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Abstract— Guaranteeing asymptotic stability and recursive
constraint satisfaction for a set of initial states that is as
large as possible and with both a minimal control cost and
computational load can be identified as a common objective
in the Model Predictive Control (MPC) community. General
interpolation (Rossiter et al., 2004, Bacic et al., 2003) provides
a favourable trade off between these different aspects, how-
ever, in the robust case, this requires on-line Semi-Definite
Programming (SDP), since one typically employs ellipsoidal
invariant sets. Recently, (Pluymers et al., 2005) have proposed
an efficient algorithm for constructing the robust polyhedral
maximal admissible set (Gilbert et al., 1991) for linear systems
with polytopic model uncertainty. In this paper a robust
interpolation based MPC method is proposed that makes use
of these sets. The algorithm is formulated as a Quadratic
Program (QP) and is shown to have improved feasibility
properties, efficiently cope with non-symmetrical constraints
and give better control performance than existing interpolation
based robust MPC algorithms.

I. INTRODUCTION

Model based Predictive Control (MPC) classically considers
a finite future time horizon within which the input sequence
is parameterized with a finite number of degrees of freedom
(d.o.f.), after which an optimization problem is solved
at each time instant in order to minimize a performance
objective, that is typically a quadratic function with Q and
R as state and input weighting matrices. Stability and sat-
isfactory performance is generally achieved by considering
sufficiently large horizons. Later results (e.g. [13]) achieve
stability with more modest horizon lengths by adding a
stabilizing feedback controller at the end of the horizon. The
terminal state is then restricted to lie within the invariant
set of the terminal controller and the cost objective is
augmented with the total cost-to-go beyond the horizon. The
within-horizon part of the controller is typically called mode
1, while the part beyond the horizon is generally called
mode 2.

A typical disadvantage of dual mode MPC controllers
is the trade-off to be made between satisfactory control
performance (by using a highly-tuned terminal controller)

and feasibility (by using a detuned terminal controller with
a large region of attraction). Both optimal performance and
satisfactory feasibility can be obtained by employing a time-
varying terminal controller as proposed in e.g. [1], [4], [9],
[10], [16], but this comes at the cost of a significant increase
in computational complexity due to the necessity to use
Semi-Definite Programming (SDP).

Given that making the terminal controller time-varying is
often more effective for enlarging the set of feasible initial
states than adding additional d.o.f. in mode 1, several mode
2 only algorithms have been proposed in literature, e.g. [1],
[7], [12], [14], [15]. These algorithms can be seperated in
two groups. The first family [14], [15] is basically based on
the well known results of [7] and use the convexity property
of LMI’s and several off-line calculated controllers and
corresponding ellipsoidal invariant sets to on-line calculate
a time-varying controller. The second family, usually called
general interpolation [1], [12], uses an on-line decom-
position of the current state, with each component lying
in a seperate invariant set, after which the corresponding
controller is applied to each component seperately in order
to calculate an input value.

The method proposed in this paper fits in the second
category of mode 2 only algorithms. While [12] is based on
QP and is computationally efficient, it cannot take model
uncertainty into account whereas the algorithm described in
[1] can accommodate for model uncertainty but makes use
of more conservative ellipsoidal invariant sets, as opposed
to polyhedral sets in [12]. Hence, it can only be formulated
as an SDP, which makes the method computationally more
demanding. This paper uses the algorithm recently proposed
in [11] for constructing polyhedral robustly invariant sets
(previously considered intractable), in order to obtain a QP
based robust interpolation based algorithm with improved
control performance and improved feasibility properties.

This paper is organised as follows. In section II the general
control setting and notation is introduced, after which, in
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section III, the general background on invariant sets and
general interpolation are briefly explained. Section IV then
introduces the new algorithm, which is then applied to a
numerical example in section V. Sections VI and VII contain
conclusions and future work.

