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Abstract— We investigate the solution of a large class of
fixed-final-state optimal control problems by a group of
cooperating dynamical systems. We present a pursuit-based
algorithm – inspired by the foraging behavior of ants – that
requires each system-member of the group to solve a finite
number of optimization problems as it follows other members
of the group from a starting to a final state. Our algorithm,
termed “sampled local pursuit”, is iterative and leads the
group to a locally optimal solution, starting from an initial
feasible trajectory. The proposed algorithm is broad in its
applicability and generalizes previous results; it requires only
short-range sensing and limited interactions between group
members, and avoids the need for a “global map” of the
environment or manifold on which the group evolves. We
include simulations that illustrate the performance of our
algorithm.

I. INTRODUCTION

In nature, many animal groups exhibit highly organized
and efficient “collective behaviors”, despite their members’
limited intelligence. For instance, worker honey bees can
coordinate their distribution among different flowers in
accordance with the profitability of each source; a school
of fish can move together in a tight formation; ants can
recruit nest-mates to form efficient foraging trails [1], [2],
[3]. These examples illustrate how aggregate behavior may
be qualitatively different from individual actions and that
cooperation among members of a natural collective helps
them overcome their limitations and accomplish complex
tasks that may be impossible for them to attain individually.

Observations of the qualitatively similar behaviors of
members of animal groups, coupled with their cognitive
and physical limitations, support the conclusion that their
collective efficiency and elegance are self-organized and
must be “encoded” in fairly simple patterns (as far as
individual actions are concerned), in contrast to the complex
performance of the group. Moreover, many of the tasks
performed by natural groups are functionally similar to
what one might require from engineered collectives. In
some cases, members of a biological group and those
of a decentralized group of autonomous systems operated
under similar constraints in the sense that they are both
usually equipped with limited sensing, communication and
computing capabilities.

The potential of a group to “be more than the sum
of its members” has already seeded a variety of recent
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research directions in system and control community, from
modeling of animal groups [1], [4], [5], to distributed
collective covering and searching [6], [7], estimating by
groups [8], [9], biologically-motivated optimization [10],
[11] and cooperative robotic teams [12], [13]. The objective
of this paper is to investigate the biologically-inspired
cooperative solution to a class of optimal control problems
with fixed final states. We are particularly interested in
applying models of the foraging behavior of ants, which
are well-known path optimizers (see for example [1]).

One of the early optimization methods inspired by trail
formation in ants was presented in [4], where it was shown
that ants that “pursued” one another on R

2 (each pointing its
velocity vector towards a predecessor) had the effect of pro-
ducing progressively “straighter” trails. That idea was later
extended to kinematic vehicles moving on non-Euclidean
environments [14]. Both these works were restricted ex-
clusively to the “discovery” of geodesics, meaning that the
autonomous systems-members of the group had very simple
dynamics with no drift terms. In this paper we show that
the earlier work can be generalized to a much broader class
of optimal control problems, and agents1 with non-trivial
dynamics. We propose an iterative, decentralized algorithm
that involves “local pursuit” (to use the term coined in
[4]), of members of a collective, this time in a broader
and more intricate setting. Our algorithm has lower com-
putational requirements than previous “continuous pursuit”
formulations [15], [16] and requires agents to communicate
with their neighbors a finite number of times. The agents
do not need a global map of their environment or even
an agreed-upon common coordinate system. The proposed
algorithm is most useful in trajectory optimization problems
which are easier to solve when boundary conditions are
“close” to one another (because of, for example, the agents’
computational or sensing limitations), with the term “close”
taken to include not only geographical separation but also
distance on the manifold on which copies of a dynamical
system evolve.

The remainder of this paper is organized as follows: In
Sec. II we describe the class of optimal control problems we
are concerned with and propose an iterative, decentralized
solution, termed “sampled local pursuit”, which is inspired
by the foraging behavior of ants. Section III contains the
main results discussing the behavior of a collection of
control systems evolving under the proposed algorithm. Sec.
IV presents a pair of simulations designed to illustrate the
performance of sampled local pursuit.

