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Abstract— In this paper, cooperative control of dynamic
systems is formulated as the problem of choosing a linear
feedback control law of the systems’ outputs and making
the states of individual systems converge to the same steady
state. As such, cooperative behavior of the overall system
can be studied by investigating the convergence property of
products of row stochastic matrices. Two new results on the
convergence of matrix products are obtained, one on products
of lower-triangular matrices and the other on products of
lower-triangular matrices and general matrices. Neither of the
two results requires that matrices be irreducible, and they can
be used as the tools for the design and stability analysis of
cooperative control. In particular, less-restrictive conditions
on the design of cooperative control feedback matrices are
established for a general class of MIMO dynamic systems
of finite but arbitrary relative degree. The proposed design
doesn’t require either the directed robot sensor graph being
irreducible or a fixed leader. An example is provided to
illustrate the proposed design method and new results.

I. INTRODUCTION

The study of cooperative control for multiple robots has

been motivated by the flock behavior of animals. As early

as 1980’s, Reynolds introduced the first computer animation

of flocking by using the local control strategies: cohesion,

separation, and alignment [8]. In [9], a flocking model for a

group of particles moving in the plane was proposed using

the “neighboring rules” and verified through simulations.

The theoretical explanation of this “nearest neighbor rules”

was recently given in [5] by using graph theory. It is

proved that all the agents’ headings converge to a common

value provided that the undirected sensor graphs for all

agents are periodically strongly connected. The extension

to the case of directed sensor graph was done in [11][6].

In our recent paper [7], we further extended those results

to the case of dealing with a class of general MIMO

dynamic systems of finite but arbitrary relative degree, and

studied the coordination behavior of the overall system

under leader-follower cooperative control while the directed
sensor graphs always being not strongly connected.

In this paper, as a continuation of [7], we address the

leaderless cooperative control problem by finding a set of

less-restrictive conditions on the connectivity requirements

among robots. Our study starts with exploiting the new

convergence properties of the product of row stochastic

matrices [10]. First, for a class of row stochastic matrices
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in the lower-triangular structure, we find an easy-to-check

condition on its convergence and give an elegant proof

(theorem 2.1). Then, by presenting one important result on

the property of row stochastic matrices (lemma 2.4), an im-

portant convergence result on the product of two combined

sequences of row stochastic matrices are established (theo-

rem 2.2). In particular, a necessary and sufficient condition

is given for row stochastic matrices in the lower-triangular

structure (corollary 2.1), which has direct application to

find the less-restrictive conditions on leaderless cooperative

control. Third, by using the new convergence results on row

stochastic matrices, we consider a group of MIMO dynamic

systems of finite but arbitrary relative degree and propose

a new guideline for the design of cooperative controls. The

obtained less-restrictive conditions are easy-to-check and

don’t require the irreducibility of directed sensor graphs.

Moreover, no fixed leader is required during the motion of

robots. It is proved that the overall system will converge to

the same steady state. The contribution of this paper is two-

fold: first, we obtain some new results on the convergence of

row stochastic matrices (theorem 2.1, lemma 2.4, theorem

2.2, and corollary 2.1), which provide a rigorous framework

for the stability analysis of cooperative control systems;

second, we find a set of less-restrictive conditions on the

connectivity requirements among robots, and establish a

guideline for the design of leaderless cooperative control.

The proposed method is applicable to a general class of

systems which can be transformed into the canonical model

given in the paper.

Throughout the paper, the following notations and defini-

tions are used. Let 1p be the p-dimensional column vector

with all its elements being 1, and Jr1×r2 ∈ �r1×r2 be a ma-

trix whose elements are all 1. A nonnegative matrix has all

entries nonnegative. A square real matrix is row stochastic

if it is nonnegative and its row sums all equal 1. For a row

stochastic matrix E, define δ(E) = maxj maxi1,i2 |Ei1j −
Ei2j |, which measures how different the rows of E are.

