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Abstract— Estimation of contact state is important to any
multi-point interaction that involves frictional stick/slip phe-
nomena. In particular, when there are more kinematic con-
straints than there are degrees of freedom, some contact
interfaces must slip, leading to the need for contact state
estimation. Fortunately, supervisory control techniques from
adaptive control can be applied to this problem with relatively
little modification. We discuss this approach in terms of
a distributed manipulation experiment developed to explore
overconstrained manipulation. In this context, we show in
a simulated model that on-line contact state estimation dra-
matically improves performance over methods that estimate
contact states off-line.

I. INTRODUCTION

A manipulation system consisting of many points of
contact typically exhibits stick/slip phenomenon due to the
point contacts moving in kinematically incompatible man-
ners. We call this manner of manipulation overconstrained
manipulation because not all of the constraints can be
satisfied. Naturally, uncertainty due to overconstraint can
sometimes be mitigated by having backdrivable actuators,
soft contacts, and by other mechanical means, but these
approaches avoid the difficulties associated with stick/slip
phenomenon at the expense of losing information about the
state of the mechanism. This, in turn, leads either to de-
graded performance or to requiring additional sensors. This
paper is concerned with systems that have multiple points of
contact, all of which are frictional and adequately described
by either constraint forces (when there is no slipping at the
point contact) or by the slipping reaction force. Prototypes
of this situation include distributed manipulation systems,
such as those found in [12], [9], as discussed in Section II.

An important question in these systems is that of contact
state estimation [13]. That is, for n kinematic constraints
associated with contact interfaces, estimating at any given
time which constraints are satisfied (the contact is “stick-
ing”) and which are not (the contact is “slipping”). (Note
that the contact state is therefore associated with a boolean
variable that is zero when the sticking and one when
slipping. We will elaborate on this in the Section III.) How
can one determine the stick/slip state for each point contact?
Without a sensor at each point contact, the output signal
must be used in some way to determine this. Moreover,
the computational complexity of the solution must be con-
sidered as well, since for an n contact system there are

2n possible stick/slip combinations. The main contribution
of this paper is to show that methods from adaptive control
called supervisory control [2], [6], [7] provide a reasonable,
though in no sense optimal, solution to this problem.

This paper is organized as follows. Section II discusses
distributed manipulation in more detail, and discusses the
experimental implementation used before in [12]. Sec-
tion III describes the algorithm developed in [12] and gives
an example simulation for this experimental system when
the contact states are assumed to be known perfectly. We
then illustrate how variations in the contact state can, not
surprisingly, degrade the performance of the algorithm. Sec-
tion IV gives the necessary background for understanding
a supervisory control system, such as that described in
[2], [6], and proves the relevant stability properties. We
also discuss the implementation of this adaptive control
method to the distributed manipulation example and show in
simulation that the original algorithm performance is indeed
recovered even when the contact states are not known a
priori.

II. MOTIVATION: DISTRIBUTED MANIPULATION

Distributed manipulators usually consist of an array of
similar or identical actuators combined together with a
control strategy to create net movement of an object or
objects. The goal of many distributed manipulation systems
is to allow precise positioning of planar objects from all
possible starting configurations. Such “smart conveyors”
can be used for separating and precisely positioning parts
for the purpose of assembly. Distributed manipulator ac-
tuation methods ranges from air jets, rotating wheels, and
electrostatics on the macro-scale, to MEMS and flexible
cilia at the micro-scale.

Methods to design distributed manipulation control sys-
tems have been proposed in several works, including [12],
[9], [4], [3], [5]. However, in cases where only a small
number of actuators are in contact with the manipulated
object or the coefficient of friction µ is very high, con-
tinuous approximations of these systems have been shown
experimentally not to work well [12], [9]. In these cases,
the physics of the actual array and the object/array interface
must be incorporated into the control design process. In
particular, the discontinuous nature of the equations of
motion must be addressed.
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The work in [12] describes an experimental test-bed that
was designed to evaluate and validate such control systems.
Our modular system can emulate a reasonably large class
of distributed manipulators that generate motion through
rolling and sliding frictional contact between the moving
object and actuator surfaces. In such cases friction forces
and intermittent contact play an important role in the overall
system dynamics, leading to non-smooth dynamical system
behavior. The control question is twofold in its theoretical
interest. First, unlike many other control problems currently
being studied, distributed manipulation problems are typi-
fied by being massively overactuated. A planar distributed
manipulation problem will typically only have three outputs
(x, y, θ), but it may potentially have thousands of inputs.
Therefore, control schemes must scale with the number of
actuators in order to be able to implement them on real
devices such as MEMS arrays. Second, there is the question
of physical modeling. Partly because of the aforementioned
overactuation, nonsmooth effects become commonplace in
distributed manipulation due to intermittent contact, friction,
and kinematically incompatible constraints. When these are
the dominant concerns, they must be incorporated into
the modeling and therefore into the control design as
well. Control laws appropriate to these systems have been
successfully designed, as discussed in Section III.

