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Abstract— This work considers the problem of stabilization
of nonlinear systems subject to state and control constraints.
We propose a Lyapunov-based predictive control design that
guarantees stabilization and state and input constraint satis-
faction from an explicitly characterized set of initial conditions.
An auxiliary Lyapunov-based analytical bounded control de-
sign is used to characterize the stability region of the predictive
controller and also provide a feasible initial guess to the
optimization problem in the predictive controller formulation.
For the case when the state constraints are soft, we propose a
switched predictive control strategy that reduces the time for
which state constraints are violated, driving the states into the
state and input constraints feasibility region of the Lyapunov-
based predictive controller. We demonstrate the application
of the Lyapunov-based predictive controller designs through
a chemical process example.
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I. INTRODUCTION

Control systems are often subject to constraints on their

manipulated inputs and state variables. Input constraints

arise as a manifestation of the physical limitations inherent

in the capacity of control actuators (e.g., bounds on the

magnitude of valve opening), and are enforced at all time

(hard constraints). State constraints, on the other hand, arise

either due to the necessity to keep the state variables within

acceptable ranges, to avoid, for example, runaway reactions

(in which case they need to be enforced at all times, and

treated as hard constraints) or due to the desire to maintain

them within bounds determined by performance considera-

tions (in which case they may be relaxed, and treated as soft

constraints). Constraints impose limitations on our ability

to steer the dynamics of the closed-loop system, and can

cause deterioration in the nominal closed-loop performance

and may even lead to closed-loop instability if not explicitly

taken into account at the stage of controller design.

Currently, model predictive control (MPC), also known

as receding horizon control (RHC), is one of the few

control methods for handling state and input constraints

within an optimal control setting and has been the subject

of numerous research studies that have investigated the

stability properties of MPC (e.g., see [1], [15] for extensive

surveys of various MPC formulations). In MPC formu-

lations the stability guarantees are typically based on an
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assumption of initial feasibility of the optimization problem,

and the set of initial conditions, starting from which a

given MPC formulation is guaranteed to be feasible, is not

explicitly characterized. The problem of state constraints

satisfaction has also been extensively studied [8], [24], [9],

[3], [25], [2], [22], and has typically been analyzed with

the understanding that state constraints may be relaxed. In

the minimum time approach [21], the smallest time beyond

which the state constraints can be satisfied on an infinite

horizon is identified, and the state constraints are relaxed

up-to that time. While possible for linear systems, the

computation of such a time, beyond which state constraints

are satisfied, is a more difficult task for nonlinear systems.

In other approaches, they are relaxed for all times, and

only incorporated in the objective function as appropriate

penalties on state constraint violation (‘softening’ of state

constraints). In either approaches, the problem of providing

explicitly the set of initial conditions starting from where

stabilization can be achieved and state and input constraints

are guaranteed to be feasible has not been addressed.

The desire to implement control approaches that allow

for an explicit characterization of their stability properties

has motivated significant work on the design of stabilizing

control laws, using Lyapunov techniques (e.g., see [14],

[4], [5]; the reader may refer to [12] for a survey of

results in this area) that provide an explicit characterization

of the region of guaranteed closed–loop stability. These

controllers, however, are not guaranteed to be optimal with

respect to an arbitrary performance criterion.

In a recent work, [17], we proposed a Lyapunov-based

model predictive control formulation that provided guaran-

teed stability from an explicitly characterized set of initial

conditions in the presence of input constraints. In this work

we propose a Lyapunov-based model predictive control

design for stabilization of nonlinear systems with state and

input constraints. The design of the Lyapunov-based MPC

uses a bounded controller, with its associated region of

stability, as an auxiliary controller that is used to analyze

the stability properties of the Lyapunov-based MPC. The

proposed Lyapunov-based MPC is shown to possess an

explicitly characterized set of initial conditions, starting

from where it is guaranteed to be feasible, and hence

stabilizing, while enforcing the state and input constraints at

all times. For the case when the state constraints are soft, we

propose a switched predictive control strategy that reduces

the time for which state constraints are violated, driving the
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states into the state and input constraints feasibility region of

the Lyapunov-based predictive controller. We demonstrate

the application of the Lyapunov-based predictive controller

designs through a chemical process example.

