
Linear-Programming-Based Multi-Vehicle Path Planning with
Adversaries

Georgios C. Chasparis and Jeff S. Shamma
Department of Mechanical and Aerospace Engineering

University of California Los Angeles

Box 951597, Los Angeles, CA 90095

{gchas,shamma}@seas.ucla.edu

Abstract— A linear-programming (LP) based path planning
algorithm is developed for deriving optimal paths for a group
of autonomous vehicles in an adversarial environment. In this
method, both friendly and enemy vehicles are modelled as
different resource types in an arena of sectors, and the path
planning problem is viewed as a resource allocation problem.
Simple model simplifications are introduced to allow the use
of linear programming in conjunction with a receding horizon
implementation for multi-vehicle path planning. Stochastic
models based on the current position of opposing vehicles are
used to describe their possible future trajectories. The utility of
the LP-based algorithm is tested in the RoboFlag drill, where
both teams of vehicles have equal path planning capabilities
using the proposed algorithm. Results show that the LP-based
path planning in combination with a simple enemy model
can be used for efficient multi-vehicle path planning in an
adversarial environment.

I. INTRODUCTION

One problem in autonomous multi-vehicle systems is the
real-time derivation of vehicle paths. Often this problem
can be formulated as a large-scale optimization. However,
environmental conditions are not necessarily stationary, and
the inclusion of these uncertainties to the optimization
problem is an open issue.

Several optimization methods already have been tested
for multi-vehicle path planning. One is based on the no-
tion of coordination variables [1], where trajectories are
determined so that threat avoidance is ensured and timing
constraints are satisfied. However, the location of the con-
sidered threats are deterministically known.

Several papers on mission planning of UAVs construct
Voronoi-based polygonal paths from the currently known
location of the threats. Among those paths the lowest-
cost flyable path can be computed [2]. In [3] and [4] a
probabilistic approach is introduced, where a probability of
a threat or target is assumed to be known. According to [3],
global strategies may be computationally inefficient, while
the path generated by the strategy might get in a limit cycle.

Since several classes of multi-vehicle systems can be
modelled as hybrid systems, one of the suggested ap-
proaches to designing feedback controllers is based on
model predictive control [5], where an optimization problem

This work was supported by AFOSR/MURI grant #F49620-01-1-0361.

is solved based on a prediction of the future evolution of
the system.

For some classes of multi-vehicle systems, this opti-
mization is a mixed integer linear programming problem
[6], [7]. However, the computation time can be very large,
while probabilities of the threats cannot easily be included
in the optimization. Dynamic programming can take into
account such probabilities, however, their calculation is
computationally impractical [8].

In this paper, we seek a linear formulation of the prob-
lem. The potential advantage is that a linear program is
computationally appealing. The proposed approach is based
on a linear model for resource allocation in an adversarial
environment [9]. Both friendly and enemy vehicles are
modelled as different resource types in an arena of sectors,
and the path planning problem is viewed as a resource
allocation problem. However, the resulting linear dynamic
model is subject to binary optimization constraints, while
the enemy’s future locations are unknown.

Model simplifications are introduced to allow the use of
linear programming in conjunction with a receding horizon
implementation for multi-vehicle path planning. Stochastic
models based on the current position of opposing vehicles
are used to describe their possible future trajectories. The
utility of the LP-based algorithm is tested in the RoboFlag
drill, where both teams of vehicles have equal path planning
capabilities using the proposed algorithm.

II. PROBLEM FORMULATION

A. State-space model

We consider a model that describes the movement and
engagement of friendly and enemy resources in an arena
of sectors [9]. The battlefield is divided into a collection of
sectors, S, and evolution is in discrete time.

A vehicle is represented as a resource type, r j. We define
its quantity level at sector si to be xsi,r j ∈ B � {0,1}, so
that resource level “1” corresponds to the sector where the
vehicle lies in, otherwise it is “0”. Under these assumptions,
the state of each resource type, r j, is

xr j =
(

xs1,r j xs2,r j . . . xsns ,r j

)T
∈ Bns

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

WeB16.3

1072

where ns is the total number of sectors in S. Thus, the state
of a collection, R, of nr vehicles could be:

x =
(

xT
r1

xT
r2

. . . xT
rnr

)T
∈ Bnx

where nx = nsnr is the total number of states.
Resource level changes represent vehicles movement.