Also, define λ(E) = 1 − mini1,i2

∑
j min(Ei1j , Ei2j).

Given a sequence of nonnegative matrix E(k), E(k) �
0, k = 0, 1, · · · , means that, there is a sub-sequence {lv, v =
1, · · · ,∞} of {0, 1, 2, · · · ,∞} such that limv→∞ lv = +∞
and E(lv) �= 0, that is, there exists at least one element

Eij(lv) ≥ ε for ε > 0. A non-negative matrix E is said to be

reducible if the set of its indices, I �
= {1, 2, · · · , n}, can be

divided into two disjoint nonempty sets S �
= {i1, i2, · · · , iµ}

and Sc �
= I/S = {j1, j2, · · · , jν} (with µ+ν = n) such that

Eiαjβ
= 0, where α = 1, · · · , µ and β = 1, · · · , ν. Matrix
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E is said to be irreducible if it is not reducible. A square

matrix E ∈ �n×n can be used to define a directed graph

with n nodes v1, · · · , vn, and there is a directed arc from vi

to vj if and only if Eij �= 0. A directed graph represented

by E is strongly connected if between every pair of distinct

nodes vi, vj there is a directed path of finite length that

begins at vi and ends at vj . The fact that a directed graph

represented by E is strongly connected is equivalent to that

matrix E is irreducible [4].

II. NEW RESULTS ON PRODUCTS OF ROW STOCHASTIC

MATRICES

The classical convergence result of the infinite products

of sequences of row stochastic matrices [10] has been

recently applied in the study of coordination behavior

of groups of agents [5][11]. In this section, we further

exploit the convergence properties of the infinite products

of sequences of row stochastic matrices and establish some

new relaxed conditions which have direct applications to

the cooperative control design of mobile robots.

Lemma 2.1: [10][11] Consider a finite or infinite set of

row stochastic matrices {Pi ∈ �R×R} satisfying 0 ≤
λ(Pi) ≤ δ < 1. Then, for each infinite sequence,

Pl1 , Pl2 , · · · , there exists a row vector c ∈ �1×R such that

lim
k→∞

k−1∏
j=0

Plk−j
= 1Rc.

Lemma 2.1 presents a powerful result on the convergence

of the product of arbitrary infinite sequence generated

from set {Pi ∈ �R×R}. However, in the applications to

cooperative control, we are more interested in the study

of the convergence property of a given sequence of row

stochastic matrices. Given a sequence of row stochastic

matrices P (k) ∈ �R×R, it follows from lemma 2.1 that

limk→∞
∏k−1

l=0 P (k − l) = 1Rc if 0 ≤ λ(P (k)) ≤ δ < 1
for every k. However, this condition on P (k) is relatively

strong and is also not necessary. For example, given a matrix

P =

⎡
⎣ 1 0 0

0.1 0.9 0
0 0.7 0.3

⎤
⎦ ,

we have λ(P ) = 1, but it can be easily verified that

liml→∞ P l = 1c with c = [1, 0, 0].
In what follows, we will find the relaxed conditions on

P (k) such that
∏k−1

l=0 P (k − l) will converge as k → ∞,

which is useful for establishing the less-restrictive condi-

tions on the connectivity requirements for groups of robots

in the design of cooperative control. The following lemma

can be concluded from lemma 2.1 and provides a relaxed

condition on the convergence of a class of sequence P (k).
Lemma 2.2: Given a sequence of row stochastic ma-

trices P (k) ∈ �R×R. If there is a sub-sequence

{lv, v = 0, 1, · · · ,∞, l0 = 0} of {0, 1, 2, · · · ,∞} such that

limv→∞ lv = +∞ and 0 ≤ λ(Q(k)) ≤ δ < 1, where

Q(k) = P (lk)P (lk − 1) · · ·P (lk−1 + 1), k = 1, 2, · · · ,∞,

then limk→∞
∏k−1

l=0 P (k−l) = 1Rc with c being a constant

vector. Furthermore, if P (k) is in the lower-triangular

structure with positive diagonal elements, then the condition

is both sufficient and necessary.