(a)

(b)

Fig. 1. The Caltech Distributed Manipulation System. (a) Front View (b)
Module

A photograph of the apparatus can be seen in Figure 1.
The design is a modular one based on a basic cell design.

Each cell contains two actuators. One actuator orients the
wheel axis, while the other actuator drives the wheel rota-
tion (see Figure 1(b)). These cells can easily be repositioned
within the supporting structure to form different configura-
tions. The system shown in Figure 1(a) is configured with
a total of nine cells—though more can be easily added.
The position and orientation of the manipulated object is
obtained and tracked visually. To enable visual tracking,
a right triangle is affixed to the moving object. For more
details on the experimental setup, please refer to [12].

When experiments were performed using this device
in [12], the contact state was estimated in an open loop
manner. That is, based on physical principles (described
momentarily), a static condition was chosen under which
the contact states would change. Somewhat surprisingly,
this worked in the implementation, but only because the
device was in a controlled environment and it was well
characterized. In most scenarios this will not be the case.
Examples include outdoor slip-steered vehicles that have
multiple contacts with the ground that are not well char-
acterized because of changing ground characteristics as
well as MEMS manipulation where electrostatic forces are
difficult to accurately model. Therefore, we necessarily must
address the problem of contact state estimation and accom-
modation. Even in a nine cell system, this is a nontrivial
task. Each wheel has two constraints (a rolling constraint
and a no-sideways-slip constraint) leading to a grand total
of 218 ∼ 105 possible contact states. Although not formally
addressed here, there exist techniques to reduce the number
of possible states, including kinematic reduction[11] and
coordination[10].

III. MODELING AND ANALYSIS

To explicitly investigate, incorporate, and control the
complex frictional contact phenomena inherent in overcon-
strained manipulation, one needs to develop general mod-
eling schemes that can capture these phenomena without
being intractable from a control perspective. One could
resort to a general Lagrangian modeling approach that ac-
counts for the contact effects through Lagrange multipliers.
Instead, we sought to develop a general modeling scheme
that captures the salient physical features, while also leading
to equations that are amenable to control analysis.

To realize this goal, we use a “Power Dissipation
Method” (PDM) approach to model the governing dynamics
of an overconstrained mechanical system involving a dis-
crete number of frictional contacts. One can show that this
method almost always produces unique models [11] that
are relatively easy to compute, are formally related to the
Lagrangian mechanics, and to which one can apply control
system analysis methods. This method produces first-order
governing equations, instead of second-order equations that
are associated with Lagrange’s equations.

Assume that the moving body and actuator elements that
contact the object can be modeled as rigid bodies making
point contacts that are governed by the Coulomb friction
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law at each contact point. Let q denote the configuration
of the array/object system, consisting of the object’s planar
location, and the variables that describe the state of each ac-
tuator element. Under these conditions, the relative motion
of each contact between the object and an actuator array
element can be written in the form ω(q)q̇. If ω(q)q̇ = 0,
the contact is not slipping, while if ω(q)q̇ �= 0, then ω(q)q̇
describes the slipping velocity.

In general, the moving object will be in contact with the
actuator array at many points. From kinematic considera-
tions, one or more of the contact points must be in a slipping
state, thereby dissipating energy. The power dissipation
function measures the object’s total energy dissipation due
to contact slippage.

Definition 3.1: The Dissipation or Friction Functional
for an n-contact state is defined to be

D =
n∑

i=1

µiNi | ω(q)q̇ | (1)

with µi and Ni being the Coulomb friction coefficient and
normal force at the ith contact, which are assumed known.

Assuming that the motion of the actuator array’s vari-
ables are known, the power dissipation method assumes
that the object’s motion at each instant is the one that
instantaneously minimizes power dissipation D due to con-
tact slippage. This method is adapted from the work of
[1] on wheeled vehicles. For a greater discussion of the
formal characteristics of the PDM, and a discussion of the
relationship between the PDM and Lagrangian approaches
for such a system, see [11].