II. PRELIMINARIES

In this work, we consider the problem of stabilization

of continuous-time nonlinear systems with state and input

constraints, with the following state-space description:

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)

u ∈ U , x ∈ X (2)

where x = [x1 · · ·xn]′ ∈ IRn denotes the vector of

state variables, u = [u1 · · ·um]′ ∈ U denotes the vector

of manipulated inputs, U ⊆ IRm,X ⊆ IRn denote the

constraints on the manipulated inputs and the state variables,

respectively, f(·) is a sufficiently smooth n × 1 nonlinear

vector function, and g(·) is a sufficiently smooth n × m
nonlinear matrix function. Without loss of generality, it

is assumed that the origin is the equilibrium point of the

unforced system (i.e. f(0) = 0). Throughout the paper, the

notation ‖ · ‖ will be used to denote the Euclidean norm of

a vector, while the notation ‖ · ‖Q refers to the weighted

norm, defined by ‖x‖2
Q = x′Qx for all x ∈ IRn, where Q

is a positive–definite symmetric matrix and x′ denotes the

transpose of x. The notation LfV denotes the standard Lie

derivative of a scalar function V (·) with respect to the vector

function f(·) and lim sup
t→∞

f(x(t)) = lim
t→∞{sup

τ≥t
f(x(τ))}. In

order to provide the necessary background for our results in

Sections III and IV, we will briefly review in the remainder

of this section the design procedure for, and the stability

properties of, a bounded control design, which will be used

to characterize the feasibility region of a Lyapunov-based

MPC formulation in Section III. Throughout the manuscript,

we assume that for any u ∈ U the solution of the system

of Eq.1 exists and is continuous for all t, and we focus on

the state feedback problem where measurements of x(t) are

assumed to be available for all t.

A. Bounded Lyapunov-based control
Consider the system of Eq.1 for which a control Lya-

punov function, V , exists. Using the results in [14] (see also

[4]), the following bounded control law can be constructed:

u(x) =
{ −k(x)β(x) , ‖β(x)‖ �= 0

0 , ‖β(x)‖ = 0

}
:= ub(x)

(3)

k(x) =
α(x) +

√
(α(x))2 + (umax‖β(x)′‖)4

‖β(x)′‖2

[
1 +

√
1 + (umax‖β(x)′‖)2

]

(4)

where β(x) = LgV (x)′, LgV (x) = [Lg1V · · ·LgmV ] is a

row vector, where gi is the ith column of g, α(x) = LfV +
ρcV and ρc > 0, and umax is a real positive number such

that for all u ∈ U , ‖u‖ ≤ umax. For the above controller,

one can show, using a standard Lyapunov argument, that

whenever the closed–loop state, x, evolves within the region

described by the set:

Φx,u = {x ∈ X : α(x) ≤ umax‖β(x)‖} (5)

then the controller satisfies the state and input con-

straints, and the time-derivative of the Lyapunov function

is negative-definite. Assume that

Ωx,u = {x ∈ IRn : V (x) ≤ cmax
x,u } ⊆ Φx,u

(6)

for some cmax
x,u > 0. Ωx,u then provides an estimate of

the stability region, starting from where the origin of the

constrained closed–loop system, under the control law of

Eqs.3-4, is guaranteed to be asymptotically stable and state

and input constraints are satisfied.

The control law ensures that for all initial conditions

in Ωx,u, the closed–loop state remains in Ωx,u when the

control action is implemented in a discrete (sample and

hold) fashion with a sufficiently small hold time (∆) and

eventually converges to some neighborhood of the origin

whose size depends on ∆. This robustness property, for-

malized in [17] for the problem of stabilization under input

constraints (yielding Ωu as the region of stability and input

constraint satisfaction), carries over to the case of input

and state constraints. This property will be exploited in the

Lyapunov-based predictive controller design of Section III

and is formalized in Proposition 1 below (the proof of the

proposition is similar to that of Proposition 1 in [17], and

is omitted for brevity). For further results on the analysis

and control of sampled-data nonlinear systems, the reader

may refer to [10], [11], [23].