Proof: Omitted. �

Remark 2.1: For general P (k), the condition

in lemma 2.2 is not necessary. For example,

given P = [0.2, 0.5, 0.3; 0.3, 0.5, 0.2; 0.2, 0.5, 0.3]
and Q = [0.1, 0, 0.9; 0, 1, 0; 0.2, 0, 0.8], the

product P ∗ Qn = [0.0909, 0.5000, 0.4091;
0.0909, 0.5000, 0.4091; 0.0909, 0.5000, 0.4091] as n → ∞.

However, since λ(Qn) = 1, we cannot find the sub-

sequence {lv}. �

Lemma 2.2 gives a condition on convergence of sequence

P (k). However, it is usually difficult to find the sub-

sequence {lv} and also not easy to check the value of

λ(Q(k)). It would be desirable to have the direct conditions

on P (k). In what follows, we first present such a condition

for a sequence of row stochastic matrices in the lower-

triangular structure, and then extend it to the more general

case. Before proceeding, the following lemma is required

which gives a general result on the convergence of a

discrete-time system satisfying some properties.

Lemma 2.3: Consider the following discrete-time equa-

tion

Qi(k) = Pij(k)Qj(k − 1) + Pii(k)Qi(k − 1), i �= j (1)

where Qi(k) ∈ �ri×R and Qj(k) ∈ �rj×R satisfying

Qi(k)1R = 1ri
and Qj(k)1R = 1rj

, and Pij(k) ∈ �ri×rj

and Pii(k) ∈ �ri×ri satisfying Pij(k)1rj
+ Pii(k)1ri

=
1ri

, and Qi(k) ≥ 0, Qj(k) ≥ 0, Pij(k) > 0 and Pii(k) >
0. If limk→∞ Qj(k) = 1rj

cj with cj ∈ �1×R being a

constant vector, and there exists a constant ε < 1 such that

|Q̃j(k)| = |Qj(k) − 1rj
cj | ≤ εkJrj×R, (2)

then,

lim
k→∞

Qi(k) = 1ri
cj . (3)

Proof: omitted. �

Theorem 2.1: Consider a sequence of nonnegative, row

stochastic matrices in the lower-triangular structure

P (k) =

⎡
⎢⎢⎢⎣

P11(k)
P21(k) P22(k)

...
...

. . .

Pm1(k) Pm2(k) · · · Pmm(k)

⎤
⎥⎥⎥⎦ ∈ �R×R,

where R =
∑m

i=1 ri, sub-blocks Pii(k) on the diagonal

are square and of dimension �ri×ri , sub-blocks Pij(k)
off diagonal are of appropriate dimensions. Suppose that

Pii(k) ≥ εiJri×ri
for some constant εi > 0 and for all

(i = 1, · · · ,m), and in the ith row of P (k) (i > 1), there

is at least one j (j < i) such that Pij � 0. Then,

lim
k→∞

k−1∏
l=0

P (k − l) = 1Rc,
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where constant vector c = [c1, 0, · · · , 0] ∈ �1×R with c1 ∈
�1×r1 .

Proof: The proof can be done by induction

using lemma 2.3. Define Q(k) =
∏k−1

l=0 P (k − l)
and the ith row of Q(k) being Qi(k) =
[Qi1(k), Qi2(k), · · · , Qii(k), 0, · · · , 0].
(i) Since sub-block P11(k) ≥ ε1Jr1×r1 is row stochastic,

and 0 ≤ λ(P11(k)) ≤ σ1 < 1, where σ1 = 1 − r1ε1, thus,

it follows from lemma 2.2 that

lim
k→∞

k−1∏
l=0

P11(k − l) = 1r1c1
�
= P ∗

11.