1Throughout the paper we will use “agent” to refer to a member of a
group of control systems.
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II. A DISCRETE BIO-INSPIRED ALGORITHM
FOR OPTIMAL CONTROL

We are interested in optimal control problems using a
group of cooperating “agents”. For our purposes, each agent
is a “copy” of a dynamical system:

ẋk = f(xk, uk), xk(t) ∈ R
n
, uk(t) ∈ Ω ⊂ R

m (1)

for k = 0, 1, 2 . . .. Physically, each copy of (1) could
stand for a robot, UAV or other autonomous system. Each
xk(t) : [0, T ] → R

n represents a trajectory defined by the
kth agent’s evolution.

A. Problem Statement and Notation

Assume that there is a pair of states x0 and xf which
are equilibrium points2 of (1) for u = 0. The problem
we are concerned with is finding a trajectory x∗(t) (t ∈
[0, T ], T fixed) that minimizes

J(x, ẋ, t0, T ) =

∫ t0+T

t0

g(x(t), ẋ(t), t)dt (2)

with x(t0) = x0, x(t0+T ) = xf , g(·, ·, ·) ≥ 0, and subject
to (1).

It will be convenient to define the following notation. Let
D ⊂ R

n be a domain containing states a and b. Assume
0 < σ ≤ T and t0 ≥ 0. The optimal trajectory from a to
b in fixed T units of time will be denoted by x∗(t) (t ∈
[t0, t0 + T ]) satisfying:

J(x∗, ẋ∗, t0, T ) = min
x

J(x, ẋ, t0, T ), (3)

subject to x(t0) = a, x(t0 + T ) = b. We define the cost of
following the optimal trajectory from a to b for σ units of
time with:

η(a, b, T, t0, σ) �

∫ t0+σ

t0

g(x∗(t), ẋ∗(t), t)dt σ ≤ T (4)

where the optimal trajectory x∗(t) is defined in (3).
For a generic trajectory x(t) of (1), we define

C(x, t0, σ) �

∫ t0+σ

t0

g(x(t), ẋ(t), t)dt (5)

to be the cost incurred along x(t) during [t0, t0 + σ).
The following can be derived easily from the properties

of optimal trajectories and are helpful in future argument.

Fact: Let η, C be defined by (4),(5), let xk(t) be a
trajectory of (1) and x∗(t) an optimal trajectory of (3).
Then:

1) η(a, b, T, t0, σ) ≤ C(xk, t0, σ) for any x∗(t) sat-
isfying (3) with xk(t0) = x∗(t0), xk(t0 + σ) =
x∗(t0 + σ).

2) η(a, c, T, t0, T ) ≤ η(a, b, σ, t0, σ)+η(b, c, T −σ, t0 +
σ, T − σ)

3) C(xk, t0, T ) = C(xk, t0, σ) + C(xk, t0 + σ, T − σ)
4) η(a, b, T, t0, σ) = C(x∗, t0, σ).

2Without loss of generality we assume that u = 0 at those equilibria.

B. A Pursuit-based Optimal Control Algorithm

We assume that we have available an initial feasible (but
sub-optimal) control/trajectory pair (ufeas(t), xfeas(t)) for
(1), obtained through a combination of a-priori knowledge
about the problem and/or random exploration. We consider
the formation of an ordered sequence of agents, with each
agent trying to reach its predecessor along an optimal
trajectory. The sequence is initiated with the first agent
following xfeas to the desired final state. The precise rules
that govern the movement of each agent are:

Algorithm (Sampled Local Pursuit): Identify two
states x0 and xf on D. Let x0(t) (t ∈ [0, T ]) be an initial
trajectory satisfying (1) with x0(0) = x0, x0(T ) = xf .
Choose ∆, δ ∈ R such that 0 < δ < ∆ ≤ T . Then:

1) For k = 1, 2, 3 . . ., let tk = k∆ be the starting time
of the kth agent, i.e. uk(t) = 0, xk(t) = x0 for
0 ≤ t ≤ tk.

2) When t = tk + iδ, i = 0, 1, 2, 3, . . ., calculate the
control u∗

t (τ) that achieves (subj. to (1)):⎧⎪⎪⎨
⎪⎪⎩

η(xk(t), xk−1(t),∆, t,∆), τ ∈ [t, t + ∆]
if ∆ + iδ < T

η(xk(t), xf , λ, t, λ), τ ∈ [t, tk + T ]
otherwise

where λ = tk + T − t.
3) Apply uk(t) = u∗

tk+iδ(t − tk − iδ) to the kth agent
for t ∈ [tk + iδ, tk + (i + 1)δ) if ∆ + iδ < T , or for
t ∈ [tk + iδ, tk + T ) otherwise.

