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Abstract— In this paper, we revisit the conservatism of gain-
scheduled control design under common Lyapunov functions.
Although recent research tends to seek parameter-dependent
Lyapunov functions to reduce the conservatism, we point
out that the conservatism arising from seeking a common
Lyapunov function can be reduced in a different manner to
the conventional method. If a condition is satisfied, we obtain
a set of extreme controllers that achieve the best performance
at vertices. Otherwise, an interpolated controller can be
constructed via an interesting combined convex structure.
An illustrated example demonstrates the applicability of the
proposed method.

I. INTRODUCTION

Since 1990’s, much attention has been paid on LMI (Linear
Matrix Inequality) - based control design, and a variety of
control problems have been solved via LMIs under common
Lyapunov functions [1], [3], [7], [8], [10].
Regarding gain-scheduled (GS) control as in [1], which
can be considered for some class of nonlinear systems
which can be described as LPV (Linear-Parameter Varying),
if one select a common Lyapunov function for a whole
operating range, the overall stability of the closed-loop
system as time varying is guaranteed for any changing rate
of the scheduling variable. However, selecting a common
Lyapunov function for the whole operating range leads to
conservatism of design. When one attempts to design a
gain-scheduled controller, it sometimes results in almost the
same one as a robust controller. In this case, most of gain-
scheduled control gains designed at each vertex are similar
to one another. (An illustrated example in such a case shall
be given later.)
Many researchers have judged that this conservatism arises
from selecting a common Lyapunov function and shifted
their research into parameter dependent Lyapunov functions
[2], [4], [5], [6], [9], [11], [12], [16], [17] (including
research for robust control and multiobjective control).
However, theory of parameter dependent Lyapunov func-
tions are more complicated and sometimes installed addi-
tional sufficient conditions or a line search parameter to
make the problem convex. In addition, changing rates of
scheduling variables are restricted in many cases. As a
result, it has not been so useful for practitioners to use
so far.
If the reason of the past conservatism of the gain-scheduled
control under common Lyapunov functions is only in using
common Lyapunov functions, it is natural to proceed to
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parameter-dependent Lyapunov functions. However, do we
have no possibility to reduce the conservatism within using
common Lyapunov functions? Shortly speaking, the answer
is “YES.” We still have some possibility to reduce the
past conservatism even if we seek a common Lyapunov
function for a whole operating range. In this paper, we shall
clarifies theoretically what freedom still remains to reduce
the conservatism and propose a new method to reduce the
conservatism by utilizing this freedom.
To demonstrate the applicability of the proposed method,
in this paper, we use a MDS (Mass-Damper-Spring) system
whose damping and spring coefficients vary in proportion
to the velocity V and its square V2, respectively.
The rest of this paper is organized as follows. Section
II gives preliminaries. In Sections III and IV, we present
the main result. Section V provides an illustrated example,
Section VI gives an alternative method if the proposed one
cannot be applied straight, and Section VII concludes the
paper. The notation is fairly standard. For a matrix M, M′
denotes the transpose, and M > 0 (M ≥ 0) means that
M = M′ and that M is positive (semi-) definite. Tr (M)
denotes the trace of M, Let Hzw(s) denote the closed-loop
transfer function from w to z. Finally, ‖ · ‖2 denotes the H2

norm.

II. PRELIMINARIES

A. Matrix Polytope

Let us denote the matrix polytope as follows.

Co[α](M1, . . . ,Mp) :=⎧⎪⎪⎨⎪⎪⎩
p∑

i=1

αiMi : αi ≥ 0,
p∑

i=1

αi = 1

⎫⎪⎪⎬⎪⎪⎭ , α =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
α1
...
αp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

B. Polytopic Operating Range

Let us consider the following polytopic operating range:

∀A(ρ) ∈ A := Co[α](A1, . . . , Ap) (2)

Ω := { ρ : A(ρ) ∈ A } (3)

Assuming that the scheduling variable ρ(t) and the corre-
sponding αi(t), i = 1, 2, . . . , p are measurable, we consider
the gain-scheduled controller K(ρ) = Co[α](K1, . . . ,Kp)
for the given LPV system. Occasionally, if it is needed,
assuming they are not measurable, we consider the robust
controller K = K1 = · · · = Kp for the given polytopic
uncertainty.
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Fig. 1. Generalized plant-controller configuration.