Proposition 1: Consider the constrained system of Eq.1,
under the bounded control law of Eqs.3–4 with ρc > 0 and
let Ωx,u be the stability region estimate under continuous
implementation of the bounded controller. Let u(t) = u(j∆)
for all j∆ ≤ t < (j + 1)∆ and u(j∆) = ub(x(j∆)),
j = 0, · · · ,∞, where ub(·) was defined in Eq.3. Then, given
any positive real number d, there exist positive real numbers
∆∗ and δ

′
such that if ∆ ∈ (0,∆∗] and x(0) := x0 ∈ Ωx,u,

then x(t) ∈ Ωx,u ⊆ X and lim sup
t→∞

‖x(t)‖ ≤ d. Also, if

V (x)(t) ≤ δ
′

then V (x(τ)) ≤ δ
′ ∀ τ ∈ [t, t + ∆) and if

δ
′
< V (x)(t) ≤ cmax

x,u then V̇ (x(τ)) < 0 ∀ τ ∈ [t, t + ∆).

III. LYAPUNOV-BASED MODEL PREDICTIVE CONTROL

Consider model predictive control of the system of Eq.1

with hard state and input constraints. We present here a

Lyapunov–based MPC formulation (see Remark 1 for a

discussion on this formulation and its relationship to other

Lyapunov-based formulations) that guarantees feasibility of

the optimization problem subject to hard constraints on the

state and input and hence constrained stabilization of the

closed–loop system from an explicitly characterized set of

initial conditions. For this MPC design, the control action

at state x and time t is obtained by solving, on-line, a finite

horizon optimal control problem of the form:

P (x, t) : min{J(x, t, u(·))|u(·) ∈ S, x ∈ X} (7)

s.t. ẋ = f(x) + g(x)u (8)
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V̇ (x(τ)) < 0 if V (x(t)) > δ
′
, τ ∈ [t, t + ∆) (9)

V (x(τ)) ≤ δ
′

if V (x(t)) ≤ δ
′
, τ ∈ [t, t + ∆) (10)

where S = S(t, T ) is the family of piecewise continuous

functions (functions continuous from the right), with period

∆, mapping [t, t+T ] into U and T is the specified horizon.

Eq.8 is the nonlinear model describing the time evolution of

the state x, V is the Lyapunov function used in the bounded

controller design and δ
′

is defined in Proposition 1. Eq.9 is

a strict inequality constraint, requiring that the value of the

Lyapunov function decrease during the first time step, while

Eq.10 is an inequality constraint requiring the Lyapunov

function value to stay below δ
′
, once it has decreased to

a value less than δ
′
. A control u(·) in S is characterized

by the sequence {u[j]} where u[j] := u(j∆) and satisfies

u(t) = u[j] for all t ∈ [j∆, (j + 1)∆). The performance

index is given by

J(x, t, u(·)) =
∫ t+T

t

[‖xu(s;x, t)‖2
Q + ‖u(s)‖2

R

]
ds

(11)

where R and Q are strictly positive definite, symmetric

matrices and xu(s;x, t) denotes the solution of Eq.1, due to

control u, with initial state x at time t. The minimizing con-

trol u0(·) ∈ S is then applied to the plant over the interval

[j∆, (j + 1)∆) and the procedure is repeated indefinitely.

This defines an implicit model predictive control law:

M(x) := argmin(J(x, t, u(·))) := u1 (12)

Closed–loop stability and state and input constraint fea-

sibility properties of the closed–loop system under the

Lyapunov–based predictive controller are inherited from the

bounded controller under discrete implementation and are

formalized in Proposition 2 below.

Proposition 2: Consider the constrained system of Eq.1
under the MPC law of Eqs.7–12 with ∆ ≤ ∆∗ where ∆∗

was defined in Proposition 1. Then, given any x0 ∈ Ωx,u,
where Ωx,u was defined in Eq.6, the optimization problem
of Eq.7-12 is feasible for all times, x(t) ∈ Ωx,u ⊆ X for
all t ≥ 0 and lim sup

t→∞
‖x(t)‖ ≤ d.

Proof of Proposition 2: The proof of this proposition is

divided in three parts. In the first part we show that for

all x0 ∈ Ωx,u, the predictive control design of Eqs.7-12

is feasible. We then show that Ωx,u is invariant under the

predictive control algorithm of Eqs.7-12, and that the state

and input constraints are satisfied for all times. Finally, we

prove practical stability for the closed–loop system.