On the other hand, since∣∣∣∣∣
k−1∏
l=0

P11(k − l) − P ∗
11

∣∣∣∣∣ ≤ δ

(
k−1∏
l=0

P11(k − l)

)
Jr1×r1 ,

it then follows from δ
(∏k−1

l=0 P11(k − l)
)

≤∏k−1
l=0 λ(P11(k − l)) [10] that,

∣∣∣∏k−1
l=0 P11(k − l) − P ∗

11

∣∣∣ ≤
σk

1Jr1×r1 , and |Q1(k) − 1r1c1| ≤ σk
1Jrj×R.

(ii) Consider i = 2. Since for P21(k) � 0, we can always

construct a new sequence S(k) such that S21(k) > 0 for all

k [7]. Without loss of generality, we assume that P21(k) >
0. It follows that

Q2(k) = P21(k)Q1(k − 1) + P22(k)Q2(k − 1).

Noting that P21(k)1r1 + P22(k)1r2 = 1r2 , and P21(k) >
0 and P22(k) > 0, it then follows from lemma 2.3 that

limk→∞ Q2(k) = 1r2c2.

(iii) For general i ≥ 2, without loss of generality, suppose

that Pij1 � 0 and Pij2 � 0, and

lim
k→∞

Qj1(k − 1) = 1rj1
cj1 = 1rj1

cj ,

lim
k→∞

Qj2(k − 1) = 1rj2
cj2 = 1rj2

cj .

Note that Qi(k) = Pij1(k)Qj1(k−1)+Pij2(k)Qj2(k−1)+
Pii(k)Qi(k−1). Similarly, it follows from Pij1(k)1rj1

cj +
Pij2(k)1rj2

cj + Pii(k)1ri
cj = 1ri

cj and using lemma 2.3,

we have limk→∞ Qi(k) = 1ri
cj . �

Theorem 2.1 provides an easy-to-check condition for the

convergence of a sequence of row stochastic matrices P (k)
in the lower-triangular form, which can find the application

to the design and analysis of leader-follower cooperative

control [7]. However, for the design and analysis of cooper-

ative controls in the case of general connectivity topologies

(leaderless) within the network, we need to study the

convergence properties of sequences of lower-triangular row

stochastic matrices with mixed permutation matrices. That

is, we need further study the convergence of the product of a

sequence of row stochastic matrices T (k)P (k)T T (k) where

P (k) is in the triangular form and T (k) is the permutation

matrix.

In general, given P (k) satisfying the conditions in the-

orem 2.1, the convergence cannot be guaranteed any more

when permutation matrices are incorporated into the se-

quence. New conditions have to be exploited. For example,

consider

P1 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

0.1 0 0.9 0
0 0 0 1

⎤
⎥⎥⎦ , P2 =

⎡
⎢⎢⎣

1 0 0 0
0.2 0.8 0 0
0 0 1 0
0 0.2 0 0.8

⎤
⎥⎥⎦

It is easy to verify that limn→∞(P1P2)n =
1

[
1 0 0 0

]
. However, given permutation matrix

T =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

the product (P1TP2T
T )n will not converge as

lim
n→∞(P1TP2T

T )n =

⎡
⎢⎢⎣

0.2857 0 0.7143 0
0 1 0 0

0.2857 0 0.7143 0
0.2857 0 0.7143 0

⎤
⎥⎥⎦ .

An important convergence result on the combination of

two sequences of row stochastic matrices is stated in the

following theorem. Before presenting this theorem, we first

give the following lemma which shows how the property

of λ(·) < 1 is preserved when additional row stochastic

matrices are inserted into the product of row stochastic

matrices.

Lemma 2.4: Given row stochastic matrices L ∈ �R×R,

M ∈ �R×R, and Q ∈ �R×R. Suppose that the values

of the positive elements of L and M are greater than εl

and εm, respectively. Let S = LM and P = LQM . If

0 ≤ λ(S) ≤ δs < 1, and Qii ≥ εq > 0, then λ(P ) ≤ δp < 1
with δp = 1 − (1 − δs)εq.

