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Abstract— In this paper we study the length of optimal paths
for Dubins’ vehicle, i.e., a vehicle constrained to move forward
along paths of bounded curvature. First, we obtain an upper
bound on the optimal length in the point-to-point problem.
Next, we consider the corresponding Traveling Salesperson
Problem (TSP). We provide an algorithm with worst-case
performance within a constant factor approximation of the
optimum. We also establish an asymptotic bound on the worst-
case length of the Dubins’ TSP.

I. INTRODUCTION

The Traveling Salesperson Problem (TSP) with its vari-
ations is one of the most widely known combinatorial
optimization problems. While extensively studied in the
literature, these problems continue to attract great interest
from a wide range of fields, including Operations Research,
Mathematics and Computer Science. The Euclidean TSP
(ETSP) [1], [2] is formulated as follows: given a point set
Λ in R

2, find the minimum-length tour of Λ. Exact algo-
rithms, heuristics as well as constant factor approximation
algorithms with polynomial time requirements are available
for the Euclidean TSP, see [3], [4], [5]. Another interesting
geometric version of the TSP is studied in [6].

The focus of this paper is the TSP for Dubins’ vehicle; we
shall refer to it as DTSP. Dubins’ vehicle is a classic basic
model for mobile robots and aerial vehicles. We note here
that though the DTSP has a clear geometric interpretation,
it is impossible to formulate it as a finite dimensional
combinatorial optimization problem, unlike the ETSP. A
fairly complete picture is available for the minimum-time
point-to-point path planning problem for Dubins’ vehicle,
see [7] and [8]. Bounded curvature paths in environments
with obstacles are also widely studied, see [9] and refer-
ences therein. Based on the algorithms for the ETSP and
on the algorithm for the point-to-point problem for Dubins’
vehicle, it is easy to devise heuristics for the DTSP. Here we
want to establish some bounds on the DTSP in comparison
with the ETSP and on the performance of a heuristic.

The motivation to study the DTSP arises in robotics
and uninhabited aerial vehicles (UAVs) applications, see
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e.g., [10], [11]. In particular we envision applying our
algorithm to the setting of a UAV monitoring a collection
of spatially distributed targets. From a purely scientific
viewpoint, it also appears to be of general interest to bring
together the work on Dubins’ vehicle and that on ETSP.

The DTSP is a static optimization problem. It is our
contention that this problem is of interest from a control
viewpoint. Indeed, although we do not do so here, we
intend to use our algorithm for DTSP in a receding horizon
scheme, where the aerial vehicle is required to visit a
dynamically changing set of targets. Performance guaran-
tees for the DTSP translate directly into robust control
guarantees of the receding horizon scheme.

The main contributions of this paper are three. First, we
propose an algorithm for the DTSP through a pointset Λ,
called the Alternating Algorithm, based on the solution to
the ETSP over Λ together with an alternating heuristic to
assign target orientations at each target point. Second, as
an intermediate step in the analysis of our algorithm, we
provide an upper bound on the point-to-point minimum
length of Dubins’ optimal paths. Third and last, we obtain
some worst-case bounds on the performance of the proposed
Alternating Algorithm and on the solutions of the DTSP as
compared to each other and the corresponding ETSP.

II. THE TSP FOR DUBINS’ VEHICLE AND THE

ALTERNATING ALGORITHM

A Dubins’ vehicle is a planar vehicle that is constrained to
move along paths of bounded curvature, without reversing
direction. Accordingly, we define feasible curve for Dubins’
vehicle or Dubins’ path, as a curve γ : [0, T ] → R

2 that
is twice differentiable almost everywhere, and such that the
magnitude of its curvature is bounded above by 1/r, where
r > 0 is the minimum turn radius. Let l(γ) =

∫ T

0
‖γ′(t)‖dt

be the length of the path γ. We represent the vehicle
configuration by the triplet (x, y, ψ) ∈ SE(2), where (x, y)
are the Cartesian coordinates of a reference point on the
longitudinal axis of the vehicle and the heading ψ is the
angle formed by such axis with a fixed direction in the
plane. Let (d, θ) be the polar coordinates of (x, y). We shall
state this equivalence as (x, y) ↔ (d, θ).

