaneously if we can find Y ,
P > 0, and Ki, 1 ≤ i ≤ M such that

((I + UC + Y V C)Ai − KiC)T P

+ P ((I + UC + Y V C)Ai − KiC) + Q < 0 (11)
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where Q > 0.
The matrix inequalities in (11) are bilinear matrix in-

equalities, to use LMI toolbox, we reformulate (11) as an
LMI of the following equivalent form.

((I + UC)Ai)T P + P ((I + UC)Ai)
+ (V CAi)T WT + W (V CAi)
− K̄iC − CT K̄T

i + Q < 0, i = 1, · · · ,M (12)

where Y = P−1W and Ki = P−1K̄i.

B. The Design Procedure Of Reduced Order UIO

For simplicity, we design for the case that C1 = · · · =
CM = [I 0]. According to Subsection III-B, to design the
reduced order UIOs, we have to find Ei for all 1 ≤ i ≤ M
such that

DR1– Di
2 − EiD

i
1 = 0.

DR2– E1 = · · · = EM .
DR3– Ni = Ai

22−EiA
i
12 is Hurwitz for all 1 ≤ i ≤ M .

Similar to the design of full order UIOs and according to
DR1-DR3, we give a design procedure for reduced order
UIOs below.

Step 1– Solve Di
2−EiD

i
1 = 0 to get its general solution

as

Ei = Ei(Yi) = Di
2(D

i
1)

+ + Yi(I − Di
1(D

i
1)

+)

for each 1 ≤ i ≤ M , where

(Di
1)

+ = ((Di
1)

T Di
1)

−1(Di
1)

T

and Yi is an arbitrary matrix of suitable dimension.
Step 2– Define a set for each 1 ≤ i ≤ M as

Si = {Ei(Yi)|for all Yi}
then let S =

⋂M
i=1 Si.

Step 3– Choose any element in S denoted as X such
that Ni = Ai

22 − XAi
12 for all 1 ≤ i ≤ M are

Hurwitz. Since X ∈ S, there exists a Yi for each
1 ≤ i ≤ M such that Ei(Yi) = X .

Step 4– Compute Gi = Bi
2 − XBi

1 and Li = NiX +
Ai

21 − XAi
11.

Step 5– Now, we have designed Ni, Gi, Li, Ei for all
1 ≤ i ≤ M , therefore the reduced order UIO given
by (9) can be implemented.

Remark 7: For reduced order UIO, same remarks can be
made as those made for full order UIO. The most difficult
parts are still Step 2 and Step 3.
Similar to full order UIO, we give a systematic design
method for a special case, that is, D1 = · · · = DM = D.
In this case, we have S1 = · · · = SM . Thus Step 2 can be
done trivially. Under this condition, we also have

E = E(Y ) = −D2(D1)+ + Y (I − D1(D1)+)

where D is partitioned in the same as Di.

For simplicity, we let U = −D2(D1)+ and V = I −
D1(D1)+, we have E = U + Y V . Similar to full order
UIO design, we can find W and P > 0 via solving LMIs.

(Ai
22 − UAi

12)
T P + P (Ai

22 − UAi
12)

− (V Ai
12)

T WT − W (V Ai
12) + Q < 0 (13)

where Q > 0 and we compute Y as Y = P−1W .

V. DESIGN EXAMPLES AND SIMULATION
RESULTS

In this section, due to lcak of space, we give two
examples and the corresponding results simulation results
only for full order UIOs. One example is to show that our
UIOs can indeed guarantee the convergence of the state
estimation error; the other is given to show this is not
necessarily true without assumption A4.

Example 1. Consider the following switched system.

ẋ = Aσ(t)x + Bσ(t)u + Dσ(t)d(t)
y = Cσ(t)x (14)

where Ai, Bi, Ci, Di are given as

A1 =

⎛
⎝−1 1 0

−1 0 0
0 −1 −1

⎞
⎠ , B1 =

⎛
⎝ 0

0
1

⎞
⎠ ,

C1 =
(

1 0 0
0 0 1

)
, D1 = (−1 0 0 )T

A2 =

⎛
⎝−2 −2 0

0 0 1
0 −3 −4

⎞
⎠ , B2 =

⎛
⎝ 0

0
1

⎞
⎠ ,

C2 =
(

1 0 0
0 1 0

)
, D2 = ( 1 0 0 )T (15)

with σ(t) ∈ {1, 2} defined as

σ(t) = 1 if t ∈ [20kT 10(2k + 1)T ), k = 0, 1, 2, · · ·
σ(t) = 2 if t ∈ [10(2k + 1)T 20(k + 1)T ), k = 0, 1, 2, · · ·
where T is a constant which determines how fast the
switching signal switches.

Using the design procedure of a full order UIO, for
system (14), we can choose

E1 = E2 =

⎛
⎝−1 0

0 0
0 0

⎞
⎠ ;

K1 =

⎛
⎝ 2 0

−1 −12
0 6

⎞
⎠ K2 =

⎛
⎝ 2 0

0 3
0 −3

⎞
⎠ ;

and compute Ni, Gi, Li, i = 1, 2 accordingly. According to
Theorem 2, if the dwell time is large enough, the resulting
state estimation error should be globally asymptotically
stable.

The next example is designed to show that the stability
of the state estimation error is not guaranteed without
assumption A4 even if each subsystem admits an EUIO.
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Example 2. Consider the following switched system.
Consider a system in the form of (14) with D1 and D2

given by

D1 = (−1 0 2 )T
D2 = ( 1 0 0 )T

with σ(t) ∈ {1, 2} defined the same as in Example 1. We
choose

E1 =

⎛
⎝−0.2 0.4

0 0
0.4 −0.8

⎞
⎠ ;K1 =

⎛
⎝ 1.2 0

−1 60
−0.4 6.8

⎞
⎠

and we use E2, k2 chosen in Example 1. It is easy to check
that E1C1 �= E2C2, which implies A4 is not met.

The simulation results for example 1 with T = 0.001 are
presented in Figure 1. Though the switching is pretty fast,
the estimates of states converge to the states of the switched
systems asymptotically.

The simulation results for example 2 with T = 0.001
are presented in Figure 2. We see that the sate estimation
error diverges. This means without Assumption A4, the
convergence of the sate estimation error is not guaranteed.
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Fig. 1. Results of full order UIO

0 1000 2000 3000 4000 5000 6000
−0.2

0

0.2

0.4

0.6

time

0 1000 2000 3000 4000 5000 6000
−4

−2

0

2

time

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

time

x
1

Estimation of x
1

x
2

Estimation of x
2

x
3

Estimation of x
3

Fig. 2. Results of full order UIO with e1C1 �= E2C2

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We have designed both full order and reduced order UIOs
for a class of switched systems. Sufficient conditions for the
existence of both types of UIOs are derived. The stability of
state estimation error dynamics is analyzed, and it is proved
that the estimation error can converge to zero asymptotically
or exponentially under certain conditions. The results for
arbitrary switching are very promising because we don’t
need to worry about the manner of switching in our UIO
design.

B. Future Works

How to design UIOs is a very challenging problem when
the switching rule is unknown and how to design UIOs for
other classes of hybrid systems remains to be investigated.
We are also interested in studying fault detection and
isolation problem of SCSs based on our UIOs.
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