Proof: Consider any pair of rows of S, say rows 1 and

2. Since S satisfies λ(S) ≤ δs < 1, there will exist γ such

that both S1γ > 0 and S2γ > 0. It follows from

S1γ =
R∑

β=1

L1βMβγ , S2γ =
R∑

β=1

L2βMβγ ,

that there are some values of β for which L1β > 0 and

Mβγ > 0. Let β1 be such a value. Similarly, let β2 be such

that L1β2 > 0 and Mβ2γ > 0. It follows from

[LQ]1β1 =
R∑

α=1

L1αQαβ1 ≥ L1β1Qβ1β1 > 0,

that

P1γ =
R∑

α=1

[LQ]1αMαγ ≥ [LQ]1β1Mβ1γ > 0.

Similarly, we have P2γ > 0. To this end, we can find a

positive constant δp such that λ(P ) ≤ δp < 1. It follows

from the fact that the values of the positive elements of L
and M are greater than εl and εm, that δs = 1 − εlεm. On
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the other hand, it is easy to see that δp = 1− εlεqεm. Thus,

we have δp = 1 − (1 − δs)εq . �

Theorem 2.2: Consider sequences of row stochastic ma-

trices L(k) ∈ �R×R and M(k) ∈ �R×R. If there exists a

subsequence {kv, v = 1, · · · ,∞, k1 = 1} of {1, 2, · · · ,∞}
such that limv→∞ lv = +∞ and

0 ≤ λ(L(kv+1 − 1) · · ·L(kv + 1)L(kv)) ≤ δlkv
< 1, (4)

and M(k) satisfies Mii(k) ≥ εm > 0, then

lim
k→∞

k−1∏
l=0

L(k − l)M(k − l) = 1Rc1, (5)

and

lim
k→∞

k−1∏
l=0

M(k − l)L(k − l) = 1Rc2, (6)

where c1 and c2 are constant vectors.

Proof: To prove (5), we only need show that

0 ≤ λ

⎛
⎝kv+1−kv∏

l=1

L(kv+1 − l)M(kv+1 − l)

⎞
⎠ ≤ δlmkv

, (7)

where δlmkv
< 1. It follows from (4) and lemma 2.4 and

Mii(kv+1 − 1) ≥ εm > 0 that λ(L(kv+1 − 1)M(kv+1 −
1)L(kv+1−2) · · ·L(kv +1)L(kv)) ≤ 1−(1−δlkv

)εm < 1.

Repeatedly using lemma 2.4 leads to (7) with δlmkv
= 1−

(1 − δlkv
)εkv+1−kv

m . To this end, by using lemma 2.2, we

have (5). (6) can proved similarly. �

By using theorem 2.2, one can obtain the following

corollary, which provides a general guideline for the choice

of cooperative control while guaranteeing the convergence

of overall system. In next section, we will show a direct

application of the following corollary, and establish the less-

restrictive conditions on the connectivity of robots and the

design of cooperative control.

Corollary 2.1: Given sequences of row stochastic ma-

trices P (k) ∈ �R×R and P ′(k) ∈ �R×R, where P (k)
is in the lower-triangular structure and P ′(k) satisfying

P ′
ii(k) ≥ εp > 0. Then,

lim
k→∞

k−1∏
l=0

P (k − l)P ′(k − l) = 1Rc1, (8)

if and only if limk→∞
∏k−1

l=0 P (k − l) = 1Rc2, where c1

and c2 are constant vectors.