Let Λ be a set of n points in a compact region Q ⊂
R

2 and Λn be the collection of all point sets Λ ⊂ Q
with cardinality n. Let ETSP(Λ) denote the cost of the
Euclidean TSP over Λ, i.e., the length of the shortest
closed path through all points in Λ. Correspondingly, let
DTSP(Λ, r) denote the cost of the Dubins’ TSP over Λ,
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i.e., the length of the shortest closed Dubins’ path through
all points in Λ.

Since the optimal path between two configurations of a
Dubins’ vehicle has been completely characterized in [7], a
solution for the DTSP consists of (i) determining the order
in which the Dubins’ vehicle visits the given set of points,
and (ii) assigning headings for the Dubins’ vehicle at the
points. In the following, we will describe an algorithm that
approximates the solution of the DTSP problem, with an
additive guarantee on the cost penalty. The algorithm builds
on the knowledge of the optimal solution of the ETSP for
the same point set, and provides a sub-optimal DTSP tour.

Let A = (a1, . . . , an) be an ordered set of points
that is a permutation of Λ. Let Ψ = {ψ1, . . . , ψn} be
a set of headings of the Dubins’ vehicle at the n points
a1, . . . , an. Therefore the configuration of Dubins’ vehicle
at ai is (xi, yi, ψi) where (xi, yi) are the coordinates
of ai, for i = 1, . . . , n. The algorithm we propose,
which we will call ALTERNATING ALGORITHM, works
as follows. Compute an optimal ETSP tour of Λ and
label the edges on the tour in order with consecutive
integers. A DTSP tour can be constructed by retaining
all odd-numbered edges (except the nth), and replac-
ing all even-numbered edges with minimum-length Du-
bins’ paths preserving the point ordering. We illustrate
the output of the ALTERNATING ALGORITHM in Fig-
ure 1. The algorithm can be formally stated as follows.

Name: ALTERNATING ALGORITHM

Goal: To determine an ordering A and a set of
headings Ψ for the DTSP through Λ

Requires: An algorithm ETSP-ALGO to compute
optimal ETSP ordering of a pointset

1: set A := ETSP-ALGO(Λ)
2: set ψ1 := orientation of segment from a1 to a2

3: for i = 2 to n − 1 do
4: if i is even then
5: set ψi := ψi−1

6: else
7: set ψi := orientation of segment from ai to ai+1

8: end if
9: end for

10: if n is even then
11: set ψn := ψn−1

12: else
13: set ψn := orientation of segment from an to a1

14: end if

In due course of the paper, we will first obtain an upper
bound on the length of point-to-point Dubins’ path i.e.,
an upper bound on the length of the path that a Dubins’
vehicle will have to travel while making a transition from
any arbitrary initial configuration to any arbitrary final
configuration. To this effect, we shall show that: for (x, y) ∈
R

2, (x, y) ↔ (d, θ) and ψ ∈ [0, 2π[, there exists a constant,

(a)

(b)

Fig. 1. An application of the ALTERNATING ALGORITHM: (a) A graph
representing the solution of ETSP over a given Λ (b) A graph representing
the solution given by the ALTERNATING ALGORITHM on Λ where the
alternate segments of ETSP are retained

κ < 2.658 such that the length of the Dubins’ path from
a configuration of (0, 0, 0) to a configuration of (d, θ, ψ) is
always less than or equal to d + κπr. Using this result, we
shall show that the optimal cost for the TSP for Dubins’
vehicle is bounded according to the relation:

ETSP(Λ) ≤ DTSP(Λ, r) ≤ ETSP(Λ) + κ�n/2�πr.

Following this, among other results, we shall establish some
measure on the worst case performance of the ALTERNAT-
ING ALGORITHM as compared to DTSP. Let LAA(Λ, r)
be the length of the closed path over Λ as given by the
ALTERNATING ALGORITHM. Formally, we shall show that:
as n → +∞, then

sup
Λ∈Λn

DTSP(Λ, r) ≤ sup
Λ∈Λn

LAA(Λ, r)

≤ κ

2
sup

Λ∈Λn

DTSP(Λ, r).

