
Maximizing visibility in nonconvex polygons:
nonsmooth analysis and gradient algorithm design

Anurag Ganguli
Coordinated Science Lab
University of Illinois

aganguli@uiuc.edu

Jorge Cortés
School of Engineering
UC Santa Cruz

jcortes@ucsc.edu

Francesco Bullo
Mechanical & Environmental Engineering

UC Santa Barbara
bullo@engineering.ucsb.edu

Abstract— This paper presents a motion control algorithm
for a planar mobile observer such as, e.g., a mobile robot
equipped with an omni-directional camera. We propose a
nonsmooth gradient algorithm for the problem of maximizing
the area of the region visible to the observer in a simple
nonconvex polygon. First, we show that the visible area is
almost everywhere a locally Lipschitz function of the observer
location. Second, we provide a novel version of LaSalle Invari-
ance Principle for discontinuous vector fields and Lyapunov
functions with a finite number of discontinuities. Finally,
we establish the asymptotic convergence properties of the
nonsmooth gradient algorithm and we illustrate numerically
its performance.

I. INTRODUCTION

Consider a single-point mobile robot in a planar non-
convex environment modeled as a simple polygon: how
should the robot move in order to monotonically increase
the area of its visible region (i.e., the region within its line of
sight)? This problem is the subject of this paper, together
with the following modeling assumptions. The dynamical
model for the robot’s motion is a first order system of the
form ṗ = u, where p refers to the position of the robot
in the environment and u is the driving input. The robot
is equipped with an omni-directional camera and range
sensor; the range of the sensor is larger than the diameter
of the environment. The robot does not know the entire
environment and its position in it, and its instantaneous
motion depends only on what is within line of sight (this
assumption restricts our attention to memoryless feedback
laws).

In broad terms, this problem is related to numerous
optimal sensor location and motion planning problems in
the computational geometry, geometric optimization, and
robotics literature. In computational geometry [1], the clas-
sical Art Gallery Problem amounts to finding the optimum
number of guards in a nonconvex environment so that each
point of the environment is visible by at least one guard.
A heuristic for this problem is to use a greedy approach
wherein the first robot (guard) is placed at the point where
it sees the maximum area. The next robot is placed where
it sees the maximum area not visible to the first and so on.
In robotics, this approach is useful for 2D map building
wherein a robot moves in such a way so that its next
position is the best in terms of what it can see additionally.
In this robotic context, these problems are referred to as
Next Best View problems. The specific problem of interest
in this paper is that of optimally locating a guard in a
simple polygon. To the best of our knowledge, this problem

is still open and is the subject of ongoing research; see
[2], [3], [4], and the surveys on geometric optimization
and art gallery problems [5], [6]. However, randomized
algorithms for finding the optimal location up to a constant
factor approximation exist; see [4]. These algorithms can be
regarded as open-loop algorithms that require knowledge of
the environment. Closed-loop heuristic algorithms for the
Next Best View problem are proposed and simulated in [7]
and in the early work [8].
A second set of relevant references are those on nons-

mooth stability analysis. Indeed, our approach to maximiz-
ing visible area is to design a nonsmooth gradient flow.
To define our proposed algorithm we rely on the notions
of generalized gradient [9] and of Filippov solutions for
differential inclusions [10]. To study our proposed algorithm
we extend recent results on the stability and convergence
properties of nonsmooth dynamical systems, as presented
in [11], [12].
The contributions of this paper are threefold. First, we

prove some basic properties of the area visible from a
point observer in a nonconvex polygon Q, see Figure 1.
Namely, we show that the area of the visibility polygon, as
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Fig. 1. The visible area function over a nonconvex polygon.