Proof: Omitted. �

III. APPLICATIONS TO COOPERATIVE CONTROL

Consider a group of autonomous robots whose dynamics

can be transformed into the following canonical form

ẋi = Aixi + Biui, yi = Cixi, η̇i = gi(ηi, xi), (9)

where i = 1, · · · , q, li ≥ 1 is an integer, xi ∈ �lim, ηi ∈
�ni−lim, Im×m is the m-dimensional identity matrix, ⊗

denotes the Kronecker product, Jk is the kth order Jordan

canonical form given by

Jk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0

0 −1 1
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 · · · −1 1 0
0 0 0 · · · −1 1
0 0 0 · · · 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ �k×k,

Ai = Jli ⊗ Im×m ∈ �(lim)×(lim), Bi =
[

0
Im×m

]
∈

�(lim)×m, Ci =
[

Im×m 0
] ∈ �m×(lim), yi ∈ �m

is the output, ui ∈ �m is the cooperative control law to

be designed, and subsystem η̇i = gi(ηi, xi) is input-to-

state stable. Without loss of any generality, in this paper

we consider the case that l1 = l2 = · · · = lq = l.
The objective is to synthesis a general class of cooperative

control and establish the conditions on network connectivity

requirements such that the all states of the overall system

converge to the same steady state.

A. Leaderless Cooperative Control

Let the cooperative control be given by: for i = 1, · · · , q,

ui = Gi(t)y, (10)

where Gi =
[

Gi1 · · · Giq

]
with Gij ∈ �m×m being

the interconnection matrix satisfying the properties that

Gi1mq = 1m, and y = [yT
1 · · · yT

q ]T . Assume that Gi(t)
be piecewise constant for all i. It is obvious that the value

of Gij depends on the connection between the ith robot and

the jth robot. In practise, the feedback matrix G(t) must

change over time according to physical surroundings. In this

paper, we consider the situation that robot sensors have a

limited field of view, such as a cone-like field of view.

It follows from (9) and (10) that the closed-loop overall

system is given by

ẋ = (A + D(t))x = (−INq×Nq
+ D̄(t))x, (11)

where x = [xT
1 , · · · , xT

q ]T ∈ �Nq , Nq =
mql, xi = [xT

i1, x
T
i2, · · · , xT

il ]
T ∈ �ml, xij =

[xij1, xij2, · · · , xijm]T ∈ �m with i = 1, · · · , q,

and j = 1, · · · , l, A = diag{A1, · · · , Aq} ∈
�Nq×Nq , C = diag{C1, · · · , Cq} ∈ �(mq)×Nq ,

B = diag{B1, · · · , Bq} ∈ �Nq×(mq), G =[
GT

1 · · · GT
q

]T ∈ �(mq)×(mq), D = BGC, and

D̄(t) = [D̄ij ] with (i = 1, · · · , q)

D̄ii =
[

0 I(l−1)×(l−1) ⊗ Im×m

Gii 0

]
∈ �lm×lm,

and

D̄ij =
[

0 0
Gij 0

]
∈ �lm×lm, i, j = 1, · · · , q, i �= j.

1069



B. Conditions on Cooperative Control Design

To achieve the cooperative control objective, most re-

cent results require that the sensor graphs (undirected or

directed) are strongly connected at lease once in each time

interval of some length [5][11]. In this paper, we extend the

result to the case of that the directed sensor graph is not

strongly connected.

Define the robot sensor matrix as S(t) = [Sij(t)] ∈
�q×q , where Sii = 1 which means that robot always has

sensor information itself; Sij = 1 for i �= j if the ith robot

can sense the jth robot, otherwise Sij = 0. The feedback

gain matrix G(t) will be designed according to connectivity

topologies of robot sensor matrix. Let {tG
k : k = 0, 1, · · ·}

with tG0 = t0 be the sequence of time instants at which G(t)
changes (i.e., S(t) changes). That is, G(t) = G(tG

k ) over the

time interval t ∈ [tGk , tGk+1). If there are only finite changes

for G(t), that is, for t > tGi , G(t) = G(tGi ), we can always

partition the remaining time to generate an infinite time

interval [tGk , tGk+1). Suppose that 0 < tGk+1 − tGk ≤ tmax.

If the robot sensor matrix S(t) is irreducible, then the

corresponding feedback matrix G(t) can also be made

irreducible. In such a situation, the convergence result has

been obtained for simple linear system with relative degree

one [11], and it is further extended to a general class of

MIMO systems of finite but arbitrary relative degree as

given by (9) [7]. However, the condition that the robot

sensor matrix S(t) is irreducible, is still strong. In what

follows, we study the coordination of group of autonomous

robots in the case that robot sensor matrix S(t) is always

reducible, and propose less-restrictive conditions on the

design of cooperative control feedback matrix.

