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Abstract— In this paper, a state feedback design for the class of
polynomial control systems is proposed. The proposed design
solves the stabilization problem by considering polynomial
control systems as linear parameter varying (LPV) control
systems. With the help of duality theory and the sum of squares
decomposition, a stabilizing state feedback can be computed
efficiently, if a certain semidefinite program is feasible. The
main advantages of the proposed state feedback design are that
no special requirements on the system structure are imposed
and that the results are of global nature.

I. INTRODUCTION

Nonlinear feedback design has been passed through
a remarkable phase over the last two decades. Many
descriptive concepts for nonlinear feedback analysis
turned into constructive design strategies [7]. However,
nonlinear feedback design is far away from being solved.
Many existing feedback designs impose very particular
assumptions on the control system which are hard to
verify or simply not satisfied in real-world applications
e.g. special requirements on the system structure or only
local validity of the designed feedback. These requirements
are often the main stumbling blocks for applying these
strategies. Additionally, there are only a few computational
tools available for designing nonlinear feedbacks. Recently,
polynomial control systems have gained a lot of interest
[6], [12], [13]. Polynomial control systems are control
systems where the maps in the control system description
are polynomial maps. This class of control systems includes
the class of linear control system, and many nonlinear
control problems can be formulated or approximated
by polynomial control systems. In combination with
semidefinite programming, in particular with the help of
the sum of squares decomposition, many problems in
polynomial control systems analysis and design have been
attacked successfully, due to the fact, that semidefinite
programs can be solved very efficiently on a computer. In
[12], for example, a semidefinite programming approach
based on state dependent Riccati techniques was proposed
from which one obtains global stability only in case of
a quadratic Lyapunov function. In [13], a semidefinite
programming approach for feedback passivation was
proposed. Feedback passivation is a well-established
design strategy with a long history in control. However,
one obstacle of this design tool is that a (fictitious)
passivating output of the control system must be known,

which may be hard to find, since no systematic procedures
are available for finding passivating outputs.

In the present paper, a new computer-aided state feedback
design approach is proposed which overcomes this
limitation by considering polynomial control systems
as linear parameter-varying (LPV) control systems. In
particular, it is shown that the state feedback design can
be formulated as semidefinite program by embedding
polynomial control systems in parameterized linear control
systems and by using duality theory. As a result, a
state feedback and a control Lyapunov function (CLF)
respectively, is obtained, if a certain semidefinite program
is feasible. This feedback can be used to stabilize the
original polynomial control system. The main advantages
of the proposed design procedure are that no special
requirements on the system structure are imposed, that the
results are of global nature, and the linear case is included.
The proposed state feedback design strategy is illustrated
on a small example.

The remainder of the paper is organized as follows:
In Section II the basic idea as well as the main state
feedback design approach in terms of a semidefinite
program is presented. A small example is given in Section
III to illustrate the proposed controller design approach.
Concluding remarks are given in Section IV.

Notations: A function V (x) : R
n → R is called

positive definite, if V (0) = 0, V (x) > 0,∀x ∈ R
n \ {0}

and positive semidefinite if V (x) ≥ 0,∀x ∈ R
n. The

row vector ∇V (x) = (∂V /∂x)(x) denotes the derivative
of V (x) with respect to x. A control Lyapunov function
(CLF) V of the control system ẋ = f(x) + G(x)u is a
radially unbounded positive definite function such that for
every nonzero x ∈ R

n there exists a u ∈ R
p such that

V̇ (x) = ∇V (x)f(x) + ∇V (x)G(x)u < 0. A polynomial
p(x) is a finite linear combination of monomials, i.e.,
p(x) =

∑
α cαxα =

∑
α cαxα1

1 ...xαn
n , where cα ∈ R and

α = [α1, ..., αn], αi ∈ N0. The degree of a polynomial is
defined, d =

∑n
i=1 αi. The set of all polynomials with

real coefficients is written as R[x]. A polynomial vector
field f : R

n → R
n, f(x) = [f1(x), ..., fn(x)]T is a vector

field with fi ∈ R[x], i.e., the entries of the vector field are
polynomial functions in x.
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II. STATE FEEDBACK DESIGN

The following problem is considered in this paper:

Stabilization Problem 1 Given a polynomial control
system of the form1

ẋ = f(x) + G(x)u, (1)

where x ∈ R
n is the state and u ∈ R

p is the input.
f is a polynomial vector field with f(0) = 0 and G
is a polynomial map, i.e., fi, Gij ∈ R[x]. Find a state
feedback u = k1(x), such that the closed-loop is globally
asymptotically stable w.r.t. the origin x = 0.

