
Trajectory Optimization for Satellite Reconfiguration Maneuvers
with Position and Attitude Constraints

Ian Garcia and Jonathan P. How
Aerospace Controls Laboratory

Massachusetts Institute of Technology
{ianmga, jhow}@mit.edu

Abstract— This paper presents an algorithm for designing
spacecraft reconfiguration maneuvers, which is a difficult
6 DOF trajectory design problem with nonlinear attitude
dynamics and non-convex constraints. In addition, some of the
constraints couple the positions and attitudes of the spacecraft,
which makes the problems high-dimensional. The essential
feature of the design methodology is the separation into a
simplified path planning problem obtaining a feasible solution,
then improving it significantly by a smoothing operation. The
first step is solved using a Rapidly-exploring Random Tree.
The smoother then optimizes the trajectories by iteratively
solving a linear program using a linearization of the cost
function, dynamics, and constraints about the initial feasible
solution. Examples are presented to demonstrate the validity
of the approach for complex problems with four spacecraft.

I. INTRODUCTION

Formation flying of multiple spacecraft is an attractive
technology for many planned space science missions [2].
To achieve the full science objectives, these missions typ-
ically require a complex initialization maneuver and/or
formation reconfiguration maneuvers to reorient the fleet.
These maneuvers consist of moving and rotating a group
of N spacecraft from an initial configuration to a desired
target configuration, while satisfying an arbitrary number
of constraints (e.g., see Figure 1). These constraints may
consist of collision avoidance, restrictions on the region
of the sky where certain spacecraft instruments can point
(e.g., a sensitive instrument that cannot point at the Sun),
or restrictions on pointing towards other spacecraft (e.g., re-
quirements on maintaining inter-spacecraft communication
links and having cold science instruments avoid high tem-
perature components on other vehicles). It is also desirable
to perform these maneuvers with the lowest possible fuel
expenditure.

This problem is particularly difficult due to the nonlinear-
ity of the attitude dynamics, the non-convexity of some of
the constraints, and the coupling between the positions and
attitudes of all spacecraft. The nonlinearity of the spacecraft
attitude dynamics makes the attitude trajectory design prob-
lem difficult in itself. Although numerous solutions exist for
this problem, this nonlinearity adds considerable difficulty
to the general spacecraft reconfiguration problem. The non-
convex constraints place this problem in a general class of
path planning problems with obstacles that are known to
be NP-hard and thus computationally difficult [3]. Finally,
some of the pointing constraints introduce coupling between

Collision radius

Sensitive instrument

Ranging
device Sun avoidance

cone

Pointing restriction
cone

Target
configuration

Fig. 1. The formation reconfiguration problem

the positions and attitudes of the entire fleet. As a result,
the trajectory design must be solved as a single 6N DOF
problem instead of N separate 6 DOF problems.

A. Background

The spacecraft trajectory design problem for the uncon-
strained translation and attitude maneuvers has been the
subject of extensive research with successful results. In con-
trast, the trajectory design problem with constraints is more
difficult and has attracted attention more recently. Most of
the solutions for this problem find either the translation or
the attitude trajectories. Some of these solutions include
potential functions methods [4], [5], geometric/heuristic
methods [6], Mixed-Integer Linear Programming [7], and
randomized algorithms [8], [9]. The trajectory design prob-
lem with combined translation and attitude has also been
investigated. Some recent solutions are based on geomet-
ric/heuristic methods [10] and randomized algorithms [11].
However, the geometric and heuristic methods are prob-
lem specific and cannot be extended to solve the general
reconfiguration problem. The randomized algorithms were
used to solve a problem with a single spacecraft and no
pointing constraints. The reconfiguration problem addressed
in this paper is more general and on a larger scale than
the problems considered before. For example, we design
maneuvers for 4 spacecraft with 24 DOF. The following
sections outline the solution technique developed to solve
these problems, followed by several demonstrations.