a function of the observer position, is a locally Lipschitz
function almost everywhere, and that the finite point set
of discontinuities are the reflex vertices of the polygon Q.
Additionally, we compute the generalized gradient of the
function and show that it is, in general not regular. Second,
we provide a generalized version of the certain stability
theorems for discontinuous vector fields available in the
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literature [11], [12]. Specifically, we provide a generalized
nonsmooth LaSalle Invariance Principle for discontinuous
vector fields, Filippov solutions, and Lyapunov functions
that are locally Lipschitz almost everywhere (except for a
finite set of discontinuities). Third and last, we use these
novel results to design a nonsmooth gradient algorithm that
monotonically increases the area visible to a point observer.
To the best of our knowledge, this is the first provably
correct algorithm for this version of the Next Best View
problem. We illustrate the performance of our algorithm
via simulations for some interesting polygons.
The paper is organized as follows. Section II contains the

analysis of the smoothness and of the generalized gradient
of the function of interest. Section III contains the novel
results on nonsmooth stability analysis. Section IV presents
the nonsmooth gradient algorithm and the properties of
the resulting closed-loop system. Finally, the simulations
in Section V illustrate the convergence properties of the
algorithm. In the interest of space, the proofs for the results
in the paper have not been included can be found in [13].

II. THE AREA VISIBLE FROM AN OBSERVER

In this section we study the area of the region visible to
a point observer equipped with an omnidirectional camera.
We show that the visible area, as a function of the location
of the observer, is locally Lipschitz, except at a finite point
set. We prove that, for general nonconvex polygons, the
function is not regular. We also provide expressions for the
generalized gradient of the visible area function wherever
it is locally Lipschitz. We refer the reader to [9] for the
notion of locally Lipschitz functions and related concepts.
Let us start by introducing the set of lines on the
plane R

2. For (a, b, c) ∈ R
3 \

{
(0, 0, c) ∈ R

3 | c ∈ R
}
,

we define the equivalence class [(a, b, c)] ={
(a′, b′, c′) ∈ R

3 | (a, b, c) = λ(a′, b′, c′), λ ∈ R
}
. The set

of lines on R
2 is defined as

L =
{
[(a, b, c)] ⊂ R

3 | (a, b, c) ∈ R
3, a2 + b2 �= 0

}
.

Next, two simple and useful functions are introduced.
Let fpl : R

2 × R
2 \

{
(p, p) ∈ R

2 × R
2 | p ∈ R

2
}

→ L

map two distinct points in R
2 to the line passing through

them. For (x1, y1), (x2, y2) ∈ R
2, the function fpl admits

the expression

fpl ((x1, y1), (x2, y2)) = [(y2 − y1, x1 − x2, y1x2 − x1y2)].

If l1 ‖ l2 denotes that the two lines l1, l2 ∈ L are parallel,
let flp : L

2 \
{
(l1, l2) ∈ L

2 | l1 ‖ l2
}
→ R

2 map two lines
that are not parallel to their unique intersection point. Given
two lines l1 = [(a1, b1, c1)] and l2 = [(a2, b2, c2)] that are
not parallel, the function flp admits the expression

flp(l1, l2) =

(
b2c1 − b1c2

a2b1 − a1b2

,
a1c2 − a2c1

a2b1 − a1b2

)
.

Note that the functions fpl and flp are class Cω , i.e., they
are analytic over their domains.
Now, let us turn our attention to the polygonal environ-
ment. Let Q be a simple polygon, possibly nonconvex. We
say that a polygon is simple if (i) the polygon vertices

are the only points in the plane common to two polygon
edges and, (ii) every polygon vertex belongs to at most
two polygon edges. Note that a simple polygon can contain
holes. Let Q̊ and ∂Q denote the interior and the boundary
of Q, respectively. Let Ve(Q) = (v1, . . . , vn) be the list of
vertices of Q ordered counterclockwise. The interior angle
of a vertex v of Q is the angle formed inside Q by the
two edges of the boundary of Q incident at v. The point
v ∈ Ve(Q) is a reflex vertex if its interior angle is strictly
greater than π. Let Ver(Q) be the list of reflex vertices of
Q. If S is a finite set, then let |S| denote its cardinality.
A point q ∈ Q is visible from p ∈ Q if the segment

between q and p is contained in Q. The visibility polygon
S(p) ⊂ Q from a point p ∈ Q is the set of points in Q
visible from p. It is convenient to think of p �→ S(p) as
a map from Q to the set of polygons contained in Q. It
must be noted that the visibility polygon is not necessarily
a simple polygon.

Definition 2.1: Let v be a reflex vertex of Q, and let w ∈
Ve(Q) be visible from v. The (v, w)-generalized inflection
segment I(v, w) is the set

I(v, w) = {q ∈ S(v) | q = λv + (1 − λ)w, λ ≥ 1} .