To put the polynomial control system (1) in relation
with linear control systems, one can write the control
system (1) as follows:

ẋ = A(x)x + G(x)u. (2)

Note that the matrix A(x) is not unique, i.e., there are
different matrices A(x) to write f(x) = A(x)x (cf. also
Remark 5). However, the basic idea is now to turn the state
dependency of A(x), G(x) into an parameter dependency,
let say θ. Then, one arrives at the following linear control
system ẋ = A(θ)x+G(θ)u, parameterized by θ. Instead of
solving the original stabilization problem described above,
one may solve the following problem:

Stabilization Problem 2 Given the parameterized
linear control systems

ẋ = A(θ)x + G(θ)u. (3)

Find a parameterized polynomial state feedback u =
k2(x, θ), and a common, parameter–independent, polyno-
mial control Lyapunov function (CLF)2 V = V (x) > 0
such that

∇V (x)[A(θ)x + G(θ)k2(x, θ)] < 0,

is satisfied in certain domain D(x,θ) ⊆ R
n × R

n which
contains the points (x, x) ∈ D(x,θ) for all x ∈ R

n.

Note that Problem 2 is more difficult than Problem
1, since the feedback has to stabilize for certain θ’s with
a common CLF V and not just for θ = x. The motivation
of introducing the domain D(x,θ) ⊆ R

n × R
n is to reduce

the conservatism of the state feedback design. Note that
the smaller the distance between the domain D(x,θ) and
the set {(x, x) | x ∈ R

n} becomes, the less conservative
the state feedback design will be. However, Problem 2
has one significant advantage, namely, the sum of squares
decomposition can be applied to search for a solution,

1By putting an integrator in front of the control system, i.e., u = ξ,
ξ̇ = v, it is always possible to write a control system ẋ = f(x, u) in the
form ẋ = f(x) + G(x)u.

2Note: A positive definite polynomial function is radially unbounded
[4].

which cannot be applied to the original problem. That the
latter stabilization problem implies to original stabilization
problem, is due to the fact, that a common parameter
independent CLF has to be found in a certain domain
D(x,θ). This is summarized in the next lemma:

Lemma 1 A solution of the Stabilization Problem 2
implies a solution the Stabilization Problem 1.

Proof Assume the Stabilization Problem 2 has a solution,
i.e., there exists a parameterized feedback law u = k2(x, θ)
and a common CLF V = V (x) > 0 such that

∇V (x)[A(θ)x + G(θ)k2(x, θ)] < 0, (4)

holds for all (x, θ) ∈ D(x,θ) and for all nonzero x ∈ R
n.

Then, the Lyapunov inequality (4) holds in particular for
x = θ, which proofs stability of the original Stabilization
Problem 1, with u = k1(x) = k2(x, x). �

To arrive at a semidefinite programming solution via
the sum of squares decomposition, several steps are
necessary since the unknown polynomial functions ∇V, k2

do not appear linearly in the Lyapunov inequality

∇V (x)A(θ)x + ∇V (x)G(θ)k2(x, θ) < 0, (5)

due to bilinear term ∇V (x)G(θ)k2(x, θ). In the linear case
without parameterizations, i.e., A,G are constant matrices,
it is well-known [1] that the change of variable z = Px
with a quadratic CLF V (x) = xT Px, P > 0 leads to
a convex solution. Note that this change of coordinates
can be perfectly interpreted in terms of duality theory via
conjugate Lyapunov functions [5]. The same can be also
done for the inequality (5). But instead of assuming that
the CLF V is a quadratic form, it is enough to assume
that V is a convex function. Furthermore, the domain
D(x,θ), respectively, the domain D(z,θ) after the change
of coordinates has to be specified, such that a convex
formulation is possible and such that D(x,x) ⊆ D(x,θ)

holds. Notice that the domain D(x,θ) specified below
play a crucial role in the state feedback design, since it
is introduced to restrict the parameter variation θ to the
domain D(x,θ), i.e., to certain states in the state space.
Therefore the conservatism in the design inequalities can
be reduced and the design inequalities be satisfied more
easily. This is worked out in the next Theorem.