They can either remain in the same sector or move to
a neighboring sector. Movements within a sector are not
modelled. Therefore, the control action includes the transi-
tions of each resource type r j ∈ R from sector si ∈ S to a
neighboring sector sk ∈ N(si,r j), where N(si,r j) is the set
of neighboring sectors of sector si that can be reached by
resource type r j in one time-stage.

Define usi←sk,r j ∈ B as the level of resource type r j

that is being transferred from sector sk to sector si, where
sk ∈ N(si,r j). Then the system evolves according to the
following state-space equations:

x+
si,r j

= xsi,r j + ∑
sk∈N(si,r j)

usi←sk,r j − ∑
sk∈N(si,r j)

usk←si,r j (1)

for each si ∈ S and r j ∈R, where superscript “+” denotes the
next time-stage. In order for this set of equations to describe
a continuous flow of resources, the following constraint
must also be satisfied:

0 ≤ ∑
sk∈N(si,r j)

usk←si,r j ≤ xsi,r j , ∀si ∈ S, ∀r j ∈ R. (2)

Define the control vector usi,r j ∈ B(ns−1) as the resource
levels of type r j ∈ R that enter si ∈ S, i.e.,

usi,r j =
(

usi←s1,r j . . .usi←si−1,r j usi←si+1,r j . . .usi←sns ,r j

)T

The control vector ur j ∈ Bns(ns−1) consists of all transitions
of r j ∈ R, i.e.,

ur j =
(

uT
s1,r j

uT
s2,r j

. . . uT
sns ,r j

)T
.

Then, the control vector of the collection of resource types
or vehicles, R, is

u =
(

uT
r1

uT
r2

. . . uT
rnr

)T
∈ Bnu

where nu = nsnr(ns −1) is the total number of controls.
It is not difficult to show that Equations (1) and (2), which

describe the system’s evolution, can take on the following
form: ⎧⎨

⎩
x+ = x+Bin ·u−Bout ·u = x+B ·u
0 ≤ Bout ·u ≤ x
x ∈ Bnx , u ∈ Bnu

(3)

where B = Bin −Bout. Note that the entries of both x and u
take on only binary values.

For example, in case of two sectors and one vehicle, S =
{s1,s2}, R = {r1}, N (s1,r1) = {s2}, N (s2,r1) = {s1}, and
the state-space equations are:(

xs1,r1

xs2,r1

)+

︸ ︷︷ ︸
x+

=

(
xs1,r1

xs2,r1

)
︸ ︷︷ ︸

x

+

[
1 −1

−1 1

]
︸ ︷︷ ︸

B

·

(
us1←s2,r1

us2←s1,r1

)
︸ ︷︷ ︸

u

.

We can also define:

Bin =

[
1 0
0 1

]
, Bout =

[
0 1
1 0

]
.

B. Single Resource Models

An alternative model is to view all vehicles as a single
resource type. In this case, the state of the system can be
defined as

x1 = xr1 +xr2 + . . .+xrnr
∈ Bnx,1

where nx,1 = ns. Similarly, we define

u1 = ur1 +ur2 + . . .+urnr
∈ Bnu,1

where nu,1 = ns(ns −1). Thus, for suitable matrices B1 and
Bout,1, we can write⎧⎨

⎩
x+

1 = x1 +B1 ·u1

0 ≤ Bout,1 ·u1 ≤ x1

x1 ∈ Bnx,1 , u1 ∈ Bnu,1

(4)

This state-space representation has fewer states and controls
than the one of (3).

C. Adversarial environment

We consider the case that an adversarial team of vehicles
also evolves within the same arena of sectors. The two
opposing teams are subject to attrition, where attrition
could be interpreted as the result of collisions of opponent
vehicles. In this case, a possible objective of each team is
to cause the largest possible attrition to their enemies.

