
Impulsive Control of Networked Systems
with Communication Delays

Shumei Mu, Tianguang Chu, and Long Wang

Abstract— In this paper, the control problem of networked
control systems (NCSs) with communication delays is consid-
ered. An impulsive control scheme for NCSs with communi-
cation delays is presented. This scheme converts the design
of NCSs with delays to a control design problem of a linear
time-invariant (LTI) system via output feedback. Necessary
and/or sufficient conditions that guarantee global exponential
stability of the closed-loop systems are presented. The results
suggest a simple procedure for designing state/output feedback
controllers of the systems. Numerical examples are worked out
to demonstrate the feasibility and efficiency of the proposed
methods.

I. INTRODUCTION

Networked control systems (NCSs) have received in-

creasing attention because of the advantages to use real-

time networks in control systems, e.g., lower cost and more

convenience for installation and maintenance, flexibility

and distributed nature in architectures. However, due to

network bandwidth restriction, the insertion of communica-

tion network in feedback control loops inevitably leads to

communication delays and makes the analysis and design of

NCSs complex. Communication delays can deteriorate the

performance of NCSs and even can destabilize the systems

when they are not considered in the design of NCSs. There-

fore, communication delay problems have raised greatly

interest in recent years.

So far, a variety of efforts have been devoted to issues

on communication delays (see, e.g., [1], [3]–[11], [18],

[19], [21], and the references therein). Various techniques

have been adopted for analyzing NCSs with communi-

cation delays. For example, in [7] and [18], the authors

analyzed NCSs’ stability and proposed stability regions

using a hybrid systems technique. The stability of NCSs

was analyzed using dual-locus diagram and the stability

region was presented in [10]. Ref. [3] presented linear

matrix inequality (LMI) conditions for obtaining maximum

allowable delay bounds, which guarantee the stability of

NCSs. Based on Lyapunov-Razumikhin function method,

conditions on the admissible bounds of data packet loss

and of delays for NCSs were given in terms of LMIs in [8].

Based on stochastic control theory, optimal controller design

of NCSs with stochastic network delays was investigated in
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[4] and [11]. Works in this direction also can been seen in

[1] and [6]. For other control schemes, we refer readers to

the survey [20].

To reduce network traffic load, the authors of [5] and

[6] proposed a model-based control scheme for NCSs

without/with communication delays and the authors of

[13], [14], and [17] further investigated this issue later.

In [5], necessary and sufficient conditions for exponen-

tial stability of continuous-time/discrete-time NCSs without

communication delays were established in both cases of

state feedback and output feedback. When communication

delays were considered, similar results were also presented

for continuous-time NCSs via state feedback in [5] and

at this time, a propagation unit was used to compensate

delays. However, the authors did not present any method

for controller design when communication delays were

considered. Moreover, it is in general not an easy task to

design the controller based on their conditions. Recently, an

impulsive control scheme for continuous-time/discrete-time

NCSs without communication delays was proposed in [12]

and [15]. Also, controller design procedures were presented.

In this paper, we extend the method in [12] and [15] to

the case in which communication delays are considered. We

consider the case that communication delays only occur in

the process of samplings passing through the network. We

assume that network delay τ is constant and does not exceed

a sampling period h of the sensor. Concretely, if the sensor

samples plant output at time tk, then the sampling y(tk)
passes through the network and arrives at the model at time

tk + τ. When network delays are considered, an impulsive

control scheme transfers the controller design problem of

NCSs into a control design problem for a continuous-time

linear time-invariant (LTI) system via output feedback. The

advantages of the scheme for NCSs with network delays

are as follow: It introduces additional freedom and hence

flexibility in designing the NCSs with network delays.

This first makes it possible to design state/output feedback

controllers for NCSs, even to design controllers based on

lower order models for NCSs. Next, sampling period of

the sensor can be increased so as to reduce the network

traffic load. Moreover, the present scheme does not require

a propagation unit used in [5] to compensate delays for

NCSs. These are of practical interest in applications. The

NCS configuration is shown in Fig. 1.