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

WeB11.1

889

II. SOLUTION APPROACH

The approach chosen to tackle the computational dif-
ficulty of this problem is to concentrate first on finding
any feasible trajectory. The second part then focuses on
improving the solution while maintaining feasibility. These
two parts are called the path planner and the smoother in
this paper. This separation is a natural approach that has
been used many times in difficult path planning problems
(and recently for spacecraft trajectory design [11]).

A. Path Planner

The problem of finding a feasible path between two
points with an arbitrary number of constraints is a classical
path planning problem that has been studied for many years.
The difficulty of this problem makes it intractable to find a
solution with guarantees for problems with more than a few
(e.g., 3–6) dimensions. However, by relaxing the guaranteed
completion, randomized path planning algorithms such as
the Probabilistic Roadmaps (PRM) have been successful in
solving larger problems [12]. Rapidly-exploring Random
Trees (RRT), a more recent variant of these randomized
planners, is used in this paper because it performed better
than other algorithms in our experimental comparisons [1].

The path planning problem is posed without differential
constraints. In general these additional constraints limit the
expansion of the randomized search trees and increase the
solution time. Instead, the direct trajectories between two
points consist of rest-to-rest straight-line translations and
eigen-axis rotations at constant rates. Since the spacecraft is
at rest at each node of the search tree, a branch of the search
tree can grow in any direction. The algorithm generates a
trajectory consisting of a sequence of states, connected by
these feasible “direct trajectories”. This trajectory is then
passed to the smoother.

B. Smoother

The smoother improves the cost of the trajectory previ-
ously found. This trajectory is represented by the states and
control inputs sampled at fixed time-steps. The smoothing
problem is posed as a nonlinear optimization with nonlinear
constraints. The cost function, dynamics and constraints are
then linearized, and the resulting equations are solved as a
linear program. These steps are repeated iteratively until the
cost associated with the trajectory cannot be improved.

After each iteration the solution may violate some of the
constraints by a small amount, so there is an additional step
to recover a feasible solution. This step uses knowledge
specific to the trajectory design problem, and is the main
difference between the smoother and a similar algorithm,
the Sequential Linear Programming method (SLP) [13]. The
recovery step is discussed further in Section III-C.

This algorithm is also different from other trajectory
smoothing algorithms proposed in the literature because
it improves the cost of the trajectory as a whole, it is
deterministic, and always remains feasible [11], [14].

III. THE RECONFIGURATION ALGORITHM

A. Problem formulation

The general reconfiguration problem consists on finding
a trajectory, represented by the state and control inputs of
N spacecraft, from time 0 to T . This state consists of

xi(t) ∈ R(3), ẋi(t) ∈ R(3) (1)

qi(t) ∈ SO(3), ωi(t) ∈ R(3) (2)

where i ∈ 1 . . . N indicates the spacecraft. xi(t) is the
position of its center, ẋi(t) its velocity, and ωi(t) its angular
velocity, all measured with respect to a local inertially fixed
frame. The attitude quaternion is qi(t). The input consists
of

ui(t) ∈ R(3) and Mi(t) ∈ R(3) (3)

where ui(t) are the forces and Mi(t) the moments. Let pi(t)
be a point of the trajectory of a single spacecraft at time t,

pi(t) = [xi(t), ẋi(t), ui(t), qi(t), ωi(t), Mi(t)] , (4)

for i ∈ 1 . . . N , and

p(t) = [· · · , pi(t), · · ·] (5)

a point in the composite trajectories of all the spacecraft at
time t.

For the deep space missions considered, the translational
dynamics are approximated with a double integrator[

ẋi(t)
ẍi(t)

]
=

[
0 1
0 0

] [
xi(t)
ẋi(t)

]
+

[
0
1

]
ui(t) (6)

and the attitude dynamics, in quaternion notation, are

q̇i(t) =
1
2
Ωi(t)q(t) (7)

Jω̇i(t) = −ωi(t) × (Jωi(t)) + Mi(t) (8)

where

Ωi(t) =

⎡
⎢⎢⎣

0 wi,3(t) −wi,2(t) wi,1(t)
−wi,3(t) 0 wi,1(t) wi,2(t)

wi,2(t) −wi,1(t) 0 wi,3(t)
−wi,1(t) −wi,2(t) −wi,3(t) 0

⎤
⎥⎥⎦ (9)

and J is the inertia matrix, which is considered to be
the same for all spacecraft for simplicity. The collision
avoidance constraints are