Also v is an anchor of p ∈ Q if it is visible from p and if
{q ∈ S(v) | q = λv + (1 − λ)p, λ > 1} is not empty.
In other words, a reflex vertex is an anchor of p if it
occludes a portion of the environment from p. Figure 2
illustrates the various quantities defined above. Given a
point q and a line l, let dist(q, l) denote the distance
between them.

I(v1, w)

p
v1

w

va

v2

Fig. 2. Reflex vertices v1 and v2, a generalized inflection segment
I(v1, w), an anchor va of p and the visibility polygon (shaded region)
from p. Note that the polygonal environment has a hole.

Theorem 2.2: Let {Iα}α∈A be the set of generalized in-
flection segments of Q, and let P be a connected component
of Q \

⋃
α∈A

Iα For all p ∈ P , the visibility polygon
S(p) is simple and has a constant number of vertices, say
Ve(S(p)) = {u1(p), . . . , uk(p)}. For all i ∈ {1, . . . , k}, the
map P � p �→ ui(p) is Cω and either

dui(p) = 0

if ui(p) ∈ Ve(Q), or

dui(p) =
dist(va, l)

(dist(p, l) − dist(va, l))2
√

a2 + b2

»
−b
a

– »
y − ya

xa − x

–T

,

if ui(p) = flp(fpl(va, p), l), where va = (xa, ya) is an
anchor of p and l = [(a, b, c)] is a line defined by an edge
of Q.
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Next, the area of a visibility polygon as a function of the
observer location is studied, see Figure 1. Recall that the
area of a simple polygon Q with counterclockwise-ordered
vertices Ve(Q) = ((x1, y1), . . . , (xn, yn)) is given by

A(Q) =
1

2

n∑
i=1

xi(yi−1 − yi+1),

where (x0, y0) = (xn, yn) and (xn+1, yn+1) = (x1, y1).
As in the previous theorem, let {Iα}α∈A be the set of
generalized inflection segments of Q and let P be a con-
nected component of Q \

⋃
α∈A

Iα. Next, if p ∈ P , the
visibility polygon from p has a constant number of vertices,
say k = |Ve(S(p))|, is simple, and satisfies A ◦S(p) =∑k

i=1
xi(yi−1 − yi+1) where Ve(S(p)) = (u1, . . . , uk) are

ordered counterclockwise, ui(p) = (xi, yi), u0 = uk, and
uk+1 = u1. Therefore, P � p �→ A ◦S(p) is also Cω and

d(A ◦S)(p) =
k∑

i=1

∂A(u1, . . . , uk)

∂ui

dui(p). (1)

To illustrate this equality, it is convenient to introduce the
versor operator defined by vers(X) = X/‖X‖ if X ∈ R

2 \
{0} and by vers(0) = 0. We depict the normalized gradient
vers(d(A ◦S)) of the visible area function in Figure 3.

Fig. 3. Normalized gradient of the visible area function over the
nonconvex polygon depicted in Figure 1. The dashed lines represent some
of the generalized inflection segments.

Theorem 2.3: The map A ◦S restricted to Q \Ver(Q) is
locally Lipschitz.
To obtain the expression for the generalized gradient of

A ◦S, the polygon Q is partitioned as follows.
Lemma 2.4: Let {Iα}α∈A be the set of generalized in-
flection segments of Q. There exists a unique partition
{P β}β∈B of Q where Pβ is a connected component of

Q \
⋃

α∈A Iα and P β denotes its closure.
Figure 4 illustrates this partition for the given nonconvex
polygon. For β ∈ B, define Aβ : P β → R+ by

Aβ(p) = A ◦S(p), for p ∈ Pβ ,

and by continuity on the boundary of Pβ . It turns out that
the maps Aβ , β ∈ B, are continuously differentiable1 on
P β . Equation (1) gives the value of the gradient for p ∈ Pβ .

1A function is continuously differentiable on a closed set if (1) it is
continuously differentiable on the interior, and (2) the limit of the derivative
at a point in the boundary does not depend on the direction from which
the point is approached.