Part 1: Consider some x0 ∈ Ωx,u under the predictive

controller of Eqs.7-12, with a prediction horizon T = N∆,

where ∆ is the hold time and 1 ≤ N < ∞ is the number

of the prediction steps. The initial condition can either be

such that V (x0) ≤ δ
′

or δ
′
< V (x0) ≤ cmax

x,u .

Case 1: If δ
′
< V (x0) ≤ cmax

x,u , the control input trajectory

under the bounded controller of Eqs.3–4 provides a feasible

solution to the constraint of Eq.9 (see Proposition 1).

A feasible initial guess for the optimization problem of

Eqs.7-12 therefore exists, and, in particular, is given by

u(j∆) = ub(j∆), j = 1, · · · , N . Note that if u = ub for

t = [0,∆], and ∆ ∈ (0,∆∗], then V̇ < 0 ∀ t ∈ [0,∆]
and ub ∈ U (since ub is computed using the bounded

controller of Eqs.3–4). Also, under discrete implementation

of the bounded controller of Eqs.3–4, for any x0 ∈ Ωx,u,

x(t) ∈ Ωx,u ∀ t ≥ 0, therefore the constraint x(t) ∈ X is

also satisfied by this control trajectory (note that Ωx,u ⊆
Φx,u ⊆ X).

Case 2: If V (x0) ≤ δ
′
, once again we infer from Propo-

sition 1 that the control input trajectory provided by the

bounded controller of Eqs.3–4 provides a feasible initial

guess, given by u(j∆) = ub(j∆), j = 1, · · · , N (recall

from Proposition 1, that under the bounded controller of

Eqs.3–4, if V (x0) ≤ δ
′

then V (x(t)) ≤ δ
′ ∀ t ≥ 0 ). This

shows that for all x0 ∈ Ωx,u, the Lyapunov based predictive

controller of Eqs.7-12 is feasible.

Part 2: As shown in Part 1, for any δ
′
< V (x0) ≤ cmax

x,u , the

constraint of Eq.9 in the optimization problem is feasible.

Upon implementation, therefore, the value of the Lyapunov

function decreases, and since Ωx,u is a level set of V , the

closed–loop state trajectory cannot escape out of Ωx,u. On

the other hand, if V (x0) ≤ δ
′
, feasibility of the constraint

of Eq.10 guarantees that the closed–loop state trajectory

evolves such that V (x(t)) ≤ δ
′ ∀ t ≥ 0. In both cases,

Ωx,u continues to be an invariant region under the Lyapunov

based predictive controller of Eqs.7-12. Also, since Ωx,u ⊆
Φx,u ⊆ X , we have that x(t) ∈ X for all t ≥ 0.

Part 3: Finally, consider an initial condition, x0, such that

δ
′

< V (x0) ≤ cmax
x,u . Since the optimization problem

continues to be feasible for all t ≥ 0, we have that

V̇ < 0 for all δ
′

< V (x(t)) ≤ cmax
x,u . All trajectories

originating in Ωx,u, therefore converge to the set defined

by Ωt := {x ∈ IRn : V (x) ≤ δ
′}. For V (x0) ≤ δ

′
,

the feasibility of the optimization problem of Eqs.7-12

implies V (x(t)) ≤ δ′ ∀ t ≥ 0. Therefore, for all x0 ∈
Ωx,u, lim sup

t→∞
V (x(t)) ≤ δ

′
. Then, since V (x) ≤ δ

′
implies

‖x‖ ≤ d (note that Vk(·) is a continuous function of the

state, therefore one can find a finite, positive real number,

δ
′
, such that V (x) ≤ δ

′
implies ‖x‖ ≤ d), we have that

lim sup
t→∞

‖x(t)‖ ≤ d. This completes the proof of Proposition

2.

Remark 1: Lyapunov-based predictive control approaches

(see, for example, [13], [20]) typically incorporate a Lya-

punov function decay constraint similar to that of Eq.9,

albeit requiring the constraint to hold at the end of the

prediction horizon as opposed to during the first time step.

This may lead to the state trajectory going out of the level

set (and therefore, possibly out of the state constraint satis-

faction region, violating the state constraints), and motivates

using the constraint of Eq.9 that requires the Lyapunov

function to decrease during the first step.