The paper is organized as follows. Section II gives the

problem formulation and some preliminaries. Section III
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Fig. 1. Proposed configuration of networked control systems

presents conditions for the global exponential stability of the

closed-loop system and a design procedure for controllers.

Numerical simulations are presented in Section IV and some

conclusions are drawn in Section V.

II. PROBLEM FORMULATION AND

PRELIMINARIES

The NCS we consider is described as follows.

Plant: ẋ(t) = Ax(t)+Bu(t), y(t) = Cx(t),

Model:

{
˙̂x(t) = Âx̂(t)+ B̂u(t), t ∈ (tk + τ, tk+1 + τ),
x̂(tk + τ) = K1y(tk), k = 0,1,2, ...,

Control law: u(t) = Kx̂(t),

where tk+1 − tk = h > 0 is constant, h is the sampling

period of the sensor, τ is constant network delay satisfying

0 < τ ≤ h, x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p, and x̂(t) ∈ R

q

are the plant state, the plant input, the plant output, and the

model state, respectively, K1 is a q× p gain matrix, K is

an m× q state feedback gain matrix, A,B,C, Â, and B̂ are

known real constant matrices with appropriate dimensions.

A is not Hurwitz stable. C is of full row rank. Assume

p ≥ q and pq ≥ n + q. The network is switched off at

the initial time t0. The initial states x(t0) and x̂(t0) are

arbitrarily selected.

Remark 1. Since τ is constant, the period h is also the

period of model state updated.

Define z(t) = [x(t)T x̂(t)T ]T . The dynamics of overall

system for t ∈ (tk + τ, tk+1 + τ) can be described as

ż(t) = Λz(t), t ∈ (tk + τ, tk+1 + τ),

z(tk + τ) = [(x(tk + τ)−)T (K1Cx(tk))
T ]T , (1)

z(t0) = [x(t0)
T x̂(t0)

T ]T ,

where

Λ =

[
A BK
0 Â+ B̂K

]
.

Clearly, the overall system (1) is an impulsive control

system via state feedback and with delays.

Our goal is to establish conditions for the trivial solu-

tion of system (1) to be globally exponentially stable and

based on the conditions, to present design approach for the

controller gain matrix K and the gain matrix K1.

We will make use of the following preliminary results in

the sequel. For the sake of convenience, denote

S1 =

[
In 0

0 0

]
, S2 =

[
0 0

K1C 0

]
,

M = S1eΛh +S2eΛ(h−τ)
, M0 = S1eΛτ +S2,

where In is the n×n identity matrix. From (1),

z(tk + τ) = S1z((tk + τ)−)+S2z(tk)

=
(

S1eΛh +S2eΛ(h−τ)
)

z(tk−1 + τ)

= Mkz(t0 + τ)

= Mk
(

S1eΛτ +S2

)
z(t0)

= MkM0z(t0).

Particularly, for τ = h, one has M = M0 and

z(tk + τ) = z(tk+1) = Mk+1
0 z(t0).

This leads to the following result.

Lemma 1. The response of the system (1) is

z(t) =

{
eΛ(t−t0)z(t0), t ∈ [t0, t0 + τ),

eΛ(t−(tk+τ))MkM0z(t0), t ∈ [tk + τ, tk+1 + τ),

for 0 < τ < h and

z(t) = eΛ(t−tk)Mk
0z(t0), t ∈ [tk, tk+1),

for τ = h, where k = 0,1, ....

Lemma 2. The trivial solution of the system (1) is

globally exponentially stable if and only if M is Schur

stable.

We will convert the design problem to a control problem

of an LTI system via output feedback. For related results,

we refer to [2] where it was shown that under certain

conditions, the desired pole set of the closed-loop system

can be assigned by assigning eigenstructure. For the sake

of completeness, we recall some useful results of [2] for us

as follows.