II. PROBLEM FORMULATION

In this paper we consider linear parameter-varying (LPV)
systems of the form

x(k+1) = A(k)x(k)+B(k)u(k), k = 0, . . . ,∞ (1a)

with

[A(k) B(k)] ∈ Ω � Co{[A1 B1], . . . , [Am Bm]}, (1b)

subject to constraints

u(k) ∈ U ≡ {u|u ≤ u ≤ u}, k = 0, . . . ,∞, (2a)

x(k) ∈ X ≡ {x|x ≤ x ≤ x}, k = 0, . . . ,∞. (2b)

x(k) ∈ R
nx and u(k) ∈ R

nu denote state and input vectors
at discrete time k with nx and nu respectively denoting
the number of states and inputs of the system. For reasons
of clarity component-wise bounds are assumed, but more
general linear state, input and mixed state/input constraints
can also be considered without significantly complicating
further sections. In this paper a new algorithm is proposed
that robustly stabilizes system (1) and guarantees robust sat-
isfaction of constraints (2). The algorithm aims to minimise∑

∞

k=0
(x(k)TQx(k)+u(k)TRu(k)) as a cost objective with

Q ∈ R
nx×nx and R ∈ R

nu×nu positive definite state and
input cost weighting matrices.

III. BACKGROUND

In this section an overview is given of the existing methods
for computing invariant sets and how these are deployed
in MPC algorithms using general interpolation. The next
section will then focus on the new algorithm proposed in
this paper.

A. Invariant Sets

As this section only gives a brief overview of invariant sets
and how to construct them, focusing on the details required
to understand general interpolation, we refer the reader to
[3] for further details.

Definition 1 (Feasibility): Given a dynamical system (1),
an asymptotically stabilizing feedback controller u(k) =
−Kx(k) and constraints (2), then a set S ⊂ R

nx is feasible
iff S ⊂ {x|x ∈ X ,−Kx ∈ U}.

Definition 2 (Robust Positive Invariance): Given a dy-
namical system (1), a stabilizing feedback controller u(k) =
−Kx(k) and constraints (2), then a set S ⊂ R

nx is robust
positive invariant iff

x(k) ∈ S ⇒ (A(k) − B(k)K)x(k) ∈ S,

∀[A(k) B(k)] ∈ Ω, k = 0, . . . ,∞. (3)

The largest possible feasible invariant set is generally called
the Maximal Admissable Set (MAS, [5]). The MAS for
an LTI system ((1) with m = 1) is given by S =⋂

∞

k=0
{x|(A−BK)kx ∈ X ,−K(A−BK)kx ∈ U}. Under

certain conditions on the feedback controller K this set can
be shown [5] to be equal to S =

⋂n

k=0
{x|(A − BK)kx ∈

X ,−K(A−BK)kx ∈ U} with n a finite number, indicating
that S can be described by a finite number of linear
inequalities and that S therefore is polyhedral.

The extension of the MAS to LPV systems is theoretically
relatively straightforward, but practically not directly ap-
plicable since all possible future predictions have to be taken
into account, which causes a combinatorial increase in the
number of constraints describing S. Therefore, for LPV sys-
tems invariant sets of ellipsoidal form S = {x|xTZ−1x ≤
1} are typically used, since these can be calculated using
results from [7], by solving an SDP. However, these are
inner approximations to the real MAS and are hence con-
servative and furthermore, they cannot cope efficiently with
non-symmetrical constraints. However, new developments
[11] now allow the construction of polyhedral invariant sets
for LPV systems and these underpin the algorithm proposed
in this paper. Section IV-A contains a summary if these
developments.

B. General Interpolation

Given a system (1), constraints (2), a set of asymptotically
stabilizing feedback controllers u(k) = −Kix(k), i =
1, . . . , n and corresponding invariant sets Si, i = 1, . . . , n,
the following decomposition is performed:

x =
n∑

i=1

x̂i, with

⎧⎨
⎩

∑n

i=1
λi = 1, λi ≥ 0,

xi ∈ Si,

x̂i = λixi.