‖xi(t) − xj(t)‖ ≥ R (10)

for i, j ∈ 1 . . . N , i �= j, and R is the minimum distance
allowed between the centers of spacecraft. The absolute stay
outside pointing constraints are given by

zT
k yk ≤ cos θk (11)

where k ∈ 1 . . . Nc identifies a constraint. This condition
ensures that the spacecraft vector yk remains at an angle
greater than θk ∈ [0, π] from the inertial vector zk. The
vector yk is the representation in the inertial coordinate

890

frame of the body vector ykB . The transformation of
coordinates is given by

yk = ykB − 2(qT
i0qi0)ykB + 2(qT

i0ykB)qi0 − 2qi4(ykB × qi0)
(12)

where qi0(t) and qi4(t) are defined as

qi(t) = [qi1(t), qi2(t), qi3(t), qi4(t)]T = [qi0(t), qi4(t)]T

The absolute stay inside pointing constraints only differ by
the sign of the equation

zT
k yk ≥ cos θk (13)

The inter-spacecraft relative stay outside pointing con-
straints are given by

x̂T
ijyk ≤ cos θk (14)

where yk and θk are as above, and x̂ij(t) = (xj(t) −
xi(t))/(‖xj(t) − xi(t)‖) is the unit vector that points from
spacecraft i to spacecraft j. Similarly, the relative stay
inside pointing constraints are

x̂T
ijyk ≥ cos θk (15)

For this problem, the cost to minimize is

J =
N∑

i=1

∫ T

0

|ui(t)| + |Mi(t)| dt (16)

B. The planner

The randomized path planning algorithm consists of
LaValle’s randomized dense tree, in particular the bidi-
rectional variant as described in [15]. The algorithm is
reproduced here, but interested readers are encouraged to
consult references [1] or [15].

RDT-BALANCED-BIDIRECTIONAL(pi, pf)

1 Ta. init(pi); Tb. init(pf)
2 for j ← 1 to K
3 do pn ← NEAREST(Ta, α(j))
4 ps ← STOPPING-CONFIGURATION(pn, α(j))
5 if ps �= pn

6 then Ta. add-vertex(ps)
7 Ta. add-edge(pn, ps)
8 p′

n ← NEAREST(Tb, ps)
9 p′

s ← STOPPING-CONFIGURATION(p′
n, ps)

10 if p′
s �= p′

n

11 then Tb. add-vertex(p′
s)

12 Tb. add-edge(p′
n, p′

s)
13 if p′

s = ps

14 then return Solution
15 if |Tb| > |Ta|
16 then SWAP(Ta, Tb)
17 return Failure

In this algorithm, Ta and Tb represent trees with a
composite trajectory point p at each node (Eq. 5). The points
p at the nodes are considered at rest, so the only relevant
information in these points are positions and attitudes. The
two trees Ta and Tb start from the initial and final points
of the desired trajectory. At each iteration α(i) generates
a random point, and NEAREST(Ta, α(i)) finds the point in

the tree Ta with the minimum distance to this point α(i).
The distance is defined as

distance(p1, p2) =
N∑

i=1

‖x1,i − x2,i‖ + Ka � (q1,i, q2,i)

where � (q1,i, q2,i) is the angle of an eigen-axis rotation
between attitude q1,i and q2,i for spacecraft i, and Ka is a
weight that relates translation distance and rotation angle.
In the scenarios presented later, Ka = 6.

Continuing with the algorithm, STOPPING-
CONFIGURATION(pn, α(i)) finds the last valid
configuration in the “direct motion” from p0 to p. In
our implementation, a direct motion is a rest-to-rest
straight line translation and eigen-axis rotation of each
spacecraft

trans(x1,i, x2,i; t) = x1,i + t(x2,i − x1,i)
rot(q1,i, q2,i; t) = q1,i · (q−1

1,i · q2,i)t

} ∀i
t ∈ [0, 1]

(17)
where rot is a quaternion interpolation.