We model enemy vehicles to follow similar state-space
equations as those of friendly vehicles. We also assume
that the decisions of both teams are made at the same time
instants and that the current state of the opposing resources
is known.

Let superscript “ f ” denote the friendly team, and super-
script “e” denote the enemy team. Then the evolution of
both friendly and enemy vehicles can be described by⎧⎨

⎩
(
xi

)+
= xi +Bi ·ui −di(xi,x−i)

0 ≤ Bi
out ·u

i ≤ xi

xi ∈ Bni
x , ui ∈ Bni

u

, i ∈ { f ,e} (5)

where di is the attrition function that depends on the current
state of each team and −i is the opposite of i.

D. Model simplifications

The state-space equations of (5) cannot be used to
formulate a linear optimization program for future friendly
planning. The main obstacles are:

• The presence of the attrition function, which is gener-
ally nonlinear.

• The unknown control vector of the enemy resources.

In [9], a similar state-space model, but without the binary
constraints, is approximated with a linear model based on
two model simplifications that will allow the use of linear
programming.

1073

First, we remove the attrition function from the state-
space equations of (5), i.e.,⎧⎨

⎩
(
xi

)+
= xi +Bi ·ui

0 ≤ Bi
out ·u

i ≤ xi

xi ∈ Bni
x , ui ∈ Bni

u

, i ∈ { f ,e}. (6)

In other words, we assume that both teams evolve as if no
attrition will occur.

Second, since the controls of the enemy team are not
known to the friendly team, we assume that the enemy team
implements an assumed feedback policy Ge ∈ B̄ne

u×ne
x , such

that

ue = Ge ·xe (7)

where B̄ � [0,1].
Due to these two model simplifications, we can expect

that the resulting model of (6) and (7) will be significantly
different from the actual evolution described by (5). We
overcome this problem by applying a receding horizon
strategy [5].

E. Enemy Modelling

The enemy’s feedback matrix, Ge, contains the assumed
information about the future states of the enemy resources.
It is generally unknown to the friendly resources but intro-
duced for the sake of prediction in optimization. This feed-
back matrix can be used for modelling several behaviors,
such as

• anticipated paths of enemy resources,
• diffusion of enemy resources,
• probability maps of enemy resources.

In particular, for any si ∈ S, r j ∈ Re and sk ∈ Ne(si,r j),
we assume that

ue
sk←si,r j

= ge
sk←si,r j

· xe
si,r j

(8)

where ge
sk←si,r j

is the assumed feedback of the enemy
resource type r j.

Setting ge
sk←si,r j

∈ {0,1}, we define an anticipated next
destination of the opposing resource type r j. If we split the
resource level xe

si,r j
to two or more destination sectors, i.e.,

ge
sk←si,r j

< 1, then we create a diffusion of enemy resources.
Finally, ge

sk←si,r j
can be interpreted as the probability that

opposing resource type r j will move from sector si to sector
sk.

In either case, the following properties must be satisfied{
ge

sk←si,r j
∈ [0,1]

∑sk∈N(si,r j){ge
sk←si,r j

} ≤ 1
(9)

which guarantee that the control constraints of (2) hold.
In case of two sectors and one opposing vehicle, we have:(
ue

s1←s2,r1

ue
s2←s1,r1

)
︸ ︷︷ ︸

ue

=

[
0 ge

s1←s2,r1

ge
s2←s1,r1

0

]
︸ ︷︷ ︸

Ge

·

(
xs1,r1

xs2,r1

)
︸ ︷︷ ︸

xe

.

For example, if ge
s1←s2,r1

= 0.3, then 30% of xs2,r1 will move
from sector s2 to sector s1, while the rest of it will remain
in sector s2.

The great advantage of the introduction of the enemy’s
feedback matrix is that we can model enemy’s intentions
based on their current location or even their velocity.