III. ON THE OPTIMAL POINT-TO-POINT LENGTH FOR

DUBINS’ VEHICLE

In order to obtain an upper bound on the length of
Dubins’ vehicle while executing the ALTERNATING ALGO-
RITHM, we first obtain an upper bound on the length of
the optimal path that a Dubins’ vehicle has to travel while
making transition from any arbitrary initial configuration,
(xinitial, yinitial, ψinitial) to any arbitrary final configuration,
(xfinal, yfinal, ψfinal).

Let us now provide some useful preliminary def-
initions. Without loss of generality, we shall assume
(xinitial, yinitial, ψinitial) = (0, 0, 0) and we let (xfinal, yfinal) ↔
(d, θ) and ψfinal = ψ. Let Cr : R+ × [0, 2π[×[0, 2π] → R+

associate to (d, θ, ψ), where (x, y) ↔, (d, θ) the minimum
length Cr(d, θ, ψ) from the initial configuration (0, 0, 0) to
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the final configuration (x, y, ψ) for a Dubins’ vehicle. Let
F0 :]0, π[×]0, π[→]0, π[, F1 :]0, π[→ R and F2 :]0, π] → R

be defined by

F0(ψ, θ) = 2 tan−1
( sin(ψ/2) − 2 sin(ψ/2 − θ)

cos(ψ/2) + 2 cos(ψ/2 − θ)

)
, (1)

F1(ψ) = ψ + sin
(F0(ψ, ψ/2 − α(ψ))

2

)

+ 4 cos−1
( sin((ψ − F0(ψ, ψ/2 − α(ψ)))/2)

2

)

(2)

F2(ψ) = 2π − ψ + 4 cos−1
( sin(ψ/2)

2

)
, (3)

where α(ψ) = π/2 − cos−1( sin(ψ/2)
2 ). We are now ready

to state the main result of this section.
Theorem 3.1 (Upper bound on optimal length): For

ψ ∈ [0, 2π[, (x, y) ∈ R
2, (x, y) ↔ (d, θ) and r > 0,

Cr(d, θ, ψ) ≤ d + κπr, (4)

where κ ∈ [2.657, 2.658] is defined by

κ =
1

π
max{F2(π), sup

ψ∈]0,π[

min{F1(ψ), F2(ψ)}}.

A. Dubins’ classification of optimal curves

Following [7], the minimum length feasible curve for
Dubins’ vehicle is either (i) an arc of a circle of radius
r, followed by a line segment, followed by an arc of a
circle of radius r, or (ii) a sequence of three arcs of circles
of radius r, or (iii) a subpath of a path of path type (i) or
(ii). To specify the type of these minimum length feasible
curves for Dubins’ path we follow the notations used in
[8]. Three elementary motions are considered: turning to
the left, turning to the right (both along a circle of radius r),
and straight line motion S. Three operators are introduced:
Lv (for left/counterclockwise turn of length v > 0), Rv

(for right/clockwise turn of length v > 0), Sv (for straight
motion of length v > 0). The operators Lv, Rv , and Sv,
transform an arbitrary configuration (x, y, ψ) ∈ SE(2) into
its corresponding image point in SE(2) by

(x + sin(ψ + v) − sinψ, y − cos(ψ + v) + cosψ, ψ + v),

(x − sin(ψ − v) + sinψ, y + cos(ψ − v) − cosψ, ψ − v),

(x + v cosψ, y + v sin ψ, ψ),

respectively. Thus, the Dubins’ set D which is the domain
for the type of the minimum length feasible curve for a Du-
bins’ vehicle between a given initial and final configuration
is given by D = {LSL, RSR, RSL, LSR, RLR, LRL}.
One may refer to [7] for a detailed discussion on the
construction of these path types between a given initial
and final configuration. One may note that there are sets of
initial and final configurations for which all the path types
may not be feasible between those configurations.