If a new node is successfully found by the direct motion,
then a branch to this node is added to the tree, and a similar
attempt is made to connect the opposite tree to the new
node. If the attempt succeeds the algorithm stops and returns
a good trajectory, otherwise it continues.

The output of the algorithms consists of a sequence of
points from the initial point pi to the desired target point
pf . At these points the spacecraft are at rest, their states
are described by position and attitude values, and there is a
direct motion to the next point that is guaranteed to satisfy
all the constraints.

C. The smoother

The resulting trajectory from the planner is then
smoothed. However, this trajectory must be described first
as full state and input pairs sampled at fixed time-steps.
In general these samples will not coincide with the points
of the trajectory from the planner, and the spacecraft will
not necessarily be at rest at these points in time. In this
section the state notation p(t) has been replaced by p(k)
which stands for p(k∆T), where ∆T is the time-step. The
complete trajectory is represented by the sequence of points
p(k), k ∈ 0 . . . �T/∆T �. For these points

p(k + 1) = h(p(k)) (18)

where h(p(k)) is the propagation for time ∆T of the states
p(k) for constant inputs u(k) and M(k). To ensure consis-
tency between all elements of p(k) (states and inputs), ẋ(k),
u(k), w(k) and M(k) must be found that satisfy Eq. 18.
This is accomplished using a discrete approximation for the
short time interval propagation. The discrete equations for
translational dynamics are[

xi(k + 1)
ẋi(k + 1)

]
=

[
I ∆TI
0 I

] [
xi(k)
ẋi(k)

]
+

[
0

∆TI

]
ui(k)

(19)

891

and for the attitude dynamics

ωi(k+1) = ωi(k)−∆TJ−1ωi(k)×(Jωi(k))+∆TJ−1Mi(k)
(20)

and

q(k + 1) =
[
I +

∆T

2
Ωi(k)

]
q(k) (21)

where Ωi(k) is just the discrete form of Eq. 9. Thus to
obtain the full p(k) from x and q

ẋi(k) =
xi(k + 1) − xi(k)

∆T
(22)

ui(k) =
ẋi(k + 1) − ẋi(k)

∆T
(23)

Mi(k) = J
ωi(k + 1) − ωi(k)

∆T
+ ωi(k) × (Jωi(k)) (24)

and ωi(k) = [ω̃i1(k), ω̃i2(k), ω̃i3(k)]T , from

ω̃i(k) = 2Qi(k)−1 qi(k + 1) − qi(k)
∆T

(25)

where

Qi(k) =

⎡
⎢⎢⎣

qi,4(k) −qi,3(k) qi,2(k) qi,1(k)
qi,3(k) qi,4(k) −qi,1(k) qi,2(k)

−qi,2(k) qi,1(k) qi,4(k) qi,3(k)
−qi,1(k) −qi,2(k) −qi,3(k) qi,4(k)

⎤
⎥⎥⎦

The discrete dynamics (Eqs. 19–21) can then be represented
as the equalities

p(k + 1) − h(p(k)) = 0, k ∈ 0 . . . (�T/∆T � − 1) (26)

with pointing and collision avoidance constraints

gn(p(k)) ≤ 0, k ∈ 0 . . . �T/∆T � , n ∈ 1 . . . Nc (27)

An iteration of the smoothing algorithm consists of
finding a perturbation of the trajectory that improves the
cost while maintaining the feasibility of the trajectory.
The update is achieved by using the first-order Taylor
approximation of the constraints and the cost

p(k + 1) + dp(k + 1) − h (p(k) + dp(k))
≈ p(k + 1) − h(p(k)) + dp(k + 1) −∇h(p(k))T dp(k)
= 0, (28)

and

gn(p(k) + dp(k)) ≈ gn(p(k)) + ∇gn(p(k))T dp(k) ≤ 0
(29)

for ‖dp(k)‖ ≤ ε � 1. Note that these are linear constraints
in the variables dp(k) since h, gn and p(k) are known in
advance.