Theorem 1 If the inequality

zT A(θ)∇V �(z)T + zT G(θ)m(z, θ) < 0, (6)

has a solution for all (z, θ) in the domain

D(z,θ) = {(z, θ) : zT z − θT θ ≥ 0, zT θ − θT θ ≥ 0},
where V � : R

n → R is a (strictly) convex, positive definite,
polynomial CLF of the form V �(z) = 1

2zT Pz + W �(z).
P > 0, W is a higher degree (non–quadratic) polynomial,
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and m : R
n ×R

n → R
p is a polynomial function. Then the

inequality

∇V (x)A(θ)x + ∇V (x)G(θ)k2(x, θ) < 0, (7)

has a solution for θ = x, where V : R
n → R is a convex

positive definite CLF given by V (x) = V �((∇V �)−1(x)).

Proof Assume that inequality (6) has a solution. Since V �

is convex, polynomial, and positive definite, the mapping
xT = ∇V �(z) is bijective and, of course, continuously
differentiable. This follows from the fact that ∂2V �

∂z2 (z)
is positive definite, due to (strictly) convexity of the
polynomial function [4]. Hence, the inverse mapping
zT = (∇V �)−1(x) is defined uniquely. Now, by the
change of variables, one arrives at

(∇V �)−1(x)
[
A(θ)x + G(θ)m((∇V �)−1(x), θ)

]
< 0, (8)

which is equivalent to inequality (7) with ∇V (x) :=
(∇V �)−1(x), u = k2(x, θ) = m((∇V �)−1(x), θ).
The function V is well-defined, differentiable, con-
vex, and positive definite. This follows from I =
∂xT /∂x = ∂∇V �(z)/∂x = (∂2V �(z)/∂z2)(∂zT /∂x),
hence ∂zT /∂x = ∂(∇V �)−1(x)/∂x = ∂∇V (x)/∂x =(
(∂2V �/∂z2)(z)

)−1
> 0, i.e., the Hessian of V is positive

definite, and V (0) = 0, because of xT = ∇V �(z).
Existence follows from Schwarz’s integrability condition,
i.e., from the symmetry of the Hessian. Finally, because of
the transformation xT = ∇V �(z), inequality (7) is satisfied
in the domain

D(x,θ) = {(x, θ) : ∇V (x)∇V (x)T − θT θ ≥ 0,

∇V (x)θ − θT θ ≥ 0}.
Next, it has to be shown that D(x,x) ⊆ D(x,θ). Note that
this is in general not true. However, consider the CLF
ρ(V (x)) instead of V (x), where ρ is a strictly monotonic
function with ρ(∞) = ∞. Then ρ(V (x)) is a CLF if and
only if V (x) is a CLF. But for an appropriate rescaling
function ρ, the first inequality and the second inequal-
ity are satisfied, as shown below. For the first inequality
ρ′1(V (x))2∇V (x)∇V (x)T − θT θ ≥ 0, it must be shown
that there exists a strictly monotonic function ρ1 such that

ρ′1(V (x))2∇V (x)∇V (x)T − xT x ≥ 0

holds. But this can be satisfied for ρ′
1 sufficiently large,

since ∇V (x)∇V (x)T is positive definite. In the same way,
the second inequality ρ′

2(V (x))∇V (x)T θ − θT θ ≥ 0 can
be satisfied for θ = x, because

ρ′2(V (x))∇V (x)x − xT x ≥ 0

holds for a function ρ2 with sufficient large derivative ρ′
2.

This is because a function V is strictly convex if and only
if V (y) > V (x) + ∇V (x)(y − x) for all x, y and hence
for y = 0, ∇V (x)x is positive definite. Finally, it has to be
shown that ρ is well-defined. In particular, it has to be shown
that ρ′ takes finite values for finite arguments. Which can

be easily seen except for ρ′(0). This is shown now. Notice
that V is of the following form:

V (x) =
1
2
xT P−1x + W (x). (9)

This follows from (∂2V/∂x2)(0) = P−1 and from
(∂2V/∂x2)(x) =

(
(∂2V �/∂z2)(z)

)−1
. Hence, ρi is

well-defined because of ∇V (x) = (P−1x + ∇W (x)),
more precisely, because of ∇V is linear for small3 x
and hence ∇V (x)x, (∇V (x))(∇V (x))T are quadratic for
small x. Since, ∇V (x)x, (∇V (x))(∇V (x))T are quadratic
for small x a finite value ρ′(0) is enough to dominate xT x.
Finally, to get the function ρ, one takes a function such
that ρ′(V (x)) > sup{ρ′