4) Repeat from step 2 until the kth agent reaches xf .

There are two adjustable parameters in the sampled
local pursuit (SLP) algorithm: the “following interval” ∆
which denotes the frequency with which new agents depart
from x0, and the “updating interval” δ which denotes the
frequency with which an agent samples the state of his
predecessor. To illustrate the pursuit process, we refer to
the (k − 1)th agent as the “leader” and to the kth agent as
the “follower”. We will refer to the times tik = tk + iδ, i =
0, 1, 2, 3 . . . as the “updating times”. At every updating
time, the follower finds an optimal trajectory from itself to
its leader, and moves on it during [tik, tik + δ], until next
updating time. This process continues until the follower
reaches the final state. Usually we take 0 < δ < ∆ so
that each agent only needs to solve a finite number of
optimal control problems. If the problem in question can
be solved efficiently, one may choose to decrease δ. In
fact, the case δ → 0 leads to a continuous version of the
SLP algorithm (of which [14] and [4] are special cases),
where each agent is constantly updating its trajectory in
response to its leader’s movement (see [16], [15]). The idea
of optimizing a trajectory by applying a repeatedly-updated
sequence of controls is also present in model predictive
control (MPC). However, in MPC one typically computes
the optimal control from the current to the terminal state
xf (see, for example, [17] and [18]), which in the present
situation we would like to avoid. Instead, SLP substitutes
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a series of “shortened” versions of the original problem,
involving only trajectories linking leader and follower. In
the next section we show that SLP leads to (locally) optimal
trajectories.

III. MAIN RESULTS

Recall that the proposed algorithm defines an ordered
sequence of trajectories {xk(t)}. We would like to inves-
tigate the properties of the limiting trajectory generated by
the group, i.e. xk(t) as k → ∞. We begin by discussing
convergence of the iterated trajectories.

Lemma 1: (Convergence of Cost): Assume a group of
agents x0, x1, . . . , xk evolve under SLP with starting state
x0 and target state xf . Suppose an initial control/trajectory
pair, {u0(t), x0(t)} (t ∈ [0, T ]), satisfying x0(t) = x0

and x0(T ) = xf is given. If the updating time satisfies
0 < δ ≤ ∆, then the cost of the iterated trajectories will
converge, i.e. limk→∞ C(xk, tk, T ) exists.

Proof: Consider the pursuing process between the
(k − 1)

th and kth agents. As shown in Fig. 1, the dotted
line, denoted by xk−1(t) on [tk−1, tk−1 + T ], indicates the
leader’s path. The solid lines, denoted by xk(t), are the
realized trajectories of the “follower”, and the dashed lines,
noted by x̂k(t), are the planned trajectories along which
the follower plans to move at tk + iδ but may not do so
because it will update its future trajectory at tk+(i+1)δ. For

=Xk(tk)

Xk(tk+δ)

Xk(tk+2δ)

Xk(tk+3δ)
Xk(tk+nδ)

=Xk(tk+T)

=Xk-1(tk-1)

Xk-1(tk)

Xk-1(tk+δ)

Xk-1(tk+2δ)

Xk-1(tk+nδ-δ)

=Xk-1(tk-1+T)

Xk(tk+nδ-δ)

Xo

Xf

Fig. 1. Trajectories of a leader-follower pair during SLP. The dotted line
represents the trajectory of the leader. Solid lines represent the trajectory of
the follower. The dashed lines are trajectory segments which the follower
plans but decides to alter, because of later measurements of the leader’s
state.

t ∈ [tk, tk +δ], the follower moves on an optimal trajectory
from state xk(tk) to xk−1(tk) over ∆ units of time. Thus
from Fact 1:

η(xk(tk), xk−1(tk),∆, tk,∆) ≤ C(xk−1, tk−1,∆)

At time tk + δ the follower reaches the state xk(tk + δ).
Recalling that the trajectory driven by u∗

tk
(τ) is optimal

from xk(tk) to xk−1(tk) and from Fact 3, we can divide
the cost into two parts, one is actual and the other is
planned, which are are both optimal with respect to their

corresponding end points. That is

η(xk(tk), xk−1(tk),∆, tk,∆) =

= η(xk(tk), xk−1(tk),∆, tk, δ) +

+η(xk(tk + δ), xk−1(tk),∆ − δ, tk + δ, ∆ − δ)