III. OPTIMIZATION SET-UP

A. Objective function

The simplified system of friendly and enemy vehicles is
described by a system of linear equations and constraints,
(6) and (7). We now introduce a linear objective function
that will allow the use of linear programming in deriving
optimal friendly paths. Optimal paths are described by a
sequence of states.

For each team i ∈ { f ,e}, define the vector of optimized
states for a finite optimization horizon, Tp, as

Xi =
(

xi [1]T xi [2]T . . . xi [Tp]
T)T

where xi [t] ∈ Bni
x is the state vector at the t th future time-

stage. We can also define the vector Xi
1, where all vehicles

of the collection Ri are considered as a single resource type,
i.e.,

Xi
1 =

(
xi

1 [1]T xi
1 [2]T . . . xi

1 [Tp]
T)T

.

Possible objectives in an adversarial environment are:
• Minimization of intercepted friendly vehicles. (eva-

sion)
• Maximization of intercepted enemy vehicles. (pursuit)
• Tracking of a reference state vector. (surveillance)
These constraints can be represented by a linear objective

function of the form:

min
X f

1 ,U f
1

[
α f ·Xe

1 +β f ·X f
ref

]T
·X f

1 . (10)

The inner product of the friendly vector of optimized
states, X f

1 , with the corresponding enemy vector, Xe
1, in-

creases with the number of interceptions between friendly
and enemy vehicles. Therefore, in case α f < 0, interceptions
of enemy vehicles are encouraged, while α f > 0 causes
friendly vehicles to avoid enemy vehicles. Moreover, β f < 0
encourages the friendly states to become aligned to the
reference ones, X f

ref. We can always take∣∣α f
∣∣+ ∣∣β f

∣∣ = 1.

B. Constraints

The objective function of (10) is subject to the dynamics
of (6) and (7), throughout the optimization horizon Tp. In
particular, the following equations must be satisfied for each
t ∈ T � {0,1, . . . ,Tp −1}:

x f
1 [t +1] = x f

1 [t]+B f
1 ·u

f
1 [t]. (11)

Define

U f
1 =

(
u f

1 [0]T u f
1 [1]T . . . u f

1 [Tp −1]T
)T

.

1074

There exist matrices T f
xx0 and T f

xu such that the dynamic
equations of (11) are written equivalently as

X f
1 = T f

xx0
·x f

1 [0]+T f
xu ·U

f
1 . (12)

The control vector u f
1 [t] for each t ∈ T must also satisfy:

B f
out,1 ·u

f
1 [t] ≤ x f

1 [t]. (13)

It is straightforward to construct matrices T f
xu,c and T f

xx0,c,
such that the constraints of (13) take on the following form:

T f
xu,c ·U

f
1 ≤ T f

xx0,c ·x
f [0]. (14)

Furthermore, obstacle avoidance easily can be repre-
sented by orthogonality constraints, such as

(X f
obs)

T ·X f
1 = 0 (15)

where X f
obs ∈ BTpns is a vector whose entries are equal to

“1” if they correspond to the obstacles’ locations, and “0”
otherwise.

C. Mixed-integer linear optimization

The objective function of (10) in conjunction with the
dynamic constraints of (12), the control constraints of (14)
and the obstacle avoidance constraints of (15), formulate a
mixed integer linear programming optimization for friendly
planning. This optimization problem can be written as:

minimize
[
α f ·Xe

1 +β f ·X f
ref

]T
·X f

1

subject to T f
xu,c ·U

f
1 ≤ Txx0,c ·x

f
1 [0]

X f
1 −T f

xu ·U
f
1 = T f

xx0 ·x
f
1 [0]

(X f
obs)

T ·X f
1 = 0

variables X f
1 ∈ BTpn f

x,1 , U f
1 ∈ BTpn f

u,1 .