1(V (x)), ρ′2(V (x))}. �

Remark 1 An explicit expression of V can be also obtained
via convex analysis. More precisely, V is the conjugate
function of V �, i.e., V (x)=maxz∈Rn{xT z − V �(z)}, from
which the convexity and differentiability of V follows,
since V � is strictly convex. From the perspective of convex
analysis, the proposed feedback design can be interpreted
as a design based on duality since the inequality (7) is the
dual to the inequality (6) and V and V � are dual pair in
terms of conjugate function duality (see also [5]).

Note that the unknowns V �,m in the inequality (6)
appear linearly. In addition, a solution, i.e., a CLF for the
bilinear inequality (7) is obtained from the inequality (6).
Finally, to arrive at a semidefinite programming solution,
a sum of squares relaxation of the design inequalities
V �(z) > 0 and (6) has to be done. Furthermore, the
convex domain D(z,θ) has to be incorporated in the design
inequalities. The choice of the domain D(z,θ) is basically
motivated by the fact that the stabilization problem can
be posed as a semidefinite program. However, notice that
the inequality zT z − θT θ ≥ 0 restricts the “magnitude”
of θ w.r.t. z and zT θ−θT θ ≥ 0 restricts the “phase” w.r.t. z.

Semidefinite Program The following polynomial design
inequalities for the state feedback design can be solved by
a semidefinite program (cf. Appendix, Lemma 1):

V �(z) − µ1z
T z = SOS

−(zT A(θ)∇V �(z)T + zT G(θ)m(z, θ) + µ2z
T z) (10)

−(zT z − θT θ)s1(x, θ) − (zT θ − θT θ)s2(x, θ) = SOS

where SOS stands for a sum of squares polynomial and
µ1, µ2 are a small positive constants, to ensure a strict
inequality. s1, s2 are also SOS and V �(z) = 1

2zT Pz +
W �(z), where P > 0,W �(z) ≥ 0, convex. Convexity of
W � can be enforced by the (affine) first order convexity
condition W �(y) > W �(x) + ∇W �(x)(y − x) [2]. If this
semidefinite program is feasible, V (x) = V �((∇V �)−1(x))
is a CLF for the Stabilization Problem 2.

3(∂2V/∂x2)(0) = P−1.
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Stabilizing Feedback To recover a stabilizing feedback
for the Stabilization Problem 1/2, different approaches are
possible. One approach is to compute the CLF V from V �

and use Sontag’s formula to obtain a stabilizing feedback
[16], [14]. Another approach is to compute the CLF V
from V �, and, in a second step, solve the inequality (7)
for θ = x, via semidefinite programming and the sum
of squares decomposition, to obtain a stabilizing feedback
u = k3(x). Note that the recovery of V from V � is not
an easy task.4 However, one can bypass this problem as
follows. Notice that the problem is to find a stabilizing state
feedback u = k1(x) such that

(∇V �)−1(x) [f(x) + G(x)k1(x)] < 0,

holds. Although (∇V �)−1 is not explicitly known, it is
known implicitly, since xT = ∇V �(z) holds. This can be
utilized to solve

zT (f(x) + G(x)k1(x)) + s(x, z)T (x −∇V �(z)T ) < 0,

where k1 and s are vector-valued polynomial function.
Notice that first whenever x − ∇V �(z) = 0,
z = (∇V �)−1(x) holds (cf. also Appendix, Lemma
1) and second that the rescaling function ρ in the proof of
Theorem 1 is not needed in the design.

Remark 2 Note that the proposed semidefinite program is
a sufficient condition for the Stabilization Problem 1, due
to the fact that the Stabilization Problem 2 is solved. This
fact makes the design procedure conservative.

Remark 3 In the “classical” case of a quadratic Lyapunov
function V �(z) = 1

2zT Pz, P > 0, V is given by
V (x) = 1

2xT P−1x. Hence, the stabilizing feedback can
be easily computed via u = k2(x, θ) = m(P−1x, θ), if
P < I . Notice also that for a quadratic Lyapunov function
the function ρ(V (x)) in the proof of Theorem 1 can be
replaced by ρ ·V (x), where ρ is a sufficient large constant.
Finally, noticed that the form V �(z) = 1

2zT Pz + W �(z)
implies that the linearization of the control system (1) must
be stabilizable.