At time tk + δ, the follower updates its trajectory to
catch up the leader at its new location xk(tk + δ). For this
trajectory is optimal from xk(tk + δ) to xk−1(tk + δ) over
time ∆, any path xk(t) (t ∈ [tk + δ, tk + δ + ∆]) that is
from xk(tk + δ) to xk−1(tk + δ) over time ∆ and passes
through xk−1(tk) at time tk + ∆ = tk + δ + ∆ − δ has
equal or more cost. From Fact 2 it follows that:

η(xk(tk + δ), xk−1(tk + δ),∆, tk + δ, ∆)

≤ η(xk(tk + δ), xk−1(tk),∆ − δ, tk + δ, ∆ − δ) +

+C(xk−1, tk, δ)

From the last equation and the principle of optimality, we
obtain

C(xk, tk, 2δ)

≤ C(xk−1, tk−1,∆ + δ) − C(x̂k, tk + 2δ, ∆ − δ)

We repeat this procedure until t = tk +nδ where ∆+(n−
1)δ < T and ∆ + nδ ≥ T . Then

C(xk, tk, nδ) =

=

n−1∑
i=0

η(xk(tk + iδ), xk−1(tk + iδ),∆, tk + iδ, δ)

≤ C(xk−1, tk−1,∆ + (n − 1)δ) −

−C(x̂k, tk + nδ, ∆ − δ) (6)

When t ∈ [tk + nδ, tk + T ], the leader reaches the final
state and stays static. During this time period, no matter how
many times the follower updates its movement, it will move
on the same path that was determined at time t = tk + nδ.
This path, which is indicated by the last solid line in Fig.
1, is locally optimal between the states xk(tk + nδ) and
xk(tk + T ) over T − nδ units of time. Therefore

C(xk, tk + nδ, T − nδ) ≤ C(x̂k, tk + nδ, ∆ − δ) +

+C(xk−1, tk + (n − 1)δ, T − (n − 1)δ − ∆) (7)

From (6), (7) we obtain

C(xk, tk, T ) ≤ C(xk−1, tk−1, T ) (8)

Writing Ck = C(xk, tk, T ) for convenience, we can see
that Ck ≤ Ck−1. Thus, Ck is bounded below and we
conclude that limk→∞ Ck exists.

Of course, the convergence of trajectories’ cost does not
imply the convergence of the trajectories themselves. If
there exist multiple locally optimal trajectories connecting
the leader and follower at any updating times, then the
convergence of trajectories is not guaranteed. However, if
we restrict the pursuit process to take place within a “small”
region by selecting ∆ sufficiently small, there will generally
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exist a unique locally optimal trajectory from the follower
to the leader at every updating time tk + iδ, and the agents’
trajectories converge:

Lemma 2: (Uniqueness of limiting trajectory): If at each
updating time, the locally optimal trajectory obtained
through SLP is unique, then the limiting trajectory x∞(t)
is also unique.

Proof: Suppose there exist more than one limiting
trajectories, for example x1(t) and x2(t). Let x1(t) �= x2(t)
for t ∈ [t1, t2] ∪ . . . ∪ [tn−1, tn]. From Lemma 1, the two
trajectories must have equal costs.

Let a leader xk−1(t) evolve along x1(t), while the
follower xk(t) does so along x2(t). If no update occurs
during [t1, t2], then x2(t) costs less during [t1, t2] because
the follower moves along x2(t) and we have assumed that
the optimal trajectories from follower to leader are unique.
A similar argument on other intervals where x1 �= x2 leads
to the fact that the cost along x2(t) is less than that along
x1(t) if no update occurs during t ∈ [t1, t2] ∪ [t3, t4] . . ..
This contradicts the assumption that x1 and x2 have equal
costs.

Next, suppose that the follower updates its trajectory once
during [t1, t2], as Fig. 2 illustrates. Separate the curves dur-

X1(t)

X2(t)

t1

t2

1

2
3

4

5

Fig. 2. Illustrating the case of a single trajectory update occurring at a
point where the leader and follower trajectories differ.

ing [t1, t2] into several segments (which have been labeled 1
through 5), and indicate the cost along curve i as Ci. From
the uniqueness of local optimum, we have C1 + C5 < C3

and C2 < C5 + C4. Hence C1 + C2 < C3 + C4, which
means x2(t) has less cost than x1(t) during [t1, t2].