.

Remark 2: One of the key challenges that impact on

the practical implementation of nonlinear MPC (NMPC)
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is the inherent difficulty of characterizing, a priori, the set

of initial conditions starting from where a given NMPC

controller is guaranteed to stabilize the closed–loop sys-

tem. The Lyapunov-based predictive controller formulation

guarantees initial and subsequent feasibility of the opti-

mization problem for an explicitly characterized set of

initial conditions. In addition, the optimization problem in

the predictive controller is also initialized with a feasible

initial guess, which reduces the computation burden. Note

also that any other Lyapunov-based analytic control design

that provides an explicit characterization of the state and

input constrained stability region, and is robust with respect

to discrete implementation, can be used as the auxiliary

controller, and the choice is not limited to the bounded

controller used in this paper.

IV. HANDLING SOFT STATE CONSTRAINTS VIA

CONTROLLER SWITCHING

Consider now the nonlinear system of Eq.1 where the

state constraints represent desired bounds on the values of

the state variables. In this case, the state constraints can be

treated as soft constraints, allowing their violation for some

period of time. It is important, nevertheless, to implement

control action that reduces the time for which constraints

are violated. We propose in this section a control design

that uses two predictive formulations and switches between

them. First we design a predictive controller that, while

respecting input constraints, drives the state trajectory into

the feasible region of the predictive controller formulation

of Proposition 2, in a way that reduces the time for which

the state constraints are violated, and then implement the

predictive controller of Proposition 2 to achieve stabilization

together with state and input constraint satisfaction for the

rest of the time. To this end, we first cast the system of

Eq.1 as a switched system of the form:

ẋ = f(x) + g(x)ui(t), i ∈ {1, 2} (13)

where i : [0,∞) → {1, 2} is the switching signal which

is assumed to be a piecewise continuous (from the right)

function of time, implying that only a finite number of

switches is allowed on any finite–time interval. The index,

i(t), represents a discrete state that indexes the control input,

u, with the understanding that i(t) = 1 if and only if

ui(x(t)) = u1 (i.e., the Lyapunov-based MPC formulation

of Eqs.7-12 is used) and i(t) = 2 if and only if ui(x(t)) =
u2) (i.e., an MPC formulation designed to reduce the time

of state constraint violation, is used). Theorem 1 below

presents both the control law, u2, and the switching law.

Theorem 1: Consider the switched nonlinear system of
Eq.13, for which there exists a control Lyapunov function
V , and for a given pair of positive real numbers (d, ρc),
∆ is chosen such that ∆ ≤ ∆∗, where ∆∗ was defined in
Proposition 1. Given any initial condition x0 ∈ Ωu, let Tb

be the time it takes for the bounded controller of Eqs.3–
4, under discrete implementation with a discretization step
∆, to achieve x(Tb) ∈ Ωx,u. Consider the following
optimization problem:

u = argmin(J) := u2 (14)

J = qV (x(t + ∆)) +
∫ t+T

t

[‖u(s)‖2
R

]
ds (15)

where q > 0, R > 0, T is the prediction horizon given by
T = Tb − t, subject to the following constraints:

ẋ = f(x) + g(x)u (16)

V̇ (τ) ≤ 0 ∀ τ ∈ [t, t + T ) (17)

u ∈ U, x(t + T ) ∈ Ωx,u (18)

Let Tswitch be the earliest time such that x(Tswitch) ∈
Ωx,u, where Ωx,u was defined in Eq.6, under the controller
of Eqs.14-18. Then, the following switching law:

i(t) =
{

2 , 0 ≤ t ≤ Tswitch

1 , t > Tswitch

}
(19)

ensures, for the closed–loop system, that x(Tb) ∈ Ωx,u,
Tswitch ≤ Tb, x(t) ∈ Ωx,u ⊆ X ∀ t > Tswitch and
lim sup

t→∞
‖x(t)‖ ≤ d.

Proof of Theorem 1: The proof of the theorem proceeds

as follows: we first show that the optimization problem of

Eqs.14–18 is feasible for all 0 ≤ t ≤ Tswitch, x(Tswitch) ∈
Ωx,u and that Tswitch ≤ Tb. Then, we use the result of

Proposition 2 to show that for t > Tswitch, the controller

of Eqs.7-12 ensures that x(t) ∈ Ωx,u ⊆ X ∀ t > Tswitch

and lim sup
t→∞

‖x(t)‖ ≤ d.