However, in general, for p ∈ P β1

⋂
. . .

⋂
P βm

\ Ver(Q),
based on Theorem 2.3 and Lemma 2.4, we can write that

∂(A ◦S)(p) = co
{
dAβ1

(p), . . . , dAβm
(p)

}
. (2)

p

P1

P2

P4

P3

Fig. 4. Partition of Q. The generalized gradient of the area function at
p is the convex hull of the gradient of four functions A1, . . . , A4 at p.

This completes our study of the generalized gradient of
the locally Lipschitz function A ◦S. The following lemma
concerns the regularity of this function.

Lemma 2.5: There exists a nonconvex polygon Q such
that the maps A ◦S and −A ◦S restricted to Q \ Ver(Q)
are not regular.

III. AN INVARIANCE PRINCIPLE IN NONSMOOTH
STABILITY ANALYSIS

This section presents results on stability analysis for dis-
continuous vector fields via nonsmooth Lyapunov functions.
The results extend the work in [12] and will be useful in
the next control design section. We refer the reader to [10]
for some useful nonsmooth analysis concepts.

In what follows we shall study differential equations of
the form

ẋ(t) = X(x(t)),

where X is a discontinuous vector field on R
N .

Lemma 3.1: Let X : R
N → R

N be measurable and
essentially locally bounded and let f : R

N → R be locally
Lipschitz. Let γ : [t0, t1] → R

N be a Filippov solution of X
such that f(γ(t)) is regular for almost all t ∈ [t0, t1]. Then

(i) d
dt (f(γ(t))) exists for almost all t ∈ [t0, t1], and

(ii) d
dt (f(γ(t))) ∈ L̃Xf(γ(t)) for almost all t ∈ [t0, t1].

The following result is a generalization of the classic
LaSalle Invariance Principle for smooth vector fields and
smooth Lyapunov functions to the setting of discontinuous
vector fields and nonsmooth Lyapunov functions.

Theorem 3.2 (LaSalle Invariance Principle): Let X :
R

N → R
N be measurable and essentially locally bounded

and let S ⊂ R
N be compact and strongly invariant for X .

Let C ⊂ S consist of a finite number of points and let
f : S → R be locally Lipschitz on S \C and bounded from
below on S. Assume the following properties hold:

(A1) if x ∈ S \ C, then either max L̃Xf(x) ≤ 0 or
L̃Xf(x) = ∅,

(A2) if x ∈ C and if γ is a Filippov solution of X with
γ(0) = x, then limt→0− f(γ(t)) ≥ limt→0+ f(γ(t)),
and
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(A3) if γ : R+ → S is a Filippov solution of X , then f ◦γ
is regular almost everywhere.

Define ZX,f =
{

x ∈ S \ C | 0 ∈ L̃Xf(x)
}
and let M be

the largest weakly invariant set contained in (ZX,f ∪C).
Then the following statements hold:

(i) if γ : R+ → S is a Filippov solution of X , then for
γ(t1) ∈ S \ C, we have that f ◦γ(t1) ≥ f ◦γ(t2)
for almost all t2 ≥ t1; if in addition for all x ∈ C
with γ(0) = x, either limt→0− f(γ(t)) = x or
limt→0+ f(γ(t)) = x, then f ◦γ is monotonically
nonincreasing;

(ii) each Filippov solution of X with initial condition in
S approaches M as t → +∞;

(iii) if M consists of a finite number of points, then each
Filippov solution of X with initial condition in S
converges to a point of M as t → +∞.

IV. MAXIMIZING THE AREA VISIBLE FROM A MOBILE
OBSERVER

In this section we build on the analysis results obtained
thus far to design an algorithm that maximizes the area
visible to a mobile observer. We aim to reach local maxima
of the discontinuous visible area A ◦S by designing some
appropriate form of a gradient flow for it. We now present
an introductory and incomplete version of the algorithm: the
objective is to steer the mobile observer along a path for
which the visible area is guaranteed to be nondecreasing.

Name: Increase visible area for Q
Goal: Maximize the area visible

to a mobile observer

Assumption: Generalized inflection segments of Q
do not intersect.
Initial position does not belong to a
generalized inflection segment.