(16)

The vector of states of enemy resources, Xe
1, is not

known. As previously discussed, we can assume that enemy
resources evolve according to an assumed feedback law, Ge,
such that for each t ∈ T ,

xe[t +1] = (I+BeGe)t+1 ·xe[0]. (17)

Hence, there exists matrix Te
xx0,G such that the state-space

equations of (17) are written as

Xe
1 = Te

xx0,G ·xe
1[0]. (18)

IV. LP-BASED PATH PLANNING

The optimization of (16) is a mixed-integer linear pro-
gramming problem, where both states and controls take
values on B = {0,1}. Although there are several methods
that can be used for computing the optimal solution, such as
cutting plane methods or branch and bound [10], we prefer
to solve a linear programming problem instead. The main
reason for this preference is the computational complexity
of an integer problem.

To this end, we transform the mixed integer program
of (16) into a linear-programming-based optimization plan-
ning. This planning includes the following steps:

1) We introduce the linear programming relaxation of
the mixed integer programming problem of (16).

2) Given the non-integer optimal solution of the linear
programming relaxation, we compute a suboptimal
solution of the mixed integer programming problem.

3) We apply this solution according to a receding hori-
zon implementation.

A. Linear programming relaxation

The linear programming relaxation of (16) assumes that
the vector of optimized states, X f

1 , and controls, U f
1 , can

take any value between the vectors 0 and 1. If an optimal
solution to the relaxation is feasible to the mixed integer
programming problem, then it is also an optimal solution
to the latter [10].

In general, the solution of the linear programming re-
laxation is a non-integer vector, which means that this
solution does not belong to the feasible set of the mixed
integer programming problem. Therefore, we construct a
suboptimal solution to the relaxation that is feasible to the
mixed integer program.

B. Suboptimal solution

Define (u∗
1)

f [t] ∈ B̄n f
u,1 , where B̄ = [0,1], as the optimal

control vector to the relaxation for each t ∈ T , which will
generally be a non-integer vector between 0 and 1. A non-
integer control vector results in the splitting of friendly
resources to several one-step reachable neighboring sectors.
An example of a possible optimal solution of the linear
programming relaxation is shown in Fig. 1(a).

Fig. 1. (a) A possible optimal solution of the linear programming
relaxation. (b) The corresponding integer suboptimal solution of the mixed
integer programming problem.

Since a vehicle is represented by a binary variable, such a
splitting of resources is not feasible. For this reason, among
the control quantities that exit from the initial sector or
remain to it, we pick up the maximum of them. In Fig. 1(a)
this quantity corresponds to the control “0.3”. We assign
value “1” to this control level, while the rest of them
are assigned the value “0”. The resulting controls of the
suboptimal solution are shown in Fig. 1(b).

In this way, we define an integer control vector that
belongs to the feasible set of the mixed integer program,
while, in parallel, the sum of the resource levels remains
the same as that of the previous time-stage. We call this
solution ũ f

1 [t], t ∈ T .

1075

C. Receding horizon implementation

Due to the differences between the model used for
prediction and optimization, (6) and (7), and the “plant” to
be controlled (5), we should expect significant discrepancies
between the responses of these two models. To compensate
for this approximation, the optimization result will be
implemented according to a receding horizon manner [5].

In other words, the following algorithm is implemented:

1) Measure the current state vectors of both teams, x f

and xe.
2) Solve the linear programming relaxation of the mixed

integer program of (16). Let (u∗
1)

f [0] be the first
optimal control of the relaxation.

3) Construct a suboptimal solution, ũ f
1 [0], of the initial

mixed integer program.
4) Apply only ũ f

1 [0] and repeat.

Since the enemy resources, which are the disturbances
of the system, are state dependent and the state is bounded,
the receding horizon strategy is always stabilizing.

V. IMPLEMENTATION

In this paper, we consider a simplified version of the
RoboFlag competition [11], similar to the “RoboFlag drill”
[7], where two teams of robots are engaged in an arena of
sectors with a region at its center called the defense zone.
The defenders’ goal is the interception of the attackers,
in which case the attackers become inactive, while the
attackers’ goal is the infiltration of the defenders’ protected
zone, Fig. 2. Unlike prior work, both teams have equal
path planning capabilities using the optimization algorithm
proposed here.

Fig. 2. The RoboFlag drill.