(4)

This decomposition can be performed iff x ∈ S �

Co{S1, . . . ,Sn}. The following control law

u(k) = −
n∑

i=1

Ki

k−1∏
j=0

Φi(k − 1 − j)x̂i, (5)

with Φi(k) = A(k) − B(k)Ki, can be proven to keep the
state within S . The corresponding state sequence can be
calculated to be

x(k) =

n∑
i=1

k−1∏
j=0

Φi(k − 1 − j)x̂i. (6)

One can easily prove that (5) and (6) satisfy input and state
constraints respectively. Moreover, one can apply Lyapunov
theory in a straightforward manner to compute the infinite-
horizon cost

∑
∞

k=0
x(k + 1)TQx(k + 1) + u(k)TRu(k)

corresponding to (5)-(6) as the quadratic Lyapunov function
x̃TP x̃, with x̃ = [x̂T

1
. . . x̂T

n ]T and

P ≥ ΓT

u RΓu + ΨT
i ΓT

x QΓxΨi + ΨT

I PΨi, i = 1, . . . , n,

(7)
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where Ψi = diag((Ai − BiK1), . . . , (Ai − BiKn)), Γx =
[I, . . . , I], Γu = [K1, . . . , Kn]. One can calculate P by
solving the SDP

min
P

tr(P ), subject to (7). (8)

An MPC algorithm can now be formulated as follows :

Algorithm 1 (MPC using general interpolation): Given
a system (1), constraints (2), cost weighting matrices Q, R,
controllers Ki and invariant sets Si, perform the following
steps. First calculate P by solving (8). Then, at each
time instant, given the current state x, solve the following
optimisation problem on-line

min
x̂i,λi

x̃TP x̃, subject to (4), (9)

and implement the input u = −
∑n

i=1
Kix̂i.

Algorithm 1 guarantees recursive feasibility, constraint sat-
isfaction and asymptotic stability and comprises the mode 2
only algorithm from [1] that uses ellipsoidal invariant sets
for LPV systems as well as algorithm 2.1 from [12] that uses
polyhedral invariant sets for LTI systems. Detailed stability
and feasibility proofs can be found in both references. In the
sequel we refer to these algorithms as REMPC and IMPC
respectively.

IV. GENERAL INTERPOLATION FOR LPV
SYSTEMS USING POLYHEDRAL INVARIANT

SETS

A. Polyhedral Invariant Sets For LPV Systems

This paper proposes to make use of a recent development
[11] which demonstrates how, in some cases, one can indeed
formulate the MAS for an LPV system. The key idea used is
not dissimilar to the one-step sets popularised in [6], that is
to use backwards prediction rather than forwards prediction.
This simple change eliminates the combinatorial explosion
in the possible number of prediction terms and hence creates
a tractable problem. A brief summary of the key results is
given next without details, for which the reader is referred
to [11]. First define the closed-loop system matrices

Φi = Ai − BiK, i = 1, . . . , m. (10)

The MAS for the uncertain system (1), constraints (2) and
control law u = −Kx is:

S = {x|Mx ≤ d}. (11)

By definition S is invariant so x ∈ S ⇒ Φix ∈ S, i =
1, . . . , m. This can be shown to be equivalent to S ⊂ S−,
with the −-operator defined as S− = {x|Φix ∈ S, i =
1, . . . , m}. The following algorithm starts with the initial
set S = {x|x ≤ x ≤ x, u ≤ −Kx ≤ u} and iteratively
adds constraints from S− until S ⊂ S−. The resulting set
is the MAS.

Algorithm 2 (Robust Invariant Set):

1) Set M := [IT −IT −KT KT]T, d := [xT xT uT uT]
and i := 1.

2) Select row i from (M, d) and check ∀j whether
MiΦjx ≤ di is redundant with respect to
the constraints defined by (M, d). Add the non-
redundant constraints to (M, d) by assigning M :=
[MT (MiΦj)

T]T and d := [dT dT

i ]T for all relevant
j.