Remark 4 Up to now, only the global stabilization
problem was investigated. If no global solution exists, a
stabilizing feedback in a region of the state space may
be feasible. Furthermore, instead of just designing a
stabilizing feedback law, also performance considerations
can be included, for example, by imposing a certain decay
rate, i.e., V̇ � < −εV �.

Remark 5 Helpful can be also the following extension:
The matrix function A in (2) is not unique, i.e., there are
different matrices A(x) to write f(x) = A(x)x. However,

4This is typical situation if one solves a (primal) problem via the dual
problem: One gets the optimal value or the feasibility certificate but not
the actual optimal or feasible point.

one can introduce a certain matrix function H (see also
[15]). In particular, one can replace in the inequalities (6)
and (7), A(θ) by A(θ) − Hρ(θ), with

Hρ(θ) = ρ(θ)(θT θI − θθT ).

ρ(θ) ≥ 1 is a given to specified function which takes
preferable large values for θ. Notice that H is symmetric
and positive semidefinite and Hρ(θ)x = 0 if and only if
x = c · θ, c ∈ R and hence Lemma 1 and Theorem 1
are still valid, but the inequality (7) may (but must not) be
easier to satisfy. Hence, beside the domain D(z,θ) a second
element is introduced which may reduces conservatism of
the feedback design.

III. EXAMPLE

In this section the state feedback design is applied to
stabilize a part of a jet engine compressor (Figure 1).

Fan Turbine

Compressor, Combuster

Nozzle

Fig. 1. Jet Engine Compressor.

A model that describes the dynamics of a jet engine com-
pressor is the Moore–Greitzer model [8]. After a coordinate
transformation, which normalizes the variables and shifts
the desired equilibrium point to the origin, the dynamics of
the Moore–Greitzer model can be written as

φ̇ = −φ − 3
2
φ2 − 1

2
φ3 − 3Rφ − 3R

ψ̇ = u

Ṙ = σR
(−2φ − φ2 − R

)
,

(11)

where φ represents the overall mass flow, ψ the pressure
rise, R the squared amplitude of circumferential flow asym-
metry, and σ a positive constant. However, here, only the
“no–stall model” is considered, that is, the Moore–Greitzer
model with R(t) = 0. The “no–stall model” is obtained
when the initial condition R(0) is zero, i.e., R(0) = 0.
Hence, the “no–stall model” is

ẋ1 = −x2 − 3
2
x2

1 −
1
2
x3

1

ẋ2 = u,
(12)

where x = [x1 x2]T = [φ ψ]T . Using the state feedback
design introduced in the previous section, one has to write
the system (12) as parameterized linear control system form
(3). By introducing the independent parameter θ, we obtain

ẋ = A(θ)x + G(θ)u, (13)
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with

A(θ) =
[− 3

2θ − 1
2θ2 −1

0 0

]
,

G(θ) = G = [0, 1]T

Using the state feedback design inequalities (10) and mak-
ing an Ansatz for the degrees of the polynomials V,m, s1

and s2 with undetermined coefficients, where V �, s1 and s2

must have even degree. Thus, the the following polynomial
optimization problem is obtained:

V �(z) ≥ µ1z
T z

−zT A(θ)∇V �(z)T + zT G(θ)m(z, θ) − µ2z
T z (14)

−(zT z − θT θ)s1(x, θ) − (zT θ − θT θ)s2(x, θ) ≥ 0

where µ1 and µ2 are positive parameters. Note, that the
polynomial optimization problem (14) can be solved by
replacing positive definiteness of polynomials with the sum
of squares relaxation (cf. (10)), which can be solved using
semidefinite programming. The software package SOS-
TOOLS [11] was used to solve the semidefinite program
that results from (14). If the semidefinite program (14)
finds no solution, no conclusion can be made. One has
to use other µ1 and µ2 parameters or other degrees for
the polynomials V �,m, s1 and s2. The parameters µ1 and
µ2 and the degrees of the polynomials V �,m, s1 and s2

were chosen in a recursive way in the state feedback
design. The semidefinite program (14) was solved with
fixed parameters and fixed degrees of the polynomials. If
the simulation results were not satisfactory, new parameters
and new degrees of the polynomials were chosen and
the semidefinite program (14) was solved again. Finally,
the semidefinite program (14) was solved with µ1 = 1,
µ2 = 10, a quadratic storage function V �, a polynomial
state feedback m consisting of all monomials of degree
one and three, and polynomials s1 and s2 consisting of all
monomials of degree two. Finally, the CLF and the state
feedback is given by