A similar argument shows that if there are multiple
updates during [t1, t2], the cost along x2(t) is still less than
that of x1(t). Iterating on the time intervals during which
x1 �= x2 leads to the conclusion that x2(t) costs less than
x1(t), which is a contradiction.

The following definitions will be necessary for discussing
the properties of the limiting trajectory.

Definition 1: Let γ1(t) and γ2(t) be trajectories of (1),
defined on time intervals I1 and I2 respectively, where I1∩
I2 �=ø. We say that γ1 and γ2 overlap if γ1(t) = γ2(t) for
all t ∈ I1 ∩ I2.

Definition 2: Let γ1(t) and γ2(t) be trajectories of (1),
defined on a time interval I1 and another time interval I2

respectively, where I1 ∩ I2 �=ø. The composition of γ1(t)
and γ2(t) on the interval I1 ∪ I2 is defined as

γ1 ◦ γ2 �

{
γ1(t) t ∈ I1, t /∈ I2 − I1 ∩ I2

γ2(t) t /∈ I1, t ∈ I2 − I1 ∩ I2

The locally optimal trajectories obtained at every updat-
ing time are smooth for many optimal control problems (e.g.
the solution to the Euler-Lagrange equations). Nonetheless,
xk(t) is only known to be piecewise smooth. However, we
can show that the limiting trajectory is smooth in the entire
interval [0, T ] if the locally optimal trajectories obtained at
every updating time are smooth.

Lemma 3: Suppose that in Lemma 1 the updating inter-
val δ and the following interval ∆ satisfy that 0 < δ < ∆,
then for leader-follower pairs that evolve along the limiting
trajectory, the planned trajectories x̂(t) and realized tra-
jectories x(t) overlap. Furthermore, if the locally optimal
trajectories obtained at every updating time tk + iδ are
smooth, then the limiting trajectory is also smooth.

Proof: Consider an agent xk−1 that moves along
the limiting trajectory x∞(t). This implies that xk−1(t) =
xk(t + ∆) for ∀t ∈ [tk, tk + T ]. First we claim that in the
time interval [tk + δ, tk + ∆], the planned trajectory agrees
with the realized one, i.e. x̂k(t) = xk(t), t ∈ [tk+δ, tk+∆].
Suppose that x̂k(t) �= xk(t) for some t ∈ [tk + δ, tk + ∆].
Because x̂(t) is optimal from xk(tk +δ) to xk(tk +δ +∆),
the trajectory

x̄(t) =

{
x̂k(t) t ∈ [tk + δ, tk + ∆)
xk(t) t ∈ [tk + ∆, tk + δ + ∆]

has less cost than the trajectory xk(t) (t ∈ [tk + δ, tk +
δ + ∆]), which is updated by the follower at the time t =
tk + δ and is supposed to be optimal from xk(tk + δ) to
xk(tk + δ + ∆). Thus there is a contradiction. Hence we
obtain x̂k(t) = xk(t) for ∀t ∈ [tk + δ, tk + ∆]. The same
argument can be applied to other time periods.

Now, x̄(t) is smooth for t ∈ [tk, tk + ∆] because the
local optima of (2) are smooth, and xk(t) is smooth for t ∈
[tk +δ, tk +δ+∆] (second update step) for the same reason.
Furthermore, we know that x̂k(t) = xk(t) for ∀t ∈ [tk +
δ, tk+∆]. Thus the actual trajectory xk(t) (t ∈ [tk, tk+2δ])
is smooth. Repeating this argument for t ∈ [tk+2δ, tk+3δ],
etc, leads to the result that the entire trajectory xk(t) (t ∈
[tk, tk + T ]) is smooth.

Before proceeding to the main theorem, we will require
that the optimal cost in (2) changes “little” with small
changes to the endpoints of a trajectory:

Condition 1: Assume there exists an ε > 0 such that
for all a, b1, b2 ∈ D and all ∆ > 0, the optimal cost
η(a, b1,∆, 0,∆) from a to b1 and η(a, b2,∆, 0,∆) from
a to b2 satisfy

‖b1 − b2‖∞ < ε

⇒ ‖η(a, b1,∆, 0,∆) − η(a, b2,∆, 0,∆)‖∞ < L∆

for some constant L independent of ∆.
Piecewise-optimal trajectories are not necessarily op-

timal. However, the composition of overlapping optimal
trajectories is locally optimal, if Condition 1 is satisfied.