Remark 2. Given a controllable and observable LTI

system

ẋ = Āx+ B̄u, y = C̄x, (2)

where x ∈ R
n, u ∈ R

m, y ∈ R
r, Ā, B̄, and C̄ are constant

matrices of appropriate dimensions with rank(B̄) = m,

rank(C̄) = r, and mr ≥ n. Under the output feedback law

u = K̄y, the closed-loop system is

ẋ = (Ā+ B̄K̄C̄)x. (3)

Let C̄1 is any (n−r)×n constant matrix such that [C̄T C̄T
1 ]T

is nonsingular and [C̄T C̄T
1 ]T = [T1 T2]

−1 = T−1 with T2
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being an n × (n − r) matrix. Denote A22 = C̄1ĀT2. Let

Λ̄ = {Λ1,Λ2} be an arbitrarily selected set subject to the

following constraints.

a) Λ̄ contains distinct values,

b) Λ1 and Λ2 are self-conjugated sets,

c) Λ1 contains no eigenvalues of Ā and Λ2 contains

no eigenvalues of A22,

where Λ1 = {λ1,λ2, ...,λr},Λ2 = {λr+1,λr+2, ...,λn}. Nec-

essary and sufficient conditions which contain two coupled

Sylvester matrix equations for assigning a desired eigen-

value set Λ̄ to (3) were established in [2], which reduce

the design of output feedback gain matrix K̄ to solving

following bilinear algebraic equations

aT
i Mi ja j = 0 for i = 1,2, ...,r, and j = r+1,r+2, ...,n, (4)

where for each i and each j,

ai = [ai1,ai2, ...,ai(m−1),1]T ,

a j = [a j1,a j2, ...,a j(r−1),1]T ,

are m-order and r-order parametric vectors, respectively, and

MT
i j = C̄[In + ĀT2[λ jIn−r −C̄1ĀT2]

−1C̄1][λiIn − Ā]−1B̄

is an r ×m constant matrix. Particularly, for the case of

m+ r ≥ n+1, by preselecting the vectors a j arbitrarily, (4)

are reduced to a set of linear algebraic equations with the

vectors ai’s as unknown variables. Denote

Ψr = [a1,a2, ...,ar], Ur = [V1a1,V2a2, ...,Vrar], (5)

where ai, i = 1,2, ...,r, verify (4) and

Vi = (λiIn − Ā)−1B̄, i = 1,2, ...,r.

Lemma 3 [2]. For system (2) and Λ̄ subject to constraints

a)–c) described above, if the output feedback matrix K is

taken as K̄ = Ψr(C̄Ur)
−1 with Ψr and Ur determined by (5),

then the pole set Λ̄ is assigned to (3).

III. STABILITY ANALYSIS AND CONTROL

DESIGN

In this section, we will establish conditions for the trivial

solution of system (1) to be globally exponentially stable

and, based on the results, present a design procedure for K
and K1 with h and τ satisfying certain conditions. In the

following, we will establish the main results for 0 < τ < h.

For the case τ = h, similar results can be obtained.

We start from analyzing the structure of M and then,

present conditions for M to be Schur stable. For conve-

nience, denote

eΛδ =

[
A1(δ ) A2(δ )

0 A3(δ )

]
, δ ∈ R,

where A1(δ ) = eAδ , A3(δ ) = e(Â+B̂K)δ , and A2(δ ) is certain

matrix which depends on K,h, and τ. Particularly, for δ = 0,

eΛδ is the identity matrix. The matrix M is rewritten as

M =

[
In 0

0 0

][
A1(h) A2(h)

0 A3(h)

]
+

[
0 0

K1C 0

]

×

[
A1(h− τ) A2(h− τ)

0 A3(h− τ)

]

=

[
A1(h) A2(h)

0 0

]
+

[
0

Iq

]
K1

[
AT

1 (h− τ)CT

AT
2 (h− τ)CT

]T

� A1 +B1K1C1, (6)

where Iq is the q×q identity matrix. Based on the method

in Remark 2 and Lemma 3, we have the following result.

Theorem 1. For given K,h, and τ , if the system with a

triple (A1,B1,C1) as coefficient matrices is controllable and

observable, then K1 can be designed such that M is Schur

stable.