V (x) = 0.85x2
1 − 0.61x1x2 + 0.22x2

2 (15)

k1(x) = 6.19x1 − 2.68x2 + 1.72x3
1

−1.56x2
1x2 + 0.43x1x

2
2 − 0.10x3

2. (16)

A phase plot of the closed-loop system is shown in Figure
2. Figure 3 shows the initial response of the closed-loop
state trajectories of the system (12) with the initial condition
x0 = [1 1]T . Simulations show that the the state feedback
achieves good performance and demonstrates the utility of
the proposed state feedback design. Notice, that the origin
of the closed-loop system is globally asymptotically stable.
Furthermore, the Lyapunov function V can be used to
design other stabilizing feedbacks, i.e., Sontag’s formula
[16], [14], as shown in Figure 3.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1

x 2

Fig. 2. Phase plot of the closed-loop state trajectories x1 and x2.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

x 1, x
2

Fig. 3. Closed-loop state trajectories x1 (black) and x2 (gray). The solid
curves correspond to state feedback (16) and the dashed curves correspond
to Sontag’s formula.

IV. CONCLUSIONS

In this paper, a new state feedback design for polynomial
control systems has been proposed. The design is based on
LPV systems and duality. The advantage of the proposed de-
sign is that no special requirements on the system structure
are imposed and that the results are of nonlocal (global)
nature. A disadvantage of the proposed design is that it
is conservative and the CLF has to be convex. However,
the design allows in contrast to many other nonlinear state
feedback design a computer-aided design with nonquadratic
CLFs. In particular, the stabilizing feedback law can be
efficiently computed via semidefinite programming, i.e.,
by convex optimization. Finally, the applicability of this
approach was illustrated on a small model of a jet engine
compressor.
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APPENDIX

In the following, a short summary of the sum of squares de-
composition is given. More details can be found for example
in [10]. Basically, the sum of squares decomposition is used
to check if a polynomial in several variables in positive
semidefinite. Recently, a lot of attention has been paid to
the application of the sum of squares decomposition to
polynomial control systems [12], [13]. The sum of squares
decomposition is used in the present paper to solve the
polynomial (in)equalities given by (6).
A polynomial p ∈ R[x] of degree d is a sum of squares if
there exists a finite number of polynomials pi ∈ R[x] such
that p can be written as

p(x) =
∑

i

p2
i (x).

It is well known that not every positive definite polynomial
can be represented as a sum of squares. However, with
the help of the so called the “Gram Matrix” method, an
answer to the question “When is a polynomial a sum of
squares?” can be given:

Theorem 1: [3]. A polynomial p ∈ R[x] of degree 2d has
a sum of squares decomposition if and only if there exists
a positive semidefinite matrix Q such that

p(x) = mT Qm,

where m is the vector of all monomials in
x1, ..., xn of degree less or equal to d, i.e.,
m = [1, x1, x2, ..., xn, x1x2, ..., x

d
n]. There exists

(
n+d

n

)
such monomials.

This representation theorem tells us that all sum of squares
polynomials can be parameterized by the cone (convex
set) of positive semidefinite matrices. Often it is useful
and sufficient to check positive semidefiniteness of a
polynomial p on a subset in R

n constrained by c(x) ≥ 0,
c ∈ R[x], i.e., the set {x ∈ R

n : c(x) ≥ 0}. Then, the
following lemma is helpful (cf. e.g. [9]).

Lemma 1: Let c ∈ R[x]. A polynomial p ∈ R[x] is
positive semidefinite on the set {x ∈ R

n : c(x) ≥ 0} if
there exists a positive semidefinite polynomial s ∈ R[x]
such that p(x) − c(x)s(x) is positive semidefinite.

What makes these results especially interesting from an en-
gineering point of view is the fact that there exists efficient
numerical algorithms, namely semidefinite programming
algorithms, which allow to test this condition on a computer.
In [10], the gap between the “Gram Matrix” method and
semidefinite programming has been bridged by showing that
the existence of a sum of squares decomposition can be
solved by semidefinite programming.
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