Let p(t) denote the observer position at time t inside
the nonconvex polygon Q. The observer performs the
following tasks at each time instant:

compute visibility polygon S(p(t)) ⊂ Q,

if p(t) does not belong to any generalized inflection
segment or to the boundary of Q then
move along the versor of the gradient d(A ◦S)

else if p(t) belongs to a generalized inflection segment
but not to the boundary of Q then
depending on the generalized gradient ∂(A ◦S), ei-
ther slide along the segment or leave the segment in
an appropriate direction

else if p(t) belongs to the boundary of Q but not to a
reflex vertex, then
depending on the projection of ∂(A ◦S) along the
boundary, either slide along the boundary or move
in an appropriate direction toward the interior of Q

else
either follow a direction of ascent of A ◦S or stop

end if

The remainder of this section is dedicated to formalizing
this loose description.

A. A modified gradient vector field

Before describing the algorithm to maximize the area
visible to the mobile observer, we introduce the following
useful notions. Given a simple polygon Q with Ve(Q) =
(v1, . . . , vn) and ε > 0, define the following quantities:

(i) let the ε-expansion of Q be Qε = {p | ||p − q|| ≤
ε for some q ∈ Q},

(ii) for i ∈ {1, . . . , n}, let P ε
i be the open set delimited by

the edge vivi+1, the bisectors of the external angles
at vi and vi+1 and the boundary of Qε,

(iii) for ε small enough and for any point p in Qε, let
prjQ(p) be uniquely equal to arg min{||p′−p|| | p′ ∈
∂Q}, and

(iv) let the outward normal n(prjQ(p)) be the unit vector
directed from prjQ(p) to p.

We illustrate these notions in Figure 5. Note that prjQ(p)
can never be a reflex vertex. We can now define a vector

vi+1

vi

n(prjQ(p))

P ε
iprjQ(p)

p

Fig. 5. The ε-expansion Qε of the simple polygon Q, an open set P ε
i

and the corresponding outward normal n(prjQ(p)).

field on Qε as follows:

XQ(p) =

⎧⎪⎨⎪⎩
vers(d(A ◦S)(p)), if p ∈ Q̊ \ {Iα}α∈A,

−n(prjQ(p)), if p ∈ P ε
i ,

0, otherwise.

(Recall that the versor operator is defined by vers(Y ) =
Y/‖Y ‖ if Y ∈ R

2 \ {0} and by vers(0) = 0.) Note that
XQ is well-defined because at p ∈ Q̊\{Iα}α∈A the function
A ◦S is analytic. Clearly, XQ is not continuous on Qε.
However, the set of points where it is discontinuous is of
measure zero. Almost everywhere in the interior of Q, the
vector field XQ is equal to the normalized gradient of A ◦S
as depicted in Figure 3. We now present the differential
equation describing the motion of the observer:

ṗ(t) = XQ(p(t)). (3)

A Filippov solution of (3) on an interval [t0, t1] ⊂ R is
defined as a solution of the differential inclusion

ṗ(t) ∈ K[XQ](p(t)), (4)

where K[XQ] is the usual Filippov differential inclusion
associated with XQ, see [10]. Since XQ is measurable and
bounded, the existence of a Filippov solution is guaranteed.
We study uniqueness and completeness of Filippov solu-
tions in the following lemma.
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Lemma 4.1: The following statements hold true:

(i) there exists a simple polygon Q for which the cor-
responding vector field XQ admits multiple Filippov
solutions;

(ii) any simple polygon Q is a strongly invariant set for
the corresponding vector field XQ and, therefore, any

Filippov solution is defined over R+.

We now claim that any solution of the differential in-
clusion (4) has the property that the visible area increases
monotonically. To prove these desirable properties, we first
present the following results in nonsmooth analysis.

B. Properties of solutions and convergence analysis

To prove the convergence properties of the solution of (4)
using the results presented in Section III, we must first
define a suitable Lyapunov function. Intuitively since our
objective is to maximize the visible area, our Lyapunov
function should be closely related to it. For ε > 0, we
now define the extended area function Aε

Q at all points

p ∈ Q
⋃
{∪i P ε

i }. The extended function coincides with
the original function on the interior and on the boundary of
Q and is defined appropriately outside:

Aε
Q(p) =

{
A ◦S(p), p ∈ Q,

A ◦S(prjQ(p)) − ||p − prjQ(p)||, p ∈ ∪i P ε
i .