C. Plant and Controller

Let us consider the LPV system:

Σp :

{
ẋ = A(ρ)x + Bu + Ew
z = Cx + Du

(4)

and the state-feedback gain-scheduled controller:

Σc : u = −K(ρ)x, (5)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the control
input, w(t) ∈ Rnw the disturbance input, z(t) ∈ Rnz the
performance output, and ρ := [ρ1, . . . , ρr] the scheduling
variable. All the matrices in (4) have appropriate dimen-
sions. Defining Q := C′C and R := D′D, we assume that

(Assumption 1) R > 0, C′D = 0;

(Assumption 2) (A, B): controllable, (C, A): observable.

D. Closed-loop System

Σc is connected to Σp by standard negative feedback, the
closed-loop system is given as follows (Fig. 1).

Σcl :
{ ẋ = Acl(ρ)x + Bclw

z = Ccl(ρ)x
(6)

Acl(ρ) := A(ρ) − BK(ρ), Bcl := E, Ccl(ρ) := C − DK(ρ)

E. Lyapunov Function

Using P > 0, the Lyapunov function is defined by

Γ(t) = x′Px > 0. (7)

F. H2 Performance

For an impulse disturbance w(t) = w0δ(t), ‖w0‖2 = 1, let us
consider the performance index to be minimized:

Jzw =

∫ ∞
0

z(t)′z(t)dt, (8)

which is equivalent to

Jzw =

∫ ∞
0

(x′Qx + u′Ru)dt. (9)

When the closed-loop system Σcl is time-invariant, this is
identical to the square of the H2 norm of the closed-loop
transfer function from w to z:

Jzw = ‖Hzw(s)‖22 (10)

When the Lyapunov variable is time-varying, minimizing
Jzw is equivalent to

inf[Tr(B′clPBcl)] subject to
P > 0, Ṗ + PAcl + A′clP +C′clCcl < 0. (11)

When the Lyapunov variable is time-invariant with Ṗ = 0,
minimizing Jzw is equivalent to

inf[Tr(B′clPBcl)] subject to
P > 0, PAcl + A′clP +C′clCcl < 0. (12)

G. Definition of Matrix Functions

For convenience, let us define the following matrix func-
tions related toH2 performance. Pre- and post-multiply (12)
by X = P−1 > 0 and apply the Schur complement formula,
we have [

AclX + XA
′
cl XC

′
cl

CclX −Inz

]
< 0. (13)

From Acl = A − BK, Ccl = C − DK, (13) can be written as

ΦH2 (A,K, X) :=

[
(A − BK)X + X(•)′ ∗

(C − DK)X −Inz

]
< 0. (14)

Using the change of variables W := KX, (14) is transformed
into

ΨH2 (A,W, X) :=

[
(AX − BW) + (•)′ ∗

CX − DW −Inz

]
< 0. (15)

Related to the H2 objective function, introducing a slack
variable Z and noticing Bcl = E, we define

Φ0(X, Z) :=

[
X ∗
E′ Z

]
> 0. (16)

III. ROBUST CONTROL (GUARANTEEDH2 COST)

First of all, let us review the conventional robust control
under common Lyapunov functions. Here, we consider not
only Lyapunov stability but also so-called guaranteed H2

cost control.
Problem 1 (Synthesis): Using a common Lyapunov solu-
tion X for all the plants (Ai, B), 1 ≤ i ≤ p at each vertex
of the convex hull A = Co[α](A1, . . . , Ap), we solve the
following problem:

Jsyn := inf
W, X, Z

[Tr(Z)] subject to

Φ0(X, Z) > 0,
ΨH2 (Ai,W, X) < 0, 1 ≤ i ≤ p. (17)