When one applies the PDM method, the governing equa-
tions that result take the form of a multiple model system.

Definition 3.2: A control system Σ evolving on a smooth
n-dimensional manifold, Q, is said to be a multiple model
driftless affine system (MMDA) if it can be expressed in the
form

Σ : q̇ = f1(q)u1 + f2(q)u2 + · · · + fm(q)um. (2)

where q ∈ Q. For any q and t, the vector field fi assumes
a value in a finite set of vector fields: fi ∈ {gαi |αi ∈ Ii},
with Ii an index set. The vector fields gαi

are assumed to
be analytic in (q, t) for all αi, and the controls ui ∈ R are
piecewise constant and bounded for all i. Moreover, letting
σi denote the “switching signals” associated with fi

σi : Q × R −→ N

(q, t) −→ αi

the σi are measurable in (q, t).
An MMDA is a driftless affine nonlinear control system

where each control vector field may “switch” back and forth
between different elements of a finite set. In our case, this
switching corresponds to the switching between different
contact states between the object and the array surface
elements (i.e., different sets of slipping contacts) due to
variations in contact geometry, surface friction properties,
and normal loading. In [11] it was shown that the PDM

generically leads to MMDA systems as in Definition 3.2
and is formally equivalent to a kinematic reduction of the
Lagrangian formulation of the equations of motion.

Fig. 2. A distributed manipulator with four actuators

The work in [12] showed that the PDM predicts that the
governing equations for a distributed manipulation system
are: ⎡

⎣ẋ
ẏ

θ̇

⎤
⎦ = f1u1 + f2u2 (3)

where

f1 ∈

⎡
⎢⎣

−yi

(xj−xi)sj+(yi−yj)cj
xi

(xj−xi)sj+(yi−yj)cj
1

(xi−xj)sj+(yj−yi)cj

⎤
⎥⎦ f2 ∈

⎡
⎢⎢⎣

sj((xi−xj)ci+yisi)+cicjyj

(xj−xi)sj+(yi−yj)cj
−cicjxi−si(xjsj−(yi−yj)cj)

(xj−xi)sj+(yi−yj)cj
− cos(θi−θj)

(xi−xj)sj+(yj−yi)cj

⎤
⎥⎥⎦

where ci = cos(θi), si = sin(θi), etc. The input u1 is
the input to the closest actuator to the center of mass, and
the input u2 is the input to the second closest actuator
to the center of mass. It should be noted that here the
index notation should be thought of as mapping (i, j)
pairs to equations of motion in some neighborhood (not
necessarily small) around the ith and jth actuator. The
transition between the equations of motion determined by
actuators i and j to equations of motion determined by
actuators k and l will in general be determined by the
location of center of mass. This in turn leads to the state
space being divided up by transition boundaries between
different sets of equations of motion.

Consider Figure 2, which might represent a portion of
a distributed manipulator near a desired equilibrium point.
This region has four actuators (corresponding to the inputs
u1, . . . , u4 and represented in the figure by arrows) located
at (±1,±1), all pointed towards the origin. An analysis of
this system using the PDM method shows that the region
can be divided into 8 distinct regions, labeled I − VIII,
where one contact state holds. These are separated by 8
boundaries, labeled 0 − 2π in increments of π

4 . In each
one of the regions I − VIII a control law is calculated
from the Lyapunov function k(x2 + y2 + θ2) by solving
V̇ = −V for ui, where k is some constant to be chosen
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Fig. 3. Simulation of distributed manipulation when the contact state is
known perfectly. The rectangle represents the center of the object which
is actually in contact with all four of the actuators (Nodes 1-4). The time
history progresses from dark triangles at time 0 to the light triangle at
time 10. The bottom three plots are plots of the X ,Y , and θ coordinates
against time.

during implementation. Therefore, there are eight control
laws, each defined in a separate octant. These control laws
can be found in [12].