Lemma 4: (Composition of Optimal Trajectories): Let
γ1(t) and γ2(t) be overlapping locally optimal trajectories
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defined on the intervals I1 and I2 respectively, where
I1∩ I2 �=ø. If Condition 1 is satisfied, then the composition
γ1 ◦ γ2 is locally optimal on I1 ∪ I2.

Proof: It is enough to show that if x∗(t) (t ∈
[0, t1+∆1]) and x∗(t) (t ∈ [t1, T ]) are two locally optimal
trajectories, where 0 < t1 < t1 +∆1 < T , and Condition 1
is satisfied, then the trajectory x∗(t), t ∈ [0, T ] is a locally
optimal.

Take 0 < ∆ ≤ ∆1. From principle of optimality, we
have that x∗(t) (t ∈ [0, t1 + ∆]) and x∗(t) (t ∈ [t1, T ])
are two locally optimal trajectories with respect to their
corresponding end points. If x∗(t) (t ∈ [0, T ]) is not a
local optimum, there must exist an ε < ε and an optimum
x(t) ∈ D × [0, T ] satisfying ‖x(t) − x∗(t)‖∞ < ε and
C(x(t), 0, T ) < C(x∗(t), 0, T ), as Fig. 3 illustrates.

X*(t)

Xf

X(t)

X0

X*(t1)

X*(t1+∆)

X(t1)

X(t1+∆)

Y2(t)

Y1(t)

Fig. 3. Illustrating the proof of Lemma 4: overlapping optimal trajectories
form a locally optimal trajectory.

Construct two optimal trajectories y1(t), y2(t) (t ∈
[t1, t1 + ∆]) connecting x(t) and x∗(t) such that x∗(t1) =
y2(t1), x∗(t1 + ∆) = y1(t1 + ∆), x(t1) = y1(t1), x(t1 +
∆) = y2(t1 + ∆). From the principle of optimality, x∗(t)
and x(t) (t ∈ [t1, t1 + ∆]) are both optimal with respect
to their corresponding end points. Now from Condition 1,
we have

C(y1(t), t1,∆) < C(x(t), t1,∆) + L∆

C(y2(t), t1,∆) < C(x∗(t), t1,∆) + L∆ (9)

For x∗(t) (t ∈ [0, t1 +∆]) and x∗(t) (t ∈ [t1, T ]) are two
unique local optimal trajectories, we have

C(x∗(t), 0, t1) + C(x∗(t), t1,∆)

< C(x(t), 0, t1) + C(y1(t), t1,∆) (10)

C(x∗(t), t1,∆) + C(x∗(t), t1 + ∆, T − t1 − ∆)

< C(x(t), t1 + ∆, T − t1 − ∆) + C(y2(t), t1,∆) (11)

Combining (9)-(11) leads to

C(x∗(t), 0, T ) < C(x(t), 0, T ) + 2L∆ (12)

The cost C(x(t), 0, T ) was assumed to be less than
C(x∗(t), 0, T ), but if we choose ∆ so that

0 < ∆ <
C(x∗(t), 0, T ) − C(x(t), 0, T )

2L

we see that (12) cannot hold. This is a contradiction because
∆ can be arbitrarily small. Hence x∗(t) (t ∈ [0, T ]) must
be a local optimum.

The next theorem is an immediate consequence of the
above lemmas.

Theorem 1: Suppose a group of agents {xk} evolve
under sampled local pursuit and at each updating time
t = tk + iδ, the locally optimal trajectory from xk(t) to
xk−1(t) is unique. If the updating interval δ and following
interval ∆ satisfy 0 < δ < ∆ and Condition 1 holds, then
the trajectory sequence {xk} converges to a unique local
optimum. Furthermore, if the locally optimal trajectories
from each follower to its leader are smooth, the limiting
trajectory is also smooth.

Proof: From Lemma 2, the limiting trajectory is
unique. We know that x∞(t) (t ∈ [0,∆)) and x∞(t) (t ∈
[δ, δ+∆)) are locally optimal for the realized trajectory and
planned trajectories overlap (Lemma 3). The optimality of
x∞(t) (t ∈ [0, δ + ∆)) follows from Lemma 4. Repeating
this argument on [iδ, iδ + ∆] (i = 0, 1, 2 . . .) leads to the
result that x∞(t) (t ∈ [0, T ]) is locally optimal. The proof
of smoothness follows from a similar argument.