3) Set i := i + 1. If i is strictly larger than the number
of rows in (M, d) then terminate, otherwise continue
with step 2).

The resulting set S = {x|Mux ≤ du} is the MAS for
the given system, constraints, and feedback controller. The
algorithm is guaranteed to terminate in a finite number of
iterations if the closed-loop system is quadratically stable :

∃V = V T > 0 s.t. ΦT

i V Φi ≤ V, i = 1, . . . , m. (12)

Remark 1: Constraints added in later iterations of the
algorithm can render constraints added in earlier iterations
redundant. Therefore it is advisable to check for redundant
constraints regularly during the execution of the algorithm;
this can decrease execution time considerably.

B. Interpolation based MPC for LPV systems using poly-
hedral invariant sets

The polyhedral invariant sets constructed using algorithm
2 can now be used to formulate a new interpolation based
MPC algorithm for LPV systems similar to REMPC, but
that makes use of QP instead of SDP; it also fits in the
general framework of algorithm 1.

Algorithm 3 (RPMPC): Given a system (1), constraints
(2), cost weighting matrices Q, R, asymptotically stabilizing
controllers Ki, corresponding polyhedral robust invariant
sets Si = {x|Mix ≤ di} and P satisfying (7), solve on-line
at each time instant, given the current state x, the following
problem :

min
x̂i,λi

x̃TP x̃, (13a)

subject to x =

n∑
i=1

x̂i, (13b)

Mix̂ ≤ λidi, i = 1, . . . , n, (13c)
n∑

i=1

λi = 1, (13d)

λi ≥ 0, i = 1, . . . , n, (13e)

and implement input u = −
∑n

i=1
Kix̂i.

Lemma 1: Algorithm 3 guarantees robust satisfaction of
(2) and is recursively feasible and asymptoticaly stable for
all initial states x(0) ∈ Co{S1, . . . ,Sn}.

Proof: It is clear from (4) that (13) is feasible for all
x ∈ S. Given the current state x(k), components x̂i(k) and
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factors λi(k), it is possible to calculate the next state to be
x(k) =

∑n

i=1
Φi(k)x̂i(k). Since the components xi(k) lie

in their respective invariant sets Si, this will also be the case
for the components xi(k + 1) = Φi(k)xi(k), which shows
that x(k+1) will also lie within S . By recursively applying
this argument it is proven that x(k + i) ∈ S, i = 1, . . . ,∞.
Since all Si are subsets of X and X is convex, S will also be
a subset of X , which then proves robust satisfaction of the
state constraints. Furthermore, since x̂i ∈ λiSi, it is clear
that ûi � −Kix̂i ∈ λiU . Therefore (since U is a convex
set) u �

∑n

i=1
ûi ∈ U , which proves robust satisfaction of

the input constraints.

Asymptotic stability can be proven by considering compo-
nents x̂i(k), which are shown above to provide a feasible
candidate decomposition Φi(k)x̂i for time k + 1. It is now
easy to see, based on satisfaction of (7) that this candidate
decomposition already provides a lower value of the cost
function x̃TP x̃ than the optimal cost value at time k,
which proves that the optimal value of the cost at time
k + 1 will also be lower than the optimal value at time
k. This consequently proves that the optimal value of the
cost function of (13) acts as a Lyapunov function of the
closed-loop system, which proves asymptotic stability.

In the sequel we refer to algorithm 3 as RPMPC. The algo-
rithm has several advantages compared to REMPC. First of
all, it has an enlarged feasibility region, since the individual
invariant sets are larger than their ellipsoidal counterparts
used in REMPC. Furthermore, the polyhedral invariant
sets can efficiently cope with non-symmetrical constraints,
which ellipsoids cannot. Due to the invariant sets being
larger, less conservative satisfaction of the imposed input
and state constraints can be expected, potentially leading
to a reduction in control cost. Finally, the algorithm is
formulated as a QP, which is significantly less expensive
to solve than the SDP formulation of REMPC. These
advantages are clearly illustrated in the next section.