In the remaining part of the paper we will need to fre-
quently use the curves of type LRL and RLR starting with
the initial configuration (0, 0, 0) and the final configuration

(0, 0, ψ). We introduce additional notation to facilitate the
presentation. For ψ 
= 0, let Cp1

(ψ) be a circle with center
OCp1

≡ (0, r) and radius r, and let Cp2
(ψ) be a circle with

center OCp2
≡ (−r sin ψ, r cosψ) and radius r. Note that

ψ 
= 0 implies that Cp1
(ψ) ∩ Cp2

(ψ) is either a single
point or two points. Then let Cm1

(ψ) and Cm2
(ψ) be

two circles with radius r that are tangent to both Cp1
(ψ)

and Cp2
(ψ), see Figure 2 and Figure 3. By construction,

δ

φ

r

O

r

Y

X

OCp2

OCm2

OCm1

OCp1

Cp2

Cm1

Cp1

P1

Cm2

r

r

P2
ψ

Fig. 2. LRL curves returning to the origin for the case when ψ ∈ [0, π].

r

Y

X

OCp1

Cp1

Oψ

Cm2

Cp2

Cm1

OCp2

δ

φ
OCm1

r
OCm2

P1

P2

r

r

Fig. 3. LRL curves returning to the origin for the case when ψ ∈]π, 2π[.

Cp1
(ψ) intersects Cm1

(ψ) and Cm2
(ψ) at one point each:

let P1(ψ) be the first of these two points that is reached
moving left from the origin O along Cp1

(ψ). Without loss
of generality, assume P1(ψ) ∈ Cm1

(ψ). Let OCm1
be the

center of Cm1
. Let P2(ψ) = Cm1

(ψ)∩Cp2
(ψ). In order to

remove ambiguity, we shall pick that heading of the tangent
line to a circle at a given point which is consistent with the
orientation of that circle to be the orientation of the tangent
to that circle at that point. Let the orientation of Dubins’
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vehicle at P1 be along the orientation of the tangent to Cp1

at P1. Similarly, let the orientation of Dubins’ vehicle at P2

be along the orientation of the tangent to Cp2
at P2. Let the

configuration of Dubins’ vehicle at P1 and P2 be denoted
by Jp1

, Jp2
∈ SE(2), respectively. Let t1, t2, t3 be such

that Lt1(0, 0, 0) = Jp1
, Rt2(Jp1

) = Jp2
and Lt3(Jp2

) =
(0, 0, ψ). Let LRLO(ψ) and RLRO(ψ) be the minimum
length curves of types LRL and RLR respectively from
the configuration (0, 0, 0) to the configuration (0, 0, ψ).

For ψ 
= 0, we define forbidden cones V1, V2 : [0, 2π[→
R

2 to be the open, positive cones with symmetry axes
(d, ψ/2)d∈R+

and (d, π + ψ/2)d∈R+
, respectively, and

half angle for both of them given by α(ψ) = π/2 −
cos−1( sin(ψ/2)

2 ). Recall that, given a set Z , we let Zc

be its complement set. Hence V c
1 (ψ) = R

2 \ V1(ψ) and
V c

2 (ψ) = R
2 \ V2(ψ).

B. Proof of Theorem 3.1

We begin with some preliminary results.
Lemma 3.2: (Length of LRL and RLR curves returning

to the origin) Given ψ ∈]0, 2π[ and r > 0, then

(i) l(LRLO(ψ)) = rψ + 4r cos−1( sin(ψ/2)
2 ), and

(ii) l(RLRO(ψ)) = r(2π − ψ) + 4r cos−1( sin(ψ/2)
2 .

Due to lack of space, instead of stating the whole proof,
we refer the reader to Figs. 2 and 3.

Lemma 3.2 has the following direct consequence.
Lemma 3.3: (Upper bound on the length of minimal

length curves returning to the origin) For all θ ∈ [0, 2π[,
ψ ∈ [0, 2π[ and r > 0

Cr(0, θ, ψ) ≤ Cr(0, θ, π) =
7

3
πr.

Now we start to analyze the general case where d 
= 0.
Lemma 3.4: (Upper bound on optimal length via LRLO

and RLRO) For ψ ∈]0, 2π[, and (x, y) ↔ (d, θ), we have

(i) if (x, y) ∈ V c
1 (ψ), then

Cr(d, θ, ψ) ≤ d + l(LRLO(ψ)),

(ii) if (x, y) ∈ V c
2 (ψ), then

Cr(d, θ, ψ) ≤ d + l(RLRO(ψ)).
Proof: Let us prove part (i); part (ii) is proved by

similar considerations. We recall the construction used for
LRLO(ψ) curves. We define two additional circles Cm1

and Cp1
of radii r and whose respective centers OCm1

and
OCp2

are given by

OCm1

= OCm1
+ (d cos θ, d sin θ),

OCp2

= OCp2
+ (d cos θ, d sin θ).