Remarks: SLP is a cooperative, decentralized algo-
rithm for learning optimal controls/trajectories, starting
from a feasible solution. Each agent is only required to
calculate optimal trajectories from its own state to that of
its leader. Because agents are separated by ∆ time units as
they leave x0, each agent relies on local information only in
order to follow its predecessor and requires no knowledge of
the global geometry. There is no need for agents to exchange
or “fuse” local maps. Agents do not need to communicate
their choice of coordinate systems as they evolve, nor do
they need to know the coordinates of xf . While it is possible
that a group of agents could disperse and construct a
global map from local information, such an approach would
require significantly more computation and communication
than SLP. SLP solves the optimal control problem in “short
pieces’ which makes it appropriate for systems with short-
range sensors (for example, in the case of a swarm of robots
exploring unknown terrain). Each agent solves a finite
number of instances of the optimal control problem, with
initial and final states which are “close” to one another; if a
closed form solution is not available, SLP generally requires
significantly fewer computations compared to solving the
problem (numerically) from x0 to xf . The above implies
that SLP is most useful when the optimal control problem
is easier to solve over “short” distances.

We have thus far assumed a countable infinity of agents.
It is however possible to achieve similar results with a finite
number of agents that apply SLP to reach xf from x0, then
return to x0 (perhaps using SLP again). The required mod-
ifications are straightforward but will not be discussed here
because of space considerations. paper. Finally, SLP is not
guaranteed to converge to the global optimum. The choice
of agent separation and updating interval can affect whether
the limiting trajectory is a local or a global optimum. Some
interesting cases involving spaces with holes or obstacles
are discussed in [16], [15].
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IV. EXAMPLES

First, consider a group governed by ẍ(t) + x(t) = u(t)

where we want to minimize
∫ 1

0
ẋ2(t)+u2(t)dt with x(0) =

0, x(1) = 1 and ẋ(0) = 0, ẋ(1) = 0. Using ∆ = 0.5, δ =
0.25, the iterated trajectories produced by SLP converged
to the optimum, as illustrated in Fig. 4.

0 0.2 0.4 0.6 0.8 1
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Fig. 4. SLP – first example. The initial trajectory was selected to be clearly
sub-optimal; the iterated trajectories converge rapidly to the optimum using
∆ = 0.5, δ = 0.25.

Next, consider a “geodesic discovery” problem in an
environment consisting of a plane with two right cones,
whose top view is shown in Fig. 5. The radii and heights
of the cone were 800 and 1000 units of length, respectively.
The agents were governed by ẋk = uk and were required
to travel from x0 = (3500, 0, 0) to xf = (−1300, 0, 0).
Minimum-length paths are difficult to compute in this
setting because they involve optimal switching between
different coordinate patches (those of the plane and the two
cones). By applying SLP with T = 1000, ∆ = 200, δ = 1,
followers need to calculate locally optimal trajectories on at
most two coordinate systems, thus reducing the complexity
of the problem. Figure 5 illustrates the iterated trajectories.

Fig. 5. SLP in a complex environment. The initial trajectory (along the
borders of the cones) is easy to construct but far from optimal. The iterated
trajectories (with ∆ = 0.2T ) converge to the local optimum.

V. CONCLUSIONS AND ONGOING WORK

We explored a bio-inspired cooperative strategy, termed
“Sampled Local Pursuit” (SLP), for solving a class of

optimal control problems with fixed final time and state.
SLP generalizes previous models that mimic the forag-
ing behavior of ant colonies, and allows a collective to
discover optimal controls, starting from an initial subop-
timal solution. Members of the collective are only required
to obtain local information on their environment and to
calculate optimal trajectories to nearby neighbors. SLP
relies on cooperation to perform a task which would be
difficult or impossible for single systems, namely solving
an optimal control problem with little information (in terms
of coordinate systems that describe the environment or
the coordinates of the final state) and short-range sensing.
Extensions of this work could include broadening its scope
to problems with free final time and state, and investigating
SLP’s convergence rate, as well as its ability to lead to
global optima by choice of the algorithm’s parameters.
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