V. NUMERICAL EXAMPLE

In this section we use a numerical example to demonstrate
the properties of the new algorithm. For simplicity and for
ease of comparison with results reported in the literature
we will use the double integrator, for this purpose extended
with model uncertainty. The model and constraints are given
by :

A1 =

[
1 0.1
0 1

]
, B1 =

[
0
1

]
, (14)

A2 =

[
1 0.2
0 1

]
, B2 =

[
0

1.5

]
, (15)

u = 1, u = −0.5, (16)

x = [8, 8]T x = [−10, − 10]T. (17)

The constraints are chosen to be non-symmetrical, in order
to demonstrate the ability of the algorithm to efficiently

cope with this setting. To facilitate comparison with nom-
inal MPC schemes, we also consider a nominal model
chosen as A = 0.5(A1 + A2), B = 0.5(B1 + B2). Two
feedback controllers are chosen; one as the LQR-optimal
controller K = [0.4558 0.3698]T for the nominal system
and Q = diag(1, 0.01), R = 3; the second as a detuned
controller K = [0.1 0.5]T. Both controllers are robustly
asymptotically stabilizing.

A. Feasible Region

The feasible regions of the algorithms under consideration
are equal to the convex hulls of the invariant sets Si

and hence the invariant set of RPMPC is expected to
be significantly larger than REMPC. This difference can
clearly be observed in figure 1 where the darker shaded
region represents REMPC and the lighter shaded region is
for RPMPC; the underlying invariant ellipsoids/polyhedra
are marked with solid lines. For completeness, the impact

−10 −8 −6 −4 −2 0 2 4 6 8
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1

x 2

Fig. 1. Feasible region comparison of REMPC (dark shading) and
RPMPC (light shading).

of uncertainty is illustrated in figure 2 which gives the
feasible regions for IMPC (light shading) and RPMPC (dark
shading). Unsurprisingly, IMPC has a larger feasible region
since no restrictions are built in to accommodate for the
model uncertainty (which of course implies this would be
invalid for the real uncertain system). Nevertheless, the
difference can be observed to be relatively modest and
furthermore we note that, in this case, both the nominal
and robust invariant sets of K2 are identical.

B. Control Performance

Robustness: In order to demonstrate the robustness with
respect to model uncertainty of RPMPC compared with
IMPC, we choose an initial state [−9 0.5]T lying within
the feasible regions of both RPMPC and IMPC. System
dynamics are chosen as the LTI system described by
[A(k) B(k)] = [A2 B2], ∀k ≥ 0. It is clear from figure
3 that RPMPC (solid line) steers the system to the origin.
On the other hand, IMPC (dotted line) steers the system
not only outside the feasible region of RPMPC, but also
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Fig. 2. Feasible region comparison of IMPC (light shading) and RPMPC
(dark shading).

outside the nominal feasible region. This clearly indicates
the necessity for deploying robust invariant sets and the
efficacy with which RPMPC copes with model uncertainty.
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Fig. 3. Robustness comparison of IMPC (dashed) and RPMPC (solid).

Constraint handling: In a previous section it was already
shown that RPMPC has a significantly larger feasible region
than REMPC due to the fact that the real MAS of the
controllers is used instead of an ellipsoidal inner approx-
imation. A direct consequence is the improved ability to
handle non-symmetrical constraints. To demonstrate this we
take two initial states [7.5 − 2]T and [−7.5 2]T positioned
symmetrically with respect to the origin and compare the
behaviour of REMPC and RPMPC. System dynamics are
chosen to be time-varying but identical for the different
simulations. Figure 4 shows state and input trajectories of
both methods for both initial states. As expected REMPC
(dashed lines) produces identical state and input trajectories
for both initial states (neglecting the sign) and hence handles
the input constraints conservatively. RPMPC though (solid
lines), can handle non-symetrical constraints efficiently and
hence gives different shaped trajectories for each initial
point; for instance, RPMPC gives input values above 0.5 for
the initial state [7.5 −2]T but not for initial state [−7.5 2]T.
Moreover, RPMPC is able to choose input values closer to