The discrete form of the cost function is

J = ∆T

�T/∆T�∑
k=0

N∑
i=1

|ui(k)| + |Mi(k)| (30)

which can be rewritten as

J = ∆T

�T/∆T�∑
k=0

N∑
i=1

|ui(k) + dui(k)| + |Mi(k) + dMi(k)|
(31)

which in a linear minimization is equivalent to

J = ∆T

�T/∆T�∑
k=0

N∑
i=1

ai(k) + bi(k) (32)

subject to

|ui(k) + dui(k)| ≤ ai(k), ∀i, k (33)

|Mi(k) + dMi(k)| ≤ bi(k), ∀i, k (34)

The step to find the perturbation is naturally formulated
as a linear program because it is the minimization of a
linear function subject to linear equality and inequality
constraints (Line 2 in the SMOOTHER-STEP). Here the
trajectory is improved as a whole and the process continues
in a deterministic fashion. The algorithm is as follows:

SMOOTHER(p)

1 for j = 1 to M
2 do SMOOTHER-STEP(p)
3 return p

SMOOTHER-STEP(p)

1 for i = 1 to N
2 do solve linear program:

min∆T
∑�T/∆T�

k=0
ai(k) + bi(k)

subject to

∀k

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
I −∇h(p(k))T

] [
dp(k + 1)

dp(k)

]
= 0

∇gn(p(k))T dp(k) ≤ −gn(p(k))
|u(k) + du(k)| ≤ a(k)
|M(k) + dM(k)| ≤ b(k)
|dp(k)| ≤ ε

� end of linear program
3 p(k) ← p(k) + dp(k), ∀k

4 q(k) ← q(k)
‖q(k)‖ , ∀k

5 (ẋ(k), u(k)) ← inverse of (x(k), x(k + 1)) , ∀k,
from equations (22) and (23)

6 (ω(k), M(k)) ← inverse of (q(k), q(k + 1)], ∀k,
from equations (26) and (24)

� end of for
7 return p

Due to the linear approximations, in general the updated
solution in step 3 may violate the constraints by a small
amount (less than O(ε), where 0 < ε � 1). Therefore the
solution is repaired in lines 4 to 6 to recover the consistency
with the constraints of the problem, particularly the unit
norm quaternion constraint and the dynamics from Eqs. 19–
21. The inequality constraints are not explicitly repaired.
Any violation of these constraints is negligible and does
not affect the convergence of the algorithm. To guarantee
that the final solution meets the constraints, a small margin
is added to the constraints before running the algorithm. For
example, the angles and collision radius are increased by a
small percentage over the actual values.

In summary, our approach consists of the following steps:

892

Fig. 2. Example: Simple maneuver. Simple translation and rotation with
sun avoidance constraint.

FIND-RECONFIGURATION(pi, pf)
1 s = RDT-BALANCED-BIDIRECTIONAL(pi, pf)
2 if s �= Failure
3 then discretize s
4 SMOOTHER(s)
5 return s

IV. EXAMPLES

This section presents examples of varying complexity.
They demonstrate that for simple problems the algorithm
generates the expected results, and for harder problems it
generates reasonable trajectories. In the figures that illustrate
these examples the trajectories are represented by a solid
line, each dot represents a time step, and arrows show the
direction of movement. The spacecraft are typically shown
along the trajectories after every fifth time step. The vectors
shown are the X , Y , and Z body axes. The plot axes
correspond to the axes of the local inertially fixed frame.
Also, the examples that include a sun avoidance (stay-
out) constraint show a “red umbrella”, with the “handle”
representing the vector pointing toward the sun, and a cone
of rays representing the angle covered by the constraint.

These experiments were run on a Fujitsu T3000 with
an Intel Centrino processor at 1.4 GHz and Windows XP,
and the algorithms were programmed in C++ and compiled
with Microsoft Visual C++ 7.1. The linear solver used
was the GLPK library. The computation times for the
planner ranged from below 1 second for single spacecraft
problems like the simple maneuver, to 30-40 minutes for
highly constrained problems with 4 spacecraft. The num-
ber of iterations of the main loop in RDT-BALANCED-
BIDIRECTIONAL ranged from 1 to 10 for simple examples,
to between 200 and 500 for the difficult ones. The cut-
off in our experiments was 500 iterations, after which the
algorithm returned a failure. The computation times for the
smoother were from below 1 second to 3 seconds, using
the interior point solver.