A. Defense path planning

A defense path planning can be designed according to
the proposed LP-based path planning. The superscript “d”
denotes defenders and will replace superscript “ f ”, while
“a” denotes attackers and will replace superscript “e”.

Since defenders’ objective is the interception of the
attackers, the weight αd must be negative. In addition, a
possible reference Xd

ref for the defenders could be the sectors
close to the defense zone, so that the defenders stay always
close to it. In the following simulations, we consider the
entries of Xd

ref to be “1” for any sector that belongs to
a small zone about the defense zone and “0” otherwise.

Moreover, if defenders are not allowed to enter their defense
zone, we can set the entries of Xd

obs to be “1” for sectors
in the defense zone and “0” otherwise.

Defense path planning is complete when the stochastic
feedback matrix of the attackers, Ga, is determined. The
attackers’ first priority is the infiltration of the defense
zone. Thus, a possible feedback matrix can be one that
assigns higher probability to an attacker moving closer to
the defense zone. In this case, we can define a function
ga : Na(S,Ra)× Ra × S → [0,1], such that the probability
that the attacker r j ∈ Ra will move from sector si ∈ S to
sector sk ∈ Na(si,r j) is:

ga
sk←si,r j

=

(
γa

si
+∑sn

{
γa

sn

})
− γa

sk

(n−1) ·
(
γa

si
+∑sn

{
γa

sn

}) (19)

where γa
si

is the minimum distance from sector si to the
defense zone, n is the number of one-step reachable destina-
tions (including the current location si) and sn ∈ Na (si,r j).

The function ga satisfies the properties of (9), which
implies that a feedback matrix Ga can be defined according
to (8) and (19). Similar functions can be created to include
different opponent’s objectives.

B. Attack path planning

A similar path planning can be designed for the attackers
according to the proposed LP-based path planning. Now the
superscript “a” will replace “ f ”, while “d” will replace “e”.

The attackers’ objective is to enter defenders’ protected
zone. Therefore, the reference state vector, Xa

ref, is defined
such that its entries are equal to “1” if the corresponding
sectors belong to the defense zone, and “0” otherwise. At
the same time, attackers must avoid defenders, which is
encouraged by setting αa > 0.

A stochastic feedback matrix of the defenders, Gd , is also
necessary. The defenders’ first priority is the interception of
the attackers. Assuming that defenders create a probability
distribution of the next attackers’ locations given by (19), a
set of the attackers’ most probable future locations can be
created, say La[t], for each future time t ∈ T .

In this case, we can define a function gd : Nd(S,Rd)×
Rd × S × T → [0,1], such that the probability that the
defender r j ∈ Rd will move from sector si ∈ S to sector
sk ∈ Nd(si,r j) is:

gd
sk←si,r j

[t] =

(
γd

si
[t]+∑sn

{
γd

sn
[t]

})
− γd

sk
[t]

(n−1) ·
(
γd

si
[t]+∑sn

{
γd

sn
[t]

}) (20)

where γd
si
[t] is the minimum distance from sector si to the

set of sectors La[t], n is the number of one-step reachable
destinations (including the current location si) and sn ∈
Nd (si,r j).

The function gd satisfies the properties of (9), which
implies that a feedback matrix Gd can be defined according
to (8) and (20).

1076

C. Simulations

The efficiency of the LP-based path planning is tested
in a RoboFlag drill created in Matlab which involves three
attackers and three defenders in an arena of 300 sectors.
According to this scenario, an attacker becomes inactive
when it is intercepted by a defender.

At the beginning, the LP-based path planning for defense
is implemented with Tp = 6, αd = −1 and β d = 0, which
implies that the defenders’ priority is only the interception
of the attackers. The attackers follow pre-specified paths
towards the defense zone that are unknown to the defenders.
For this reason, the defenders use a stochastic feedback
matrix for the attackers’ future locations according to (19).

Fig. 3 shows that the defenders are able to predict
the attackers’ future locations, while at the same time
coordination is achieved, since each defender is assigned to
a different attacker. The algorithm runs in 3 sec per iteration
using Matlab/CPLEX.