the imposed input constraints. REMPC achieves a control
cost of 586.9 for both initial states, while RPMPC results
in costs 395.7 and 332.0 for intitial states [−7.5 2]T and
[7.5 − 2]T respectively. This indicates that the improved
constraint handling can lead to a significantly lower control
cost.
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1

k

u

Fig. 4. Comparison of constraint handling of REMPC (dashed) and
RPMPC (solid).

Optimality: In the previous subsection it was shown that
the improved constraint handling can lead to significant
improvements in control cost. In order to get a better
overview of the overall difference in control behaviour and
optimality between RPMPC and REMPC, we take 16 initial
state values on a grid within the feasible region of REMPC
and compare the performance and trajectories resulting
from both algorithms. From figure 5 one can see that the
trajectories are markedly different and with an average total
control cost per simulation of 111.4 versus 164.4 one can
conclude that RPMPC performs significantly better than
REMPC in this example. The same can be expected to be
the case for other examples.
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Fig. 5. Comparison of control behaviour of REMPC (dashed) and RPMPC
(solid) for 16 different initial states within the feasible region of REMPC.

C. Computational Load

One might expect the computational load to increases sig-
nificantly with the move from the nominal to the uncertain
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case. However, in fact RPMPC is expected to have a similar
computational complexity to IMPC: both are formulated
as a QP, have the same number of d.o.f. in the on-line
optimization and have constraints determined by the number
of inequalities describing the invariant sets (the plot of these
sets in figure 2 suggests that the number of facets does not
differ significantly). This observation is in direct contrast to
a comparison with REMPC, an alternative robust algorithm.
REMPC requires an SDP which is in general much more
expensive than QP. In this example the average compu-
tational load per iteration for the first 50 iterations of all
simulations depicted in figure 5 is 0.0062 sec. for RPMPC
compared to 0.0404 sec. for REMPC, which is a difference
of almost an order of magnitude. No specific attempts were
made to optimize the computational efficiency of either
implementation; simulations were done on a P4-2GHz PC
running Matlab 6.5 using the standard toolboxes.

VI. CONCLUSION

In this paper a new interpolation based MPC algorithm
using polyhedral robustly invariant sets is introduced for
LPV systems with polytopic model uncertainty. The new
method makes use of a new algorithm proposed in [11]
that allows the efficient construction of polyhedral robustly
invariant sets for LPV systems. The method guarantees
recursive feasibility and robust asymptotic stability for a
set of initial states that is equal to the convex hull of
the invariant sets of a set of off-line selected stabilizing
controllers. The method is illustrated on a numerical ex-
ample and shown to have improved feasibility and control
performance than robust interpolation based MPC using
ellipsoidal invariant sets. Additionally, it is shown to be able
to effectively stabilize LPV systems, unlike the nominal
interpolation based algorithm using polyhedral invariant
sets. Finally, it is worth pointing out that the new algorithm
can efficiently cope with non-symmetrical state and input
constraints, which other robust interpolation based MPC
schemes typically cannot.

VII. FUTURE WORK

Interesting future research directions are the extension of
the new algorithm to LPV systems subject to bounded
disturbances. This would potentially be possible by making
use of minimal admissable sets for LPV systems subject to
disturbances, which is still an open research direction.

Another interesting research direction is the application
of multi parametric quadratic programming to construct
explicit piecewise affine solutions to the QP formulation
of the new algorithm, which could potentially lead to an
improved computational efficiency.

Finally, an interesting path is finding interpolation methods
that do not need [10] the explicit decomposition of the
states implied in (13), but rather can make use solely of
the polyhedral invariant sets. This would cause a significant
reduction of the number of on-line optimization variables
and consequently a reduction of the computational load.
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