It is shown in [1][3] that, if S(t) is reducible, then there

is a permutation matrix T1 ∈ �q×q such that ST1(t) =
TT

1 S(t)T1 is in the lower-triangular structure, that is

ST1(t) =

⎡
⎢⎢⎢⎣

ST1,11(t) 0 · · · 0
ST1,21(t) ST1,22(t) · · · 0

...
...

. . .
...

ST1,k1(t) ST1,k2(t) · · · ST1,kk(t)

⎤
⎥⎥⎥⎦ ,

where ST1,ii ∈ �qi×qi ,
∑k

i=1 qi = q, and ST1,ii(t) are

irreducible. Correspondingly, we have augmented permu-

tation matrices T2 = T1 ⊗ Im×m ∈ �qm×qm and T3 =
T1 ⊗ Ilm×lm ∈ �qlm×qlm, such that

GT2(t) = T T
2 G(t)T2

=

⎡
⎢⎢⎢⎣

GT2,11(t) 0 · · · 0
GT2,21(t) GT2,22(t) · · · 0

...
...

. . .
...

GT2,k1(t) GT2,k2(t) · · · GT2,kk(t)

⎤
⎥⎥⎥⎦ ,(12)

where GT2,ii(t) is irreducible, and the state transformation

is x = T3z. To this end, the system dynamic (11) becomes

ż = −(I − T T
3 D̄T3)z. (13)

Remark 3.1: Generally, the case of qi �= 1 means that

the q robots reformulate k subgroups with k < q. �

The following theorem states the main result of the paper

and gives the less-restrictive conditions on the design of

cooperative control feedback matrix.

Theorem 3.1: Consider the cooperative control of system

(9) under (10). Suppose that the signal transmission matrix

S(tGk ) is reducible for almost all k. If there exists a sub-

sequence {sv, v = 0, 1, · · · ,∞} of {0, 1, 2, · · · ,∞}, such

that ST1(t
G
sv

) is in the same lower-triangular structure (that

is, T1(tGsv
) = T1c for all v, where T1c is a fixed permutation

matrices), and satisfies the conditions that (i) ST1,ii(tGsv
)

is irreducible and (ii) for every i > 1, there is at least

one j such that ST1,ij(tGsv
) � 0, j < i. Then, while

the corresponding feedback matrix G(tG
k ) is according to

connectivity topology S(tGk ), in particular, G(tGsv
) can be

chosen to satisfy the following properties:

(a) GT2,ii(tGsv
) becomes irreducible;

(b) for every i > 1, there is at least one j such that

GT2,ij(tGsv
) � 0, j < i.

Under such a choice of G(t), the stability of the overall

closed-loop system can be guaranteed with

lim
t→∞x(t) = 1Nq

cx(tG0 ), (14)

where constant vector c ∈ �1×Nq .

Proof: For briefness, let T3(k) = T3(tGk ) and P (k) =
P (tGk ). It follows that the solution of (13) is given by

x(tGk+1) =
k∏

l=0

T3(k − l)P (k − l)T3(k − l)T x(tG0 ), (15)

where

P (i) = e−(I−T T
3 (i)D̄(tG

i )T3(i))(t
G
i+1−tG

i ), i = 0, · · · , k. (16)

It follows from GT2(t
G
k ) is in the lower-triangular structure

that D̄T3(t
G
k ) = TT

3 (k)D̄(tGk )T3(k) and P (k) are also in the

lower-triangular structure. Moreover, P (k) is row-stochastic

matrix and its diagonal elements are lower-bounded by a

positive value [2]. To prove (14), it suffices to prove that

lim
k→∞

k∏
l=0

T3(k − l)P (k − l)T3(k − l)T = 1Nq
c. (17)

Note that if GT2,ii(tGsv
) is irreducible, then D̄T3,ii(tGsv

)
is irreducible and Pii(sv) > 0 [7]. On the other hand,

GT2,ij(tGsv
) � 0 leads to D̄T3,ij(tGsv

) � 0 and Pij(sv) � 0.