Fig. 3. Defenders optimize their paths according to the LP-based path
planning against unknown but pre-specified attackers’ paths.

The efficiency of the LP-based path planning was also
tested in a more realistic situation, when both defenders
and attackers optimize their paths with Tp = 6, Fig. 4. The
defenders attach weight αd =−0.95 to getting closer to the
attackers and weight β d = −0.05 to staying closer to the
defense zone. On the other hand, the attackers use αa = 0.99
and β a =−0.01, which means that they attach more weight
to avoiding the defenders than getting closer to the defense
zone.

According to Fig. 4, attackers are now able to infiltrate
the defense zone. On the other hand, defenders make the
attackers follow longer paths towards the defense zone,
which means that it is more difficult for the attackers to find
a clear path towards the defense zone. Hence, the proposed
LP-based algorithm can be used for effective defense and
attack planning.

VI. CONCLUSIONS

In this paper, the problem of multi-vehicle coordination
in an adversarial environment was formulated as a linear
programming optimization. Both friendly and enemy vehi-
cles were modelled as different resource types in an arena

Fig. 4. Both defenders and attackers optimize their paths according to
the LP-based path planning.

of sectors, and the path planning problem was viewed as
a resource allocation problem. A simplified model allowed
the use of linear programming, while enemy forces were
assumed to follow stochastic feedback laws. The solution
was implemented according to a receding horizon strategy
due to model uncertainties. The utility of the LP-based
algorithm was tested in the RoboFlag drill, where both
teams of vehicles have equal path planning capabilities
using the proposed algorithm. Results showed that the LP-
based algorithm can be used for effective multi-vehicle path
planning in an adversarial environment.

REFERENCES

[1] T. W. McLain and R. W. Beard, “Cooperative path planning for
timing-critical missions,” in Proc. American Control Conference,
Denver, CO, June 2003, pp. 296–301.

[2] P. R. Chandler and M. Pachter, “Research issues in autonomous
control of tactical UAVs,” in Proc. American Control Conference,
Philadelphia, PA, June 1998, pp. 394–398.

[3] A. Dogan, “Probabilistic path planning for UAVs,” in 2nd AIAA
Unmanned Unlimited Systems, Technologies, and Operations, San
Diego, CA, Sept. 2003.

[4] E. Frazzoli and F. Bullo, “Decentralized algorithms for vehicle
routing in a stochastic time-varying environment,” in Proc. IEEE
Conf. on Decision and Control, Paradise Island, Bahamas, Dec. 2004.

[5] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics and constraints,” Automatica, vol. 35, pp. 407–428, Mar.
1999.

[6] A. Richards, J. Bellingham, M. Tillerson, and J. How, “Coordination
and control of multiple UAVs,” in AIAA Guidance, Navigation and
Control Conference and Exhibit, Monterey, CA, Aug. 2002.

[7] M. G. Earl and R. D’Andrea, “Modeling and control of a multi-agent
system using mixed-integer linear programming,” in Proc. 41st IEEE
Conference on Decision and Control, Las Vegas, NE, Dec. 2002, pp.
107–111.

[8] M. Flint, M. Polycarpou, and E. Fernandez, “Cooperative path-
planning for autonomous vehicles using dynamic programming,” in
Proc. IFAC 15th Triennial World Congress, Barcelona, Spain, 2002.

[9] S. Daniel-Berhe, M. Ait-Rami, J. S. Shamma, and J. Speyer, “Op-
timization based battle management,” in Proc. American Control
Conference, Arlington, VA, June 2001, pp. 4711–4715.

[10] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimiza-
tion. Belmont, MA: Athena Scientific, 1997.

[11] R. D’Andrea and R. M. Murray, “The RoboFlag competition,” in
Proc. American Control Conference, Denver, CO, June 2003, pp.
650–655.

[12] G. C. Chasparis, “Linear-programming-based multi-vehicle path
planning with adversaries,” M.S. thesis, Mechanical Eng. Dept.,
University of California, Los Angeles, CA, June 2004.

1077

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