Case 1: Consider x0 ∈ Ωu\Ωx,u. Using the result of Propo-

sition 1 in [17], we have that under discrete implementation

of the bounded controller of Eqs.3–4 with ∆ ≤ ∆∗, the state

trajectory, starting from x0, evolves such that x(t) ∈ Ωu and

V̇ ≤ 0 for all t ≥ 0. From the definition of Tb, we have

that x(Tb) ∈ Ωx,u. The optimization problem of Eqs.14–

18 is guaranteed to be initially feasible, since a feasible

initial guess can always be obtained using the control input

trajectory under the bounded controller and is given by:

u(k∆) = ub(k∆), k = 1, · · · , T/∆
Subsequently, the tail of the solution at the first time step:

u(k∆), k = 2, · · · , T/∆ is a feasible initial guess for the

constraints in the optimization problem at the next time step

(at the next time step, the horizon reduces from T = Tb to

T = Tb −∆). Under the implementation of the solution of

the control move at the first time step, we get:

V̇ (τ) ≤ 0 ∀ τ ∈ [t + (k − 1)∆), t + k∆) k = 1, · · · , T/∆
Under the implementation of the tail, therefore:

V̇ (τ) ≤ 0 ∀ τ ∈ [t + (k − 1)∆), t + k∆) k = 2, · · · , T/∆
and also x(Tb) ∈ Ωx,u, which is the constraint that the

optimization problem needs to enforce at the next time

step. The optimization problem of Eqs.14–18, therefore,

is guaranteed to be initially and successively feasible, and

hence x(Tb) ∈ Ωx,u.

By definition of Tswitch, if the state trajectory enters

Ωx,u before Tb, then Tswitch is set to that value, hence

x(Tswitch) ∈ Ωx,u where Tswitch ≤ Tb. From Proposition

2, we get that for all x(Tswitch) ∈ Ωx,u, x(t) ∈ Ωx,u ⊆
X ∀ t ≥ Tswitch and lim sup

t→∞
‖x(t)‖ ≤ d.
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Case 2: For any initial condition x0 ∈ Ωx,u ⊆ Ωu we

have that Tb = Tswitch = 0 (since x0 ∈ Ωx,u), and the

switching law of Eq.19 dictates that the controller of Eqs.7-

12 is implemented for all times. Since x0 ∈ Ωx,u, from

Proposition 2, we get that x(t) ∈ Ωx,u ⊆ X ∀ t ≥ 0 and

lim sup
t→∞

‖x(t)‖ ≤ d, completing the proof of Theorem 1.

Remark 4: For linear systems, the problem of state con-

straints satisfaction is typically handled by relaxing the con-

straints, while appropriately penalizing the state constraint

violation within the objective function [25], or solving

a multi-objective problem [22] that minimizes both the

duration and size of state constraint violation. While these

approaches do away with any potential infeasibility due

to the state constraints, there are no guarantees as to for

how long the state constraints will continue to be violated.

The use of the bounded controller, to obtain an estimate

of the time within which the state trajectory can be driven

inside Ωx,u, allows the use of this value in the constraint

of Eq.18 and guarantees state constraint satisfaction by that

time. Furthermore, since the objective function minimizes

the Lyapunov function value itself at the next time instance,

and the target set, Ωx,u, is a level set, it is likely that the

resulting control action will drive the trajectory inside the

feasible region faster, and result in a smaller time for which

the state constraints are violated (see the simulation example

for a demonstration).
Remark 5: The problem of implementing MPC with guar-

anteed stability regions was recently addressed for state [7]

and output [16] feedback control of linear systems, in [6]

for nonlinear systems, and in [18] for nonlinear systems

subject to uncertainty and input constraints, by means of a

hybrid predictive control structure that was used to embed

the implementation of MPC within the stability region of a

Lyapunov-based bounded controller via switching between

the predictive controller and the MPC. In this work, unlike

the hybrid predictive control structure, the switching takes

place between two different predictive control formulations

(the controller of Eqs.14–18 and the controller of Eqs.7–

12), not to provide a fall back mechanism in the event of

infeasibility (the Lyapunov-based predictive controller of

Eqs.7–12 is guaranteed to be feasible from an explicitly

characterized set of initial conditions), but rather to use

the controller of Eqs.14–18 to guide the system trajectory

into the state and input constrained stability region of the

Lyapunov-based predictive control design of Eqs.7–12.