Using the optimal solution set (W, X), the control gain is
given by K = WX−1.
Theorem 1 (Analysis): Using a common Lyapunov solu-
tion X for all the plants (Ai, B) at each vertex 1 ≤ i ≤ p of
the convex hull A = Co[α](A1, . . . , Ap) and a given control
gain K, if the following problem:

Problem 2 (Analysis at Vertices):

Jana := inf
X, Z

[Tr(Z)] subject to

Φ0(X, Z) > 0,
ΦH2 (Ai,K, X) < 0, 1 ≤ i ≤ p. (18)

is feasible, the K robustly stabilizes all the plants
(A(ρ), B), ρ ∈ Ω and the following problem:
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Problem 3 (Analysis at Any Operating Point):

J(ρ) := inf
X, Z

[Tr(Z)] subject to

Φ0(X, Z) > 0,
ΦH2 (A(ρ),K, X) < 0, ρ ∈ Ω. (19)

is always feasible as well as we have J(ρ) ≤ Jana.

Proof: It is easy to prove both Theorem 1 and
Corollary 1. Due to lack of space, it is omitted here.

Corollary 1: If we solve Problem 2 using K determined
by Problem 1, then Problems 2 and 3 are feasible and we
have J(ρ) ≤ Jana = Jsyn.

IV. GAIN-SCHEDULED CONTROL (GUARANTEED
H2 COST)

A. Synthesis I (Conventional)

Problem 4 (Synthesis I): Using a common Lyapunov so-
lution X for all the plants (Ai, B) at each vertex 1 ≤ i ≤ p
of the convex hull A = Co[α](A1, . . . , Ap), we solve the
following problem:

JI
syn := inf

Wi,X,Z
[Tr(Z)] subject to

Φ0(X, Z) > 0,
ΨH2 (Ai,Wi, X) < 0, 1 ≤ i ≤ p. (20)

Using the optimal solution sets (Wi, X), the control gains
are given by Ki = WiX−1, 1 ≤ i ≤ p.

B. Synthesis II (Proposed)

Problem 5 (Synthesis II): Using distinct Lyapunov solu-
tions Xi for each plant (Ai, B) at each vertex 1 ≤ i ≤ p
of the convex hull A = Co[α](A1, . . . , Ap), we solve the
following p problems:

Jopt i := inf
Wi,Xi,Zi

[Tr(Zi)] subject to

Φ0(Xi, Zi) > 0,
ΨH2 (Ai,Wi, Xi) < 0; 1 ≤ i ≤ p. (21)

Using the optimal solution sets (Wi, Xi), the control gains
are given by Ki = WiX−1

i , 1 ≤ i ≤ p.
In the sequel, we sometimes use the suffix opt i instead of
just i for Ki, Wi, Xi and Zi in Problem 5 such as Kopt i in
order to distinguish them from those in Problem 4.

C. Analysis

Theorem 2 (Analysis): Using a common Lyapunov solu-
tion X for all the plants (Ai, B) with the control gains
Ki at each vertex 1 ≤ i ≤ p of the convex hull A =
Co[α](A1, . . . , Ap), if the following problem:

Problem 6 (Analysis at Vertices):

Jana := inf
X, Z

[Tr(Z)] subject to

Φ0(X, Z) > 0,
ΦH2 (Ai,Ki, X) < 0, 1 ≤ i ≤ p. (22)

is feasible, the gain-scheduled controller:

K(ρ) = Co[α](K1, . . . ,Kp) (23)

(α is determined from the operating point ρ) robustly
stabilizes the time-varying plant (A(ρ), B), ρ ∈ Ω and
the following problem:

Problem 7 (Analysis at Any Operating Point):

J(ρ) := inf
X, Z

[Tr(Z)] subject to

Φ0(X, Z) > 0,
ΦH2 (A(ρ),K(ρ), X) < 0, ρ ∈ Ω. (24)

is always feasible as well as we have J(ρ) ≤ Jana.