Let Cm1
be oriented clockwise and let Cp2

be oriented
counter-clockwise. Then, there always exists an oriented
segment, say M , tangent to Cm1

and Cm1
with the property

that a Dubins’ vehicle can make transition from Cm1
to

Cm1
through M . Let P3 = M ∩ Cm1

, P3 = M ∩ Cm1
,

P2 = P2+(d cos θ, d sin θ) and O = O+(d cos θ, d sin θ). It
is easy to see from the construction that, provided the point

P3 lies in the clockwise arc P1P2 along the circle Cm1
, the

path consisting of (in order) OP1 along Cp1
, P1P3 along

Cm1
, P3P3 along M , P3P2 along Cm1

, P2O along Cp2

is a feasible curve for Dubins’ vehicle from O to O, see
Figure 4. With a slight abuse of notation, we shall denote

Cm1
θ

ψ
OY

X

Cm1

O

Cp1

Cp2

OCp1

OCm1

OCp2

O
Cm1

O
Cp2

P1

P3

P 3

P2

r

Cp2

r

P 2

d

M

Fig. 4. A suboptimal path from (0, 0, 0) to (d, θ, ψ), (x, y) ↔ (d, θ)
for (x, y) ∈ V c

1
(ψ).

this curve as LRLO(d, θ, ψ). The condition that P3 lies
along the arc P1P2 along the circle Cm1

holds true when
the orientation of the segment M = P3P3 does not lie
between the orientations of the tangents to Cm1

at P1 and
P2. In summary we have:

orientation of M = orientation of P3P3 = θ,

orientation of tangent to Cm1
at P1

= ψ/2 − π/2 + cos−1(sin(ψ/2)/2),

orientation of tangent to Cm1
at P2

= ψ/2 + π/2 − cos−1(sin(ψ/2)/2).

Therefore the above condition is satisfied when θ /∈]ψ/2−
π/2+cos−1(sin(ψ/2)/2), ψ/2+π/2−cos−1(sin(ψ/2)/2)[.
It follows from the definition of V1(ψ) that this is true if
and only if (x, y) ∈ V c

1 (ψ).
Because LRLO(d, θ, ψ) is a suboptimal path, for ψ ∈

]0, 2π[, (x, y) ∈ V c
1 (ψ) and (x, y) ↔ (d, θ), we have

Cr(d, θ, ψ) ≤ l(LRLO(d, θ, ψ)). (5)

From Figure 2 and Figure 4,

l(LRLO(d, θ, ψ)) = d + l(LRLO(ψ)). (6)

Combining (5) and (6) we get the final result.
One can prove that for d = 0, the minimal length feasible

curve for Dubins’ vehicle is of type LRL or RLR. This,
along with Lemma 3.2, leads us to our next lemma which
we state without any proof.

Lemma 3.5 (Optimal path length returning to the origin):
Let d = 0 and θ ∈ [0, 2π[.
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(i) if ψ ∈]0, π], then LRLO(ψ) is the optimal path and

Cr(0, θ, ψ) = rψ + 4r cos−1
( sin(ψ/2)

2

)
,

(ii) if ψ ∈]π, 2π[, then RLRO(ψ) is the optimal path and

Cr(0, θ, ψ) = r(2π − ψ) + 4r cos−1
( sin(ψ/2)

2

)
.

Let

U1 =
⋃

ψ∈]0,π]

V c
1 (ψ), U2 =

⋃
ψ∈]π,2π[

V c
2 (ψ).

Lemma 3.6 (Relation between Cr(d, θ, ψ) and Cr(0, θ, ψ)):
For (x, y) ↔ (d, θ) and (x, y) ∈ U1 ∪ U2,

Cr(d, θ, ψ) ≤ d + Cr(0, θ, ψ),

and, therefore,

Cr(d, θ, ψ) ≤ d +
7

3
πr.

Proof: The proof follows from Lemma 3.4 and
Lemma 3.5. The second statement is a consequence of
Lemma 3.3.