It then follows from assumption ?? and theorem 2.1 that

lim
v→∞P (sv)P (sv−1) · · ·P (s0) = 1Nq

cs, (18)

where cs is a constant vector. Define P ′(sv) =
T3(sv)T T3(sv − 1)P (sv − 1)TT

3 (sv − 1) · · ·T3(sv−1 +
1)P (sv−1 + 1)TT

3 (sv−1 + 1)T3(sv−1). Since Pii(·) > 0,

then P ′
ii(·) > 0. To this end, the theorem follows from

corollary 2.1. �

Remark 3.2: The proposed conditions for cooperative

control design in theorem 3.1 is flexible in the sense that

1070



we do not require the robot sensor graph to be strongly

connected. There is also no need to have the fixed leader in

the group. When T1(tGk ) are same for all k, the cooperative

control strategy in theorem 3.1 becomes the leader-follower

strategy with the fixed leader as discussed in [7]. When

T1(tGk ) = Im×m, ∀k, the result in theorem 3.1 recover the

cases discussed in [11][5]. �

IV. ILLUSTRATIVE EXAMPLE

In this section, an example is given to illustrate the

cooperative control method studied in this paper. Consider

a group of three nonholonomic 4-wheel differential driven

mobile robots. By taking the robot “hand” position as the

guide point, whose model can be feedback linearized to a

double integrator with a stable internal dynamics [7]:

żi1 = zi2

żi2 = vi2
(19)

where i = 1, 2, 3, zi1 = [zi11, zi12]T ∈ �2 is the position

of particle i, zi2 = [zi21, zi22]T ∈ �2 its velocity, and vi =
[vi1, vi2]T ∈ �2 its acceleration inputs. The cooperative

control objective is that all particles move to the same

position, this is called an agreement problem.

Define the state and input transformations as follows:

xi1 = zi1, xi2 = xi1 + zi2, vi = −2xi2 + xi1 + ui.

Then system model can be transformed into

ẋi1 = −xi1 + xi2, ẋi2 = −xi2 + ui,

where u = Gy with y = [xT
11, x

T
21, x

T
31]

T . To this end, the

cooperative control method in this paper can be used for

the design of G. For illustration purpose, assume that two

kinds of situations run alternatively during the robot motion

process: (i) robot 1 as the leader, robot 2 follows robot 1

and robot 3 follows robot 1; (ii) each robot runs by itself.

The corresponding robot sensor matrices are

S(1) =

⎡
⎣ 1 0 0

1 1 0
1 0 1

⎤
⎦ , S(2) =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ .

Let the corresponding G(t) be

G(1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 0 0 0 0

0.5 0 0 0.5 0 0
0 0 1 0 0 0
0 0.5 0 0 0 0.5
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

G(2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It is easy to verify that G(1) satisfies the conditions in

theorem 3.1. In the simulation, the initial positions are

[6, 3]T , [2, 5]T and [4, 2]T , respectively. Figure 1 shows the

convergence of robots’ position, which verifies the proposed

design in this paper.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

robot 1 

robot 2 

robot 3 

Fig. 1. Convergence of positions under cooperative control

V. CONCLUSION

In this paper, we studied the cooperative control strategy

for a general class of MIMO dynamic systems of finite

but arbitrary relative degree. A general guideline for the

design of cooperative control is proposed, and the stability

of overall closed-loop system is rigorously analyzed. The

proposed method is less-restrictive in the sense that neither

sensor graph’s strong connectivity nor fixed leader are re-

quired. The approach can be easily applied to the formation

stabilization and formation tracking control of robots due

to the general framework established in the paper.
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