Proof: It is easy to prove Theorem 2 with Corollaries 2
and 3. Due to lack of space, it is omitted here.

For convenience, let KI
i and KII

i denote Ki, 1 ≤ i ≤ p
determined by Problems 4 and 5, respectively. Let JI

ana and
JII

ana denote Jana when Problem 6 is solved with KI
i and KII

i ,
respectively. Let KI and KII denote the corresponding gain-
scheduled controllers. Similarly, let JI(ρ) and JII(ρ) denote
J(ρ) of Problem 7 solved with KI

i and KII
i .

Corollary 2 (conventional): When we solve Problem 6
using KI

i , 1 ≤ i ≤ p determined by Problem 4, then
Problem 6 is feasible and the gain-scheduled controller KI

stabilizes the time-varying plant (A(ρ), B), ρ ∈ Ω. Further-
more, Problem 7 is feasible and we have J(ρ) ≤ JI

ana = JI
syn.

Corollary 3 (proposed): When we solve Problem 6 us-
ing KII

i , 1 ≤ i ≤ p determined by Problem 5, if
Problem 6 is feasible, the gain-scheduled controller KII sta-
bilizes the time-varying plant (A(ρ), B), ρ ∈ Ω. Further-
more, Problem 7 is feasible and we have J(ρ) ≤ JII

ana.

Theorem 3: JI
ana of Problem 6 with KI

i , 1 ≤ i ≤ p
determined by Problem 4, is minimum among all Jana of
Problem 6 with any Ki, 1 ≤ i ≤ p. That is, we have
JI

ana ≤ Jana.

Proof: It is easy to prove both Theorem 3 and
Corollary 4. Due to lack of space, it is omitted here.

Corollary 4: Between JI
ana and JII

ana of Problem 6 with KI

and KII, respectively, we have the relation: JI
ana ≤ JII

ana.

D. Conservatism Revisited

The reason why the conventional gain-scheduled control
design is carried out by Problem 4 (Synthesis I), is in
Corollary 2 and Theorem 3. In Problem 4, even if the
Lyapunov solution X is constrained to be common for all
the vertices, the variables Wi can be selected independently.
Therefore, it seems that the controller gains Ki can be
determined independently for each vertex. However, the
variables Wi sometimes become similar to one another,
affected by the above constraint of the Lyapunov variable
X. As a result, the controller gains Ki sometimes become
similar to one another even though they should be deter-
mined independently. Such an example shall be given in the
sequel. In this case, the gain-scheduled control will become
almost the same as robust control.
Faced with this situation, many researchers have judged
this conservatism arises from using common Lyapunov
functions and shifted their research into parameter depen-
dent Lyapunov functions. However, from the difficulties
as described in INTRODUCTION, theory of parameter
dependent Lyapunov functions has not been so useful for
practitioners to use so far. If the reason of conservatism
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arising from seeking a common Lyapunov function of
gain-scheduled control is only in using common Lyapunov
functions, it is natural to proceed to parameter-dependent
Lyapunov functions. However, as described in INTRO-
DUCTION, we still have some possibility to reduce the past
conservatism even if we seek common Lyapunov functions.
Since Jana gives an upper bound on the actual cost J(ρ) for
any operating point ρ ∈ Ω and it is said to be the “worst
case guaranteed cost,” it seems that minimization of Jana

leads to minimization of J(ρ). However, Jana is just an upper
bound and there may be some amount of (sometimes very
large) gap between Jana and J(ρ). Even if one minimizes
the upper bound cost Jana, the actual cost J(ρ) is not always
minimized. The conventional gain-scheduled control design
based on Problem 4 (Synthesis I), carries out this “upper
bound cost minimization.” It is very important to point out
that this is the TRUE CAUSE of the past conservatism.
Noticing this fact, one can consider a new way to reduce
the past conservatism. Instead of Problem 4 (Synthesis I),
the problem to be actually solved here is given as follows.
Problem 8: Among sets of controllers Ki, 1 ≤ i ≤ p with
which Problem 6 is feasible, find a set of controllers such
that the actual worst case cost:

J̄ := max
ρ
{ J(ρ) : ρ ∈ Ω } (25)

is minimized.
However, it is very difficult to solve this problem directly.
Therefore, we focus on the actual costs only at the vertices
J(ρi), 1 ≤ i ≤ p. The problem is described as follows.
Problem 9: Among sets of controllers Ki, 1 ≤ i ≤ p
with which Problem 6 is feasible, find a set of controllers
such that the actual costs at vertices J(ρi), 1 ≤ i ≤ p are
minimized.
Minimization of J(ρi), 1 ≤ i ≤ p may not lead to
minimization of J̄. However, if we minimize J(ρ) directly
at least at the vertices, it may be minimized over a whole
operating range. Furthermore, one of J(ρi), 1 ≤ i ≤ p
sometimes coincides with the actual worst case cost J̄. In
this case, Problem 8 reduces to Problem 9. We shall show
such an example in the sequel.
Theorem 4: The theoretical lower bound of J(ρ) of Prob-
lem 7 is given by Jopt i of Problem 5 at the vertices.

Jopt i ≤ J(ρi), 1 ≤ i ≤ p. (26)

Proof: It is easy to prove Theorem 4 with Corollaries 5
and 6. Due to lack of space, it is omitted here.

Corollary 5 (proposed): When we solve Problem 6 us-
ing KII

i , 1 ≤ i ≤ p determined by Problem 5, if
Problem 6 is feasible, the gain-scheduled controller KII sta-
bilizes the time-varying plant (A(ρ), B), ρ ∈ Ω. Further-
more, Problem 7 is feasible and we have J(ρ) ≤ JII

ana.
Especially, J(ρ) achieves its theoretical lower bound Jopt i
at the vertices.

J(ρi) = Jopt i, 1 ≤ i ≤ p (27)

Corollary 6: Between JI
ana and JII

ana determined through
Problem 6 by the gain-scheduled controllers KI and KII,

respectively, we have the relation JI
ana ≤ JII

ana. Especially, at
the vertices, we have

JII(ρi) ≤ JI(ρi) ≤ JI
ana ≤ JII

ana, 1 ≤ i ≤ p. (28)

Thus, regarding the upper bounds, JI
ana is smaller than (or

equal to) JII
ana, while regarding the actual cost J(ρ), the

relation between the values corresponding to KI and KII is
reversed at least at the vertices. Moreover, JII(ρi) achieves
the theoretical lower bound Jopt i at the vertices.

V. NUMERICAL EXAMPLE

A. LPV Model

As an illustrated example of LPV systems, we consider a
MDS system, in which the spring and damping coefficients
vary in proportion to the velocity V and its square V2 as
follows (k = 0.1, d = 0.01).

Σp :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ẋ =

[
0 1
−kV −dV2

]
x +

[
0
5

]
w +

[
0
1

]
u

z =

[
5 0
0 0

]
x +

[
0
1

]
u

(29)

B. Construction of Convex Hulls

Let us define the numbers of the vertices depicted as in
Fig. 2 and consider the case where the MDS system is
accelerated from V = 100 (m/s) to V = 300 (m/s). It is noted
that this LPV system linearly depends on the scheduling
variables V and V2 which are not independent of each other.
To obtain less conservative design result, dependency of
them should be taken into account.
When we consider as if the variables V and V2 were
independent of each other, the operating range would be
the rectangular 1-9-7-10 as depicted in Fig. 2. However, the
actual path of the operating points goes only through the
curve η = V2. Any other areas are not used at all. When we
consider tighter convex hulls, the tightest (area-minimized)
one is 	1-8-7 in the case of three vertices, whereas it

100 120 140 160 180 200 220 240 260 280 300
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η = V 2
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V

Fig. 2. Division of a whole operating range into two subregions.
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TABLE I
Robust control