It now remains to obtain a bound on Cr(d, θ, ψ) when
(x, y) ∈ V1(ψ) or (x, y) ∈ V2(ψ) where (x, y) ↔ (d, θ).
To this effect let the vehicle start moving at time t = 0 at
unit speed along Cp1

in the counterclockwise direction and
keep updating the parameters d, θ, ψ as if the coordinate
system was moving along with the vehicle. Consequently
V1(ψ) keeps shrinking and there is a time instant t = t∗

when the final configuration is such that (x, y) /∈ V1(ψ).
The following lemma and its proof contain the details of
this constructions and its implications.

Lemma 3.7: For ψ ∈]0, π[, (x, y) ∈ V1(ψ), (x, y) ↔
(d, θ) and r > 0,

Cr(d, θ, ψ) ≤ d + rF1(ψ).
The proof of this result needs an additional geometric

construction and we omit it here for lack of space.
From the definition it follows that for (x, y) 
= (0, 0),

(x, y) ∈ V1(ψ) =⇒ (x, y) ∈ V c
2 (ψ). This observation along

with part (ii) of Lemma 3.4 and part (ii) of Lemma 3.2 leads
us to our next lemma which we state without any proof.

Lemma 3.8: For ψ ∈]0, π], (x, y) ∈ V1(ψ), (x, y) ↔
(d, θ) and r > 0,

Cr(d, θ, ψ) ≤ d + rF2(ψ).
Lemma 3.9: For ψ ∈]0, π[, (x, y) ∈ V1(ψ), (x, y) ↔

(d, θ) and r > 0,

Cr(d, θ, ψ) ≤ d + r min{F1(ψ), F2(ψ)}.
Therefore, for ψ ∈]0, π], (x, y) ∈ V1(ψ), (x, y) ↔ (d, θ)
and r > 0,

Cr(d, θ, ψ) ≤ d + r max{F2(π), sup
ψ∈]0,π[

min{F1(ψ), F2(ψ)}}

= d + κπr.
Proof: The first statement of the lemma follows

from Lemma 3.7 and Lemma 3.8. This along with the

consideration for the case of ψ = π easily leads one to
the second statement.

Similarly, one can prove that for ψ ∈]π, 2π[, (x, y) ∈
V2(ψ), (x, y) ↔ (d, θ) and r > 0, Cr(d, θ, ψ) ≤ d + κr.
Combining this with Lemma 3.6 and the last statement of
Lemma 3.9, we can state that for ψ ∈]0, 2π[, (x, y) ∈ R

2,
(x, y) ↔ (d, θ) and r > 0

Cr(d, θ, ψ) ≤ d + κr. (7)

It now remains to prove a similar bound on Cr(d, θ, 0) for
which we state the following lemma.

Lemma 3.10: For (x, y) ∈ R
2, (x, y) ↔ (d, θ) and r >

0,
Cr(d, θ, 0) ≤ d + 2πr.

The proof of this result requires the same setup as for the
proof of Lemma 3.7 and we do not state it here for lack of
space.

Lemma 3.10 combined with eqn. (7) gives the proof for
Theorem 3.1. It is easy to check that for ψ ∈]0, π[, F1(ψ)
is a monotonically increasing function of ψ and F2(ψ)
is a monotonically decreasing function of ψ. Therefore,
there exists a unique ψ∗ such that F1(ψ

∗) = F2(ψ
∗). By

numerical calculations one can find that κ � 2.6575.

C. Numerical Results

The length of the optimal Dubins’ path, Cr(d, θ, ψ),
was calculated for numerous sets of final configurations
(d, θ, ψ) starting with an initial configuration of (0, 0, 0) and
a corresponding parameter k was evaluated for each of the
instances according to the relation: Cr(d, θ, ψ) = d + kπr.
The results suggest that the value of k is bounded by a
quantity, say κnum whose value is equal to 7

3 . Moreover, it
appears that k achieves the value of κnum only when the
Dubins’ vehicle makes a transition from a state of the form
(0, 0, 0) to a state of the form (0, 0, π) according to our
setup. Hence, though we do not have an analytical proof to
establish these empirical results exactly, our analysis gives
a fairly good estimate of κnum.