Fig. 3. Example: coupled maneuver. Shown in detail. Spacecraft 1 and
2 switch places while pointing at each other. Spacecraft 3 points at 1 and
2. They also avoid pointing at the sun.

Fig. 4. Same as Figure 3, solution before the smoothing

A. Example: Simple maneuver

Figure 2 shows the final trajectory for a simple problem:
move a spacecraft from [−9,−9,−9]T to [9, 9, 9]T and
rotate it 90◦ about the inertial Z-axis, while avoiding
pointing at the sun. The unit vector pointing at the sun
is represented in the figure by the vector in the direction of
[1, 1, 0]T /

√
2 surrounded by a 40o angle cone. The sensitive

instrument points in the direction of the body X axis (solid
blue in the figure) and it must stay out of the cone. The
plot shows that the solver designs a smooth trajectory that
skirts this constraint. As expected, the translation path is
minimal: a simple straight line.

B. Example: Coupled Maneuver

Figures 3 and 4 show a slightly more complex exam-
ple with three spacecraft that demonstrate the interaction
between the states of the spacecraft and the coupling
constraints. Spacecraft 1 and 2 are initially at positions
[−5, 5, 0]T and [−5,−5, 0]T . Spacecraft 1 must turn 180o

around the Z axis and 90o around the X axis. Spacecraft
2 only has to turn 180o around the Z axis. Both must also
point their body X axis (solid blue) at the other spacecraft
to within 30o. Spacecraft 3 must end at the same starting
position of [−5, 9, 0]T , and point its body X axis at both
spacecraft 1 and 2 to within 15o angle. The vehicles must

893

Fig. 5. Rotate tetrahedral configuration 90o degrees around Y axis.
Pointing constraints remain as before.

remain 3.5 units apart to avoid colliding.
The final trajectory in Figure 3 shows that spacecraft 2

translates straight from the start to finish while spacecraft 1
moves away just enough to satisfy the collision avoidance
constraint. Notice that for spacecraft 1 to point the body
X axis at spacecraft 2 while avoiding pointing it at the
Sun, it has to move off the X-Y plane. This shows the
coupling between relative and absolute pointing constraints,
and collision avoidance. Also, when spacecraft 1 moves off
the initial alignment, spacecraft 3 rotates slightly to keep
both spacecraft 1 and 2 inside its specified cone.

The trajectory of figure 3 is based on the trajectory shown
in Figure 4, which is shown here for comparison. Figure 4
shows the trajectory produced by the planner, before the
smoothing procedure. As expected, the trajectory is feasible,
but clearly suboptimal. All the spacecraft move and rotate
away from the target positions, then return to them, which is
particularly evident for spacecraft 3. The difference between
the figures shows the large changes possible by the smoother
given a feasible initial solution.

C. Example: Four vehicles

Figure 5 shows the solution to a complex example with
four spacecraft. The constraints in this example are as
follows: (a) Spacecraft 1, 2 and 3 must point their body
Y axis (dashed red) toward spacecraft 4; and (b) they must
also point their body X axis (solid blue) to each other in
a ring (spacecraft 1 must point to spacecraft 2, 2 to 3, and
3 to 1). These 6 constraints place tight restrictions on the
possible movements of the spacecraft which must be closely
coordinated. The attitude of spacecraft 4 is not constrained.

The maneuver starts with a tetrahedral formation with
spacecraft 1, 2 and 3 in the X-Y plane pointing to spacecraft
4 below. The formation then rotates 90◦ about the inertial
Y axis. The final solution consists of simple straight line
translations for all 4 spacecraft, with minimal rotations
toward the desired final attitudes, consistent with an optimal
maneuver. The constraints are always met.