Region KrobV1 [1.8480 5.4244]
V2 [1.0395 1.9952]

TABLE II
Gain-scheduled control

Region i KI
i = Ki (conventional) KII

i = Kopt i (proposed)
1 [1.8630 5.2969] [1.1803 0.0118]

V1 2 [1.8481 5.4243] [0.8114 0.0041]
4 [1.8375 5.3282] [0.6155 0.0015]
4 [1.0395 1.9950] [0.6155 0.0015]

V2 6 [1.0397 1.9954] [0.4951 0.0008]
7 [1.0394 1.9948] [0.4138 0.0005]

becomes the trapezoid 1-2-6-7 in the case of four vertices.
Since the gap in the concave side of the curve η = V2

cannot be removed by increasing the number of vertices,
we divide the whole operating range into two convex hulls
of 	1-2-4 and 	4-6-7 in this paper.
Using a common Lyapunov function within each convex
hull while allowing for distinct ones over them, we design
two gain-scheduled controllers and switch them from one
to another at the intersection (i = 4) of both convex hulls.

C. Relation between ρ and the combination factor α
In the current numerical example, the operating point ρ is
given by ρ = [V V2]′. In application of gain-scheduled
control, we should obtain an explicit relation α = f (ρ)
between the operating point ρ and the combination factor
α from Fig. 2. The result is given as follows.

α1 =
(Vj − V)2

(Vj − Vi)2
, α2 =

2(Vj − V)(V − Vi)

(Vj − Vi)2
, α3 =

(V − Vi)2

(Vj − Vi)2
,

(30)

where Vi and Vj is set to the lowest and the highest veloc-
ities of the convex hull under consideration, respectively.

D. Design Result

Let us define the subregions as V1 : 100 ≤ V ≤ 200 (m/s)
and V2 : 200 ≤ V ≤ 300 (m/s) for convenience. Tables I
and II show the design result. There is little difference
between the robust controller (Krob) and the conventional
gain-scheduled controller (KI

i = Ki). In contrast, the gain
of the proposed gain-scheduled controller (KII

i = Kopt i)
smoothly transfers as the operating point transferring.
The upper bounds Jrob

ana ≤ JI
ana ≤ JII

ana and the actual
costs Jopt(ρ) ≤ JII(ρ) ≤ JI(ρ) ≤ Jrob(ρ) calculated by
these controllers for the region of V1 is given in Fig. 3.
The cost JI(ρ) given by the conventional gain-scheduled
controller KI is almost the same as the cost Jrob(ρ) by
the robust controller Krob except for the neighbor around
V = 100 (m/s). In contrast, the cost JII(ρ) given by
the proposed controller KII almost achieves the theoretical
lower bound Jopt(ρ), which is the optimal cost of the H2

optimal controller Kopt(ρ) calculated at any grid of the
operating points (V = 100, 110, 120, . . . , 200).
Note that the gap between the worst case upper bounds
Jrob

ana ≤ JI
ana ≤ JII

ana and the actual costs Jopt(ρ) ≤ JII(ρ) ≤
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H
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 J II ana: GS Control  K II (proposed)
 J I ana: GS Control  K I (conventional)
 J rob ana: Robust Control  K rob

 J rob(ρ): Robust Control  K rob
 J I(ρ): GS Control  K I (conventional)
 J II(ρ): GS Control  K II (proposed)
 J opt(ρ): Theoretical Lower Bound
Design Point

 J II ana 

 J I ana,  J rob ana

 J rob(ρ)

 J I(ρ)

 J II(ρ)

 J opt(ρ)

Fig. 3. Comparison of the individual H2 performances.

JI(ρ) ≤ Jrob(ρ) is extremely large. In addition, J(ρi), i = 1
coincides with the actual worst case cost J̄ in this example.