If these estimated boundaries 0 − 2π are accurate, then
the control laws perform quite well. Figure 3 shows a sim-
ulation of the four actuator system. The object is indicated
by a rectangle, but the reader should note that although
the rectangle is illustrated as being small, the actual body
it represents is in contact with all four actuators at all
times, which are denoted in the figure by Nodes 1-4. The
initial condition is {x0, y0, θ0} = {.5, 2, π

2 }, and progress
in time is denoted by the lightening of the object. The
three plots beneath the XY plot are X , Y , and θ versus
time, respectively. This, and the other simulations, were all
done in Mathematica, using Euler integration in order to
avoid numerical singularities when crossing contact state
boundaries. In Fig. 3, the object is stabilized to (0, 0, 0)
with no difficulty.

In the simulations the constraints are enforced separately

Fig. 4. Simulation of distributed manipulation when the contact state is
estimated in some open loop manner but is incorrect. The object is only
barely stabilized to the origin due to the contact state being varying from
the nominal value. (As in Fig. 3, the bottom three plots are plots of the
X ,Y , and θ coordinates against time.)

from the control law, allowing the control to switch at
different times from the constraints. In particular, if the
boundary that determines the physical contact state is al-
lowed to vary while the control laws only change at the
estimated boundaries 0−2π, then the performance degrades
substantially. Starting the object at an initial condition of
{x0, y0, θ0} = {.5, 2, π

2 }, Fig. 4 shows this degradation in
comparison to Fig. 3, although the system is still stable.
In the case of Fig. 4, the controller is assuming that the
contact state changes when the center of mass of the object
crosses the line x = 0, whereas the contact state is actually
changing when the line x = −0.3y is crossed. This is
precisely the difficulty fixed by estimating the contact state
on-line, as shown in Section IV.

IV. SUPERVISORY CONTROL AND HYBRID

OBSERVABILITY

Efforts in the adaptive control community have already
created a framework appropriate to addressing the problem
of estimating and accommodating changes in contact state.
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Fig. 5. A supervisory control system

In particular, supervisory control (as in [2], [6], [8] and
elsewhere) is an effective technique to use when a system
is a linear multiple model system. Fortunately, our system,
when reduced to a kinematic system using the power
dissipation method, is a first order system with constant
vector fields. (In fact, not only is it linear, it does not even
have drift.) Hence, it is a particularly trivial multiple model
system. With little modification, this supervisory framework
easily answers how to estimate the current contact state
based on the output of the system as well as stabilize the
outputs to a desired equilibrium.

The basic idea in supervisory control is that if there is
a family (finite or possibly a parameterized continuum) of
plants Pσ indexed by σ representing the dynamics, then
one can choose controllers appropriate to each Pσ and
orchestrate a “switching” between these controllers such
that the resulting system is stable. Traditionally, this is a
technique where σ is constant but unknown.

Consider the block diagram representation of a super-
visory control system found in Fig. 5. Denote the set of
possible admissible plants by P. Each model in P represents
a contact state of the overconstrained system. Assume
that associated with each plant Pσ coming from P there
is a known stabilizing controller Cσ . Denote the set of
these controllers by C. To determine which model in P

most closely “matches” the actual model, the input-output
relationships for all the plants in P will need to be estimated.
Hence, the need for the estimator, denoted by E, which will
generate errors between the predicted output for each plant
and the actual output of the multiple model system. These
errors will then be fed into the monitoring signal generator,
denoted by M, which will provide monotone increasing

signals µp determined by

Ẇ = −2λW +
[

xE

y

] [
xE

y

]T

, W (0) ≥ 0

µp := (cp − 1)W (cp − 1)T + εµ, p ∈ P
(4)

where W (t) is a symmetric non-negative-definite k × k
matrix with k = dim(xE) + 1, xE is the state of the
estimator, εµ is a parameter determined by the monitoring
signal designer, and cp is the output one form determining
y (from Figure 5) from y = cpxE. The monitoring signal
will be fed into the switching logic, denoted by S, which
will then determine by means of a switching signal, σc,
which controller to use to control the system output. Call
the triple (S, M, E) the supervisor. Additionally, there is an
environmental signal generator D creating σe. D represents
the externally driven switches in contact state that we would
like to estimate. Lastly, denote by Nσe(t0, t) the number of
switches σe experiences during time [t0, t).

For our purposes it is sufficient to note that the su-
pervisory control system, as described, is stable so long
as 1) each controller Cσ stabilizes its associated plant
Pσ , 2) the estimator tracks the contact state well, and 3)
the supervisor switches fast enough to ensure convergence
without switching so fast as to induce instability. This
last requirement is formalized in the following assumption
which will turn up in the proof of Proposition 4.1.