IV. ON THE TSP FOR DUBINS’ VEHICLE

Once an upper bound is obtained on the length of
the optimal point-to-point Dubins’ path, this section now
gives measure of performance of the ALTERNATING AL-
GORITHM and the optimal algorithm for DTSP. The aim
of this section can be summarized through the following
statement.

Problem 4.1: Given an upper bound on the length of
the optimal point-to-point Dubins’ path, find a measure
of the general performance of DTSP and the worst case
performance of the ALTERNATING ALGORITHM.

We now state the two important results of this section.
Theorem 4.2: (Bounds on the TSP for Dubins’ vehicle)

For any point set Λ ∈ Λn with n ≥ 2 and r > 0,

ETSP(Λ) ≤ DTSP(Λ, r) ≤ ETSP(Λ) + κ�n/2�πr.
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Furthermore, given r > 0, there exists a point set Λ ∈ Λn

such that

ETSP(Λ)+2�n

2
�πr ≤ DTSP(Λ, r) ≤ ETSP(Λ)+κ�n

2
�πr.

Theorem 4.3: (Performance of the ALTERNATING AL-
GORITHM in the worst case for Dubins’ TSP) For n ≥ 2
and r > 0,

sup
Λ∈Λn

DTSP(Λ, r)

≤ sup
Λ∈Λn

LAA(Λ, r)

≤ ETSP(Λ) + κ�n/2�πr

ETSP(Λ) + 2�n/2�πr
sup

Λ∈Λn

DTSP(Λ, r).

Furthermore, as n → +∞,

sup
Λ∈Λn

DTSP(Λ, r)

≤ sup
Λ∈Λn

LAA(Λ, r)

≤ κ

2
sup

Λ∈Λn

DTSP(Λ, r).

To prove these results, we begin with some preliminaries.
It is fairly easy to see that LAA(Λ, r) ≥ ETSP(Λ). An im-
mediate consequence of this observation and Theorem 3.1
when applied to the ALTERNATING ALGORITHM is the
following lemma which we state without any proof.

Lemma 4.4: (Bounds on the performance of the ALTER-
NATING ALGORITHM as compared to ETSP) For any point
set Λ ∈ Λn and r > 0,

ETSP(Λ) ≤ LAA(Λ, r) ≤ ETSP(Λ) + κ�n/2�πr.
Next, without giving a proof due to lack of space, we
provide a worst-case lower bound on DTSP.

Lemma 4.5: (Worst-case lower bound on DTSP) Given
r > 0, there exists a point set Λ ∈ Λn such that

DTSP(Λ, r) ≥ ETSP(Λ) + 2�n

2
�πr.

The first statement in Theorem 4.2 follows from the
facts that DTSP(Λ, r) ≥ ETSP(Λ) and LAA(Λ, r) ≥
DTSP(Λ, r) and Lemma 4.4. The second statement follows
from Lemma 4.5. Similarly, the first statement in Theo-
rem 4.3 follows from the simple fact that LAA(Λ, r) ≥
DTSP(Λ, r), Lemma 4.4 and Lemma 4.5. To prove the
second part of Theorem 4.3, we state a result from [12]:
for a set Λ of n points in the compact set Q, there exists a
finite constant β(Q) such that

ETSP(Λ) ≤ β(Q)
√

n.

Taking the limit as n → +∞ in the first part of Theorem 4.3
and using the result stated above we prove the second part
of Theorem 4.3.

Using the result in Theorem 4.2, one can prove that given
a pointset, for small enough r, the order of points in the
optimal path for the Euclidean TSP is same as the order of
points in the optimal path for the TSP for Dubins’ vehicle.

V. CONCLUSIONS

There exist results in literature which state that for a given
compact set and a pointset Λ of n points, ETSP(Λ) belongs
to O(

√
n). In this paper, we characterized the worst-case so-

lutions to the point-to-point and to the traveling salesperson
problem for Dubins’ vehicle where we showed that in worst
case, for any ρ > 0, DTSP(Λ, ρ) belongs to O(n). We
provide some results on the stochastic analysis of TSP for
Dubins’ vehicle in [13]. Open directions of research include
(i) tightening the bounds we provided, and (ii) applying
these results to task assignments and surveillance problems,
see [14].
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