V. APPLICATION TO A CHEMICAL PROCESS EXAMPLE

Consider a continuous stirred tank reactor where an irre-

versible, first-order exothermic reaction of the form A
k→ B

takes place. The mathematical model for the process takes

the form:

ĊA =
F

Vl
(CA0 − CA) − k0e

−E

RTR CA

ṪR =
F

Vl
(TA0 − TR) +

(−∆H)
ρcp

k0e

−E

RTR CA +
Q

ρcpVl
(20)

where CA denotes the concentration of the species A,

TR denotes the temperature of the reactor, Q is the heat

removed from the reactor, Vl is the volume of the re-

actor, k0, E, ∆H are the pre-exponential constant, the

activation energy, and the enthalpy of the reaction and

cp and ρ, are the heat capacity and fluid density in

the reactor. The values of all process parameters can be

found in [19]. The control objective is to stabilize the

reactor at the unstable equilibrium point (Cs
A, T s

R) =
(0.57 Kmol/m3, 395.3 K), while keeping the state vari-

ables between Cmin
A = 0.41 Kmol/m3 ≤ CA ≤

0.73 Kmol/m3 = Cmax
A and Tmin

R = 392.3 K ≤
TR ≤ 398.3 K = T max

R using the rate of heat in-

put, Q, and change in inlet concentration of species A,

∆CA = CA0−CA0s
as manipulated inputs with constraints:

|Q| ≤ 0.167 KJ/min and |∆CA0| ≤ 1 Kmol/m3.

We construct a bounded controller of the form of Eq.3

using V (x) = x′Px where x = (CA − Cs
A, TR − T s

R),

P =
{

60.2 3.82
3.82 0.34

}
and ρc = 0.001 and compute its

stability region estimate under input constraints Ωu and

that under state and input constraints Ωx,u, shown in Fig.1.

The parameters in the objective function of Eq.11 are

chosen as Q = qI , with q = 1.0, and R = rI , with

r = 1.0 and those in the objective function of Eq.15 are

chosen as q = 10.0 and R = rI , with r = 0.01. The

constrained nonlinear optimization problem is solved using

the MATLAB subroutine fmincon, and the set of ODEs is

integrated using the MATLAB solver ODE45.

We first demonstrate the implementation of the

Lyapunov-based predictive controller of Proposition 2

(Eqs.7-12) for the case when the state constraints are

hard constraints and need to be satisfied at all times. To

this end, we consider an initial condition that belongs

to the state and input constrained stability region of the

predictive controller, Ωx,u. As shown by the solid line

in Fig.1, starting from the initial condition (CA, TR) =
(0.445 Kmol/m3, 398.0 K), successful stabilization of

the closed–loop system is achieved, together with state and

input constraint satisfaction for all times. The corresponding

state and input profiles are shown in Fig.2.

Consider now the case where the state constraints reflect

desirable bounds on the state variables, and can be treated

as soft constraints. In this case, the closed–loop state could

be initialized in Ωu, from initial conditions where state

constraints are initially violated. Starting from an initial

condition that violates the state constraint on the temper-

ature, (CA, TR) = (0.678 Kmol/m3, 391.6 K), it takes

0.42 minutes for the state trajectory to enter Ωx,u under

the implementation of the bounded controller (see dashed

lines in Figs.1-2). Setting Tb = 0.42 minutes, therefore and

implementing the predictive controller of Theorem 1, we

find that the controller is able to drive the state trajectory

inside Ωx,u at t = 0.26 minutes, reducing the time for

which the soft state constraints are violated by about 40%

(see dotted lines in Figs.1-2). After Tswitch = 0.26 minutes
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the predictive controller of Proposition 2 is employed to

successfully achieve stabilization in the presence of state

and input constraints.
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Fig. 1. Closed–loop state trajectory under the predictive controller of
Proposition 2 (solid line), under the bounded controller (dashed line) and
under the predictive controller of Theorem 1 (dotted line).
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