Assumption 4.1: Assume σe switching is “slow on the
average,” i.e.,

Nσe(t, τ) ≤ Ne
0 +

t − τ

τe
AD

where Ne
0 > 0 is called the “chatter bound” and τe

AD is
called the “average dwell time.”
There is a similarly defined notion of “slow on the average”
for the signal σc that is used to ensure that the control
switching does not destabilize the system [6]. Lastly, let
Save[τAD, N0] be the set of all switching signals for which
Nσ(t, τ) ≤ N0 + τ−t

τAD
.

Now it is possible to prove the following proposition.
Proposition 4.1: Given a linear affine multiple model

system where each model is stabilized by a linear control
law, for any λd (the stability margin) and any dσ (the time
lag induced by the estimator E) there exists a supervisor S

such that with τe
AD sufficiently large the resulting system

is stable with stability margin λd.
Proof: First we note that the linear affine multiple

model systems combined with their stabilizing controllers
may be rewritten as ẋ = Aqx where q is an index on the set
of models. Hence, the question of stability is whether these
systems will destabilize when they switch from one model
to another. In the case where dσ = 0, then the prior work in
[7] directly applies, and we are done. It is when dσ �= 0 that
we must modify their approach. In particular, when dσ �= 0
the controller for a given model may be destabilizing for
another model. Hence, until the observer accurately tells the
supervisor which model is currently governing the system
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evolution there may indeed be instability in the system.
Therefore, in order to proceed with the proof we need
the next Lemma (which is an adaptation from [7]), which
provides the trade off between the average dwell time and
the τe

AD and the time lag dσ .
Lemma 4.2: Given two compact sets of n × n matrices

A : {Ap : p ∈ P}, A′ : {A′
q : q ∈ P} and a positive

constant λ0 such that Ap −λ0I is asymptotically stable for
each p ∈ P , then, for any λ ∈ [0, λ0), there is a finite
constant τ∗

AD and a finite constant dσ such that if ti and
ti+1 are switching times for the switching signal σ:

ẋ =
{

A′
qx on [ti, ti + dσ)

Apx on [ti + dσ, ti+1)
(5)

is uniformly exponentially stable over Save[τAD, N0] with
stability margin λ, for any average dwell time τAD ≥ τ∗

AD

and any chatter bound 0 < N0 < 1.
Proof: Assume we have a family of stable plants

indexed by p ∈ P with matrix representations Ap where
Ap − λ0I asymptotically stable and another set of plants
indexed by q ∈ Q with matrix representations A′

q (poten-
tially unstable with maximum eigenvalue across all q equal
to λA′ ). Then fix τe

AD, the average dwell time for the signal
σe(t). First it will be proven that for a given dwell time, the
Lyapunov functions Vp decrease along trajectories of Eq. (5)
for dσ sufficiently small. Then it will be shown that if the
switching from σe (which determines τe

AD) is sufficiently
slow, the resulting linear switched system is stable. Let

{t0, t1, t2, · · · , tNσe (t0,T )−1, T}
be the switching times for σe. On an interval [ti, ti+1) let
dσ denote the time delay between σe switching and σc

switching. Then choose dσ such that

0 < dσ <
λ − λ0

λA′ − λ0
(ti+1 − ti)

this implies that

λ0(ti+1 − ti − dσ) + λA′dσ < λ(ti+1 − ti) (6)

which in turn implies that

Vp(x(ti+1)) < eλ(ti+1−ti)Vp(x(ti)) (7)

Moreover, this is true on any interval, and, because there
are only a finite number of switching points, there exists a
lower bound on the dσ (denoted d∗) required to ensure that
all the Vp decrease along the trajectories x(t). If d∗ is the
lower bound, then Eq. (7) holds for all p ∈ P q ∈ Q and
we have

λ0(ti+1 − ti − d∗) + λA′d∗ < λ(ti+1 − ti)

for all i. Recall from [7] that since each stable system
represented by Ap has a Lyapunov function Vp, we know
that there exists a positive real µ such that for some j
Vi ≤ µVj . Then, following (without modification) the logic

in [7], we can see that to get a stability margin of λd, we
need to satisfy:

−λ(T − t0) + Nσe(t0, T ) log µ < k − λd(T − t0).