E. Time-Response Simulation

Let us consider the case where the MDS system is accel-
erated from V = 100 to V = 300 (m/s) by the rate of V̇ =
1 (m/s2) and the controllers are switched at the mid point
V = 200 (m/s) when t = 100 (sec). The simulation result
of the time response is given in Fig. 4. In both the robust
control (Krob) and the conventional gain-scheduled control
(KI

i = Ki), undesired non-smooth changes of the control
input u occur at V = 100 (m/s) where the controllers are
switched. In contrast, the proposed controller (KII

i = Kopt i)
demonstrates very smooth switching. See also Table II for
checking discontinuity or continuity between two gains
KI

4 = K4 of V1 and V2 (conventional) or KII
4 = Kopt 4

of them (proposed). Another interesting method to avoid
discontinuity on switching is included in [13].

VI. ALTERNATIVE METHOD

Even if the proposed method (Design II) cannot be appli-
cable, in other words, Problem 6 is infeasible, we can take
at least two alternative methods. The simplest one is to
reduce the volume of each convex hull while increasing
the number of convex hulls until Problem 6 becomes
feasible. Another alternative method is to seek a middle
controller Kmid i given by some indirect interpolation of the
conventional one (KI

i ) and the proposed one (KII
i ). Recall

that the conventional controller KI
i and the proposed one

KII
i are given as follows.

KI
i = Ki = Wi X−1,

KII
i = Kopt i = Wopt iX

−1
opt i, 1 ≤ i ≤ p, (31)

where we use the suffix “opt i” for the proposed controller
KII

i because it is an optimal controller at each vertex. The
middle controller Kmid i is given by the following indirect
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Fig. 4. Time-response simulation encountering switching action.

interpolation of KI
i and KII

i . ( β := [β1 β2]′ )

Kmid i = Wmid iX
−1
mid i, 1 ≤ i ≤ p, (32)

Wmid i = Co[β](Wi, Wopt i), Xmid i = Co[β](Xi, Xopt i).

This interpolation technique is somehow related to [15].
Even if Problem 6 is infeasible for KII

i , if Problem 4 is
feasible for KI

i , Problem 6 becomes feasible for Kmid i

as β1 increases from zero to unity. Using this property,
we can seek a middle controller which may improve the
past conservatism even if the proposed method (Design II)
cannot be applicable. The actual cost Jmid(ρi) determined
by Kmid i lies between the costs of the conventional method
and the proposed one as follows [14].

JII(ρi) ≤ Jmid(ρi) ≤ JI(ρi), 1 ≤ i ≤ p. (33)

One example is calculated as in Fig. 5.

VII. CONCLUSION

In this paper, we have revisited the conservatism of gain-
scheduled control design under common Lyapunov func-
tions. First, it has been clarified what freedom still remains
to reduce the past conservatism even if we seek a common
Lyapunov function for a whole operating range. Second,
utilizing this freedom, we have proposed a simple new
method to reduce the past conservatism under common
Lyapunov functions. This new method is available if a
condition is satisfied. Otherwise, we have proposed an
alternative one based on an interesting combined convex

100 110 120 130 140 150 160 170 180 190 200
134

136

138

140

142

H
2−

co
st

 v
al

ue

Upper Bound

100 110 120 130 140 150 160 170 180 190 200
0

1

2

3

4

V [m/s]

H
2−

co
st

 v
al

ue

Actual H2 cost

 J IIana: GS Control  K II (proposed)
 J midana: Middle Control  K mid

 J Iana: GS Control  K I (conventional)
 J robana: Robust Control  K rob

 J rob(ρ): Robust Control  K rob

 J I(ρ): GS Control  K I (conventional)
 J mid(ρ): Middle Control  K mid

 J II(ρ): GS Control  K II (proposed)
 J opt(ρ): Theoretical Lower Bound
Design

 J mid ana 

 J I ana,  J rob ana 

 J II ana 

 J rob(ρ)

 J I(ρ)

 J mid(ρ)
 J II(ρ)

 J opt(ρ)

Fig. 5. Comparison of the individual H2 performances.

structure. Through an illustrated example, the applicability
of the proposed method has been demonstrated.
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