For all p ∈ ∂Q \ Ve Q, Aε
Q satisfies (see Figure 6):

Aε
Q
′(p;n(prjQ(p))) = −1.

vi−1

n(prjQ(p2))

p1

p2

p3

n(prjQ(p3))

prjQ(p1)

prjQ(p3)

n(prjQ(p1))

ε
vi+1

vi = prjQ(p2)

Fig. 6. Extending the function A ◦S to Aε
Q
. Note the direction of

n(prjQ(pi)) at all points pi.

Remark 4.2: The extended area function Aε
Q is locally

Lipschitz on (Q \ Ver(Q))
⋃
{∪i P ε

i } and analytic almost
everywhere on Q

⋃
{∪i P ε

i }.
The following theorem is important to prove that such a
function leads to a monotonically nondecreasing value of
the area of the visibility polygon.

Theorem 4.3: Let G(Q) be the subset of Q where both
maps p �→ −Aε

Q(p) and p �→ Aε
Q(p) are not regular. Then

any Filippov solution γ : R+ → Q of XQ has the property

that γ(t) /∈ G(Q) for almost all t ∈ R+ unless γ reaches a
critical point of K[XQ].

In the following theorem, the functions Aε
Q and −Aε

Q

are used as candidate Lyapunov functions to show the
convergence properties of Filippov solutions of XQ.

Theorem 4.4: Any Filippov solution γ : R+ → Q of XQ

has the following properties:

(i) t �→ A ◦S(γ(t)) is continuous and monotonically
nondecreasing,

(ii) γ approaches the set of critical points of K[XQ].
Theorem 4.4 implies that the single observer converges to
a critical point of A ◦S or to a reflex vertex of Q. However,
as shown in Figure 7, the presence of noise or computational
inaccuracies actually works to drive the observer away from
a reflex vertex that is not a local maximum. This will also
be true for other critical points that are not local maxima.

V. SIMULATION RESULTS

Figures 7 and 9 illustrate the performance of the gradient
algorithm in equation (4). The algorithm is implemented
in Matlab R©. The vertices of the visibility polygon are
obtained by means of an O(n2) algorithm, where n is the
number of vertices of the polygonal environment. These are
then sorted in counterclockwise order to compute the visi-
bility polygon. The calculation of the generalized gradient
of the visible area function is then a natural outcome of (1)
and (2). Computational inaccuracies in the implementation
of the algorithm to calculate the visibility polygon have
been noticed in some configurations; see the plot of the
variation of visible area with time in Figure 7. See Fig-
ure 8(b) for the phase portrait of the vector field XQ for
the polygon in Figure 8(a). Our experiments suggest that
the observer reaches a local maximum of the visible area
in finite time, however this can be shown not to be true in
general.

Initial position of the vehicle Final position of the vehicle

Gradient Flow
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Fig. 7. Simulation results of the gradient algorithm for the nonconvex
polygon depicted in Figure 1. The observer arrives, in finite time, at a
local maximum. Note here that the observer visits a reflex vertex at some
point in its trajectory but comes out of it due to computational inaccuracies
because it is not a local maximum.
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(a) The visible area function.

(b) The vector field.

Fig. 8. Illustration of the visible area function and the vector field over
a polygon in the shape of a floor plan of a building.

VI. CONCLUSIONS

This paper introduces a gradient-based algorithm to op-
timally locate a mobile observer in a nonconvex envi-
ronment. We presented nonsmooth analysis and control
design results. The simulation results illustrate that, in the
presence of noise, the observer reaches a local maximum
of the visible area. In an “highly nonconvex” environment,
a single observer may not be able to see a large fraction
of the environment. In such a case, a team of observers
can be deployed to achieve the same task. We therefore
plan to investigate this same visibility objective for teams
of observers. Other directions of future research include
practical robotic implementation issues as well as other
combined mobility and visibility problems.
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Fig. 9. Simulation results of the gradient algorithm. The observer arrives,
in finite time, at a local maximum.
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