Due to Eq. (6), this will occur if

−λ0(T−t0−d∗)+Nσe
(t0, T )(log µ−λA′d∗) < k−λd(T−t0).

for k > 0. Now solve for Nσe
(t0, T ) and get the following

relationship:
Nσe(t0, T ) satisfies N∗

0 := 2k
log µ−λAd∗

and τe∗
AD :=

log µ−λAd∗
2(λ−λd) . This guarantees that

‖x(t)‖ ≤ ek−λ(T−t0)‖x(t0)‖ (8)

whenever σ ∈ Save, τe
AD > τe∗

AD, and dσ < d∗.
This Lemma (and N∗

0 and τe∗
AD in particular) gives us a

formal relationship between τe
AD and dσ that needs to be

satisfied in order for stability to hold. This ends the proof.

Fig. 6. Simulation of distributed manipulation when the contact state
is estimated on-line, using the supervisory control methodology. Here the
performance is much closer to that seen in Fig. 3, the case where our
knowledge of the state is perfect. (As in Fig. 3, the bottom three plots are
plots of the X ,Y , and θ coordinates against time.)

Proposition 4.1 indicates that if the contact states change
slowly enough (i.e., τe

AD is large) and supervisory feedback
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is fast enough (i.e., dσ is small), then the system can be
controlled by a supervisory controller S using an estimate
from an estimator E that is estimating the contact state on-
line. Among other things, this means that one does not have
to concern oneself with the friction model to establish where
switching occurs. Instead, the contact states can change
arbitrarily, so long as they do so sufficiently slowly on the
average. Also note that if there is a common Lyapunov
function and dσ = 0, then log µ = log 1 = 0, and the
system will be stable for any switching signal. In situations
where this is not the case, it would be useful to know if
a combination of physical geometry and controller choice
can guarantee a lower bound on τe

AD, but for now we
leave it as a standing assumption that it can be bounded.
However, one can see that in the case of the example we
have been using, the only place where switching can be
“fast” is near the origin of the xy plane. Therefore, a purely
local analysis should be sufficient to understand conditions
for slow switching in σe.

Now apply this supervisory approach to the four actuator
array from Section III. Replace the boundary x = 0 with the
boundary x = −0.3y, and allow the estimator E to estimate
the contact state and the supervisor S to orchestrate the
controller. In this case (found in Fig. 6) the performance is
considerably better than that found in Fig. 4 and resembles
the performance found in Fig. 3. However, there are several
important characteristics missing from this simulation. First,
there is no noise in the output of the system, and it would
be useful to know what the sensitivity of this nonsmooth
system is to such output noise. Secondly, there is no time
delay, which will almost certainly play a substantial role in
the dynamics near the origin.

V. CONCLUSIONS

In this paper we have introduced the problem of es-
timating contact states for overconstrained systems and
stabilizing these systems. We have offered a solution that
is based on adaptive control techniques developed in [2],
[6], [8]. The problem of contact state estimation and ac-
commodation is clearly important for systems in which
stick/slip phenomena play a dominant role. Indeed, for the
distributed manipulation experiment described here, manip-
ulation tasks are actually impossible without the constant
trade-off between sticking and slipping. Ultimately, the
analytical techniques presented here should be extended to
the more geometric setting of grasping and manipulation in
the presence of gravitational forces. In the meantime, these
results will be implemented on a version of the experiment
discussed in Section II.

Despite the validity of the estimation and stabilization
techniques presented here, more work must be done to
make these methods more computationally efficient. In
the supervisory control approach, every model must be
integrated forward in time. In the case of the four wheel
manipulator there are 8 constraints, leading to 28 possi-
ble dynamic equations of motion. Utilizing the kinematic

reduction found in [11], these can be reduced to 8 total
states, a tractable number for the supervisor. However, if
the number of actuators is large, or if the system does
not satisfy the conditions to be kinematically reducible (as
is the case in many relevant grasping problems), then the
traditional supervisory approach will surely fail. A potential
solution to this is to serially test models rather than testing
them in parallel, provided they satisfy some sort of a priori
known hierarchy. This method will require the additional
characteristic of scaling the gains on the controller down
whenever the current model chosen by the supervisor is
not predicting the output well. Proving stability of such
techniques is non-trivial and is the focus of ongoing study.
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[3] K. F. Böhringer, B. R. Donald, L. E. Kavraki, and F. Lamiraux. A
distributed, universal device for planar parts feeding: unique part ori-
entation in programmable force fields. In Distributed Manipulation,
pages 1–28. Kluwer, 2000.
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