V. CONCLUSION

Designing spacecraft reconfiguration maneuvers is chal-
lenging because it includes nonlinear attitude dynamics, dif-
ficult non-convex constraints, and high dimensionality (6N
DOF) due to coupling of the multiple spacecraft states in the
constraints. This paper presented a method that can solve
for reconfigurations for up to 4 spacecraft. The essential
feature of this method is the separation into a simplified
path planning problem without differential constraints to
obtain a feasible solution, which is then improved by a
smoothing operation. The first step is solved using Rapidly-
exploring Random Trees [1]. The smoother consists of
an optimization by iteratively solving a linear program
using a linearization of the cost function, dynamics, and
constraints about the initial feasible solution. The examples
demonstrated the validity of the approach and also showed
that the algorithm can solve problems with four spacecraft
with several complex pointing restrictions.

ACKNOWLEDGEMENTS

Research funded under NASA Grant NAG5-10440.

REFERENCES

[1] S. M. LaValle and J. J. Kuffner, ”Randomized Kinodynamic Plan-
ning,” International Journal of Robotics Research, Vol. 20, No. 5,
p. 378–400, May 2001.

[2] J. Leitner, F. Bauer, D. Folta, M. Moreau, R. Carpenter, and J. How,
“Distributed Spacecraft Systems Develop New GPS Capabilities,” in
GPS World: Formation Flight in Space Feb. 2002.

[3] J. H. Reif, “Complexity of the Mover’s Problem and Generaliza-
tions,” 20th Annual IEEE Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, October 1979, p. 421–427.

[4] O. Khatib, “Real-time obstacle avoidance for manipulators and
mobile robots,” Int. J. Robotics Research, (5), no. 1, p. 90–98, 1986.

[5] C. R. McInnes, “Large Angle Slew Maneuvers with Autonomous
Sun Vector Avoidance,” AIAA JGCD, Vol. 17, No. 4, p. 875–877.

[6] H. Hablani, “Attitude Commands Avoiding Bright Objects and
Maintaining Communication with Ground Station,” AIAA Journal
of Guidance, Control, and Dynamics, Vol. 22, No. 6, p. 759–767.

[7] A. Richards, T. Schouwenaars, J. P. How, and E. Feron, “Spacecraft
Trajectory Planning With Collision and Plume Avoidance Using
Mixed-Integer Linear Programming,” AIAA Journal of Guidance,
Control, and Dynamics, Vol. 25, No. 4, p. 755–765, Aug. 2002.

[8] E. Frazzoli, “Quasi-Random Algorithms for Real-Time Spacecraft
Motion Planning and Coordination” International Astronautical
Congress, Houston, TX, 2002.

[9] E. Frazzoli, M. Dahleh, E. Feron, R. Kornfeld, “A Randomized
Attitude Slew Planning Algorithm For Autonomous Spacecraft,”
AIAA Guidance, Navigation and Control Conf., AIAA 2001–4155.

[10] D. P. Scharf, and S. R. Ploen, F. Y. Hadaegh, J. A. Keim, and
L. H. Phan, “Guaranteed Initialization of Distributed Spacecraft
Formations,” AIAA Guidance, Navigation and Control Conference,
AIAA 2003–5590, August 2003.

[11] J. Phillips, L. E. Kavraki, and N. Bedrosian , “Probabilistic Op-
timization Applied to Spacecraft Rendezvous and Docking,” In
13th American Astronomical Society/AIAA - Space Flight Mechanics
Meeting,, Puerto Rico, February 2003.

[12] L. E. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilis-
tic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces,” IEEE Trans on Robotics and Auto., (12)4, p. 566–580, 1996.

[13] R. Fletcher, “Practical Methods of Optimization,” John Wiley and
Sons, 1987.

[14] C. Sultan, S. Seereeram, R. Mehra, and F. Hadaegh, “Energy Optimal
Reconfiguration for Large-Scale Formation Flying,” In Proceedings
of the American Control Conference, p. 2986–2991, July 2004.

[15] S. M. LaValle, “Planning Algorithms,” [Online] http://msl.cs.uiuc.edu
/planning/, 2004.

894

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ArialNarrow-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Oblique
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