Proof. From (6), we can view M as the closed-loop

system matrix of (A1,B1,C1) and K1 as its output feedback

matrix. Hence, M is Schur stable if and only if the closed-

loop system of (A1,B1,C1) via output feedback is Schur

stable. In the following, we will prove that gain matrix K1
can be designed such that A1 + B1K1C1 is Schur stable by

the method in Remark 2 and Lemma 3. To see this, we will

show that the system (A1,B1,C1) verifies the corresponding

conditions of (2).

By assumption of Theorem 1, (A1,B1,C1) is controllable

and observable for given K,h, and τ. Note that B1 is of

full column rank and that C1 are of full row rank because

C is of full row rank and A1(h − τ) is invertible. Also

from the assumptions on the described NCS, the inequality

pq ≥ n+q holds. For the triple (A1,B1,C1) with such K,h,

and τ , select the eigenvalues of A1 + B1K1C1 subject to

corresponding constraints a)–c) in Remark 2 and to be

strictly lying in unit disk. Therefore according to the method

in Remark 2 and Lemma 3, by solving a bilinear system of

algebraic equations, K1 can be found such that A1 +B1K1C1
is Schur stable and so is M. �

Theorem 1 shows that if we have found K,h, and τ such

that (A1,B1,C1) is controllable and observable, then we

can find further K1 such that M is Schur stable. Therefore,

we first try to find K,h, and τ such that (A1,B1,C1) is

controllable and observable. Generally speaking, it is not

easy to find such K,h, and τ directly because of the complex

expressions of A1 and C1. In the sequel, we give a constraint

on choosing K.

Theorem 2. If M is Schur stable for given K,h,τ, and

K1, then BK �= 0.

Proof. It can be proved by contradiction. If BK = 0, then

A2(δ ) = 0 and

M =

[
A1(h) 0

CA1(h− τ) 0

]
.
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Thus, M is Schur stable if and only if A1(h) is Schur stable.

Since A1(h) = eAh, then M is Schur stable if and only if A
is Hurwitz stable which is in contradiction with A given in

the system. �

Theorem 2 imposes a constraint on choosing K. Without

loss of generality, we can choose a K with full row rank.

We also note that a necessary condition for observability of

(A1,C1).

Theorem 3. If (A1,C1) is observable, then p ≥ q.

Proof. Since (A1,C1) is observable if and only if

rank(Qo) = n+q, where

Qo =

⎡
⎢⎢⎢⎣

C1
C1A1

...

C1An+q−1
1

⎤
⎥⎥⎥⎦ .

From (6), substituting the expressions of A1 and C1 into Qo,

we can obtain

Qo =

[
CA1(h− τ) CA2(h− τ)

Q P

]

with

Q =

⎡
⎢⎣

CA1(h− τ)A1(h)
...

CA1(h− τ)An+q−1
1 (h)

⎤
⎥⎦ ,

P =

⎡
⎢⎣

CA1(h− τ)A2(h)
...

CA1(h− τ)An+q−2
1 (h)A2(h)

⎤
⎥⎦ .

Considering A1(h) = eAh,A1(h − τ) = eA(h−τ), and P =
QA1(−h)A2(h), we have

Qo

[
I −A1(−h)A2(h)]
0 I

]
=

[
CA1(h− τ) W

Q 0

]
� Q̄o

with W = C[A2(h− τ)−A1(−τ)A2(h)]. Hence rank(Qo) =
rank(Q̄o). Therefore (A1,C1) is observable if and only if

rank(Q̄o) = n + q. In the expression of Q̄o, the orders

of CA1(h − τ) and W are p × n and p × q, respectively.

Therefore, the inequalities

rank[Q̄o × (In 0n×q)
T ] ≤ n, rank[Q̄o × (0q×n Iq)

T ] ≤ p,

hold. So one can get rank(Q̄o) ≤ n+ p and further, q ≤ p.

�

Theorem 3 shows that q ≤ p is necessary for the ob-

servability of (A1,C1). Besides, since C is a p× n matrix

of full row rank, then one has p ≤ n and further q ≤
p ≤ n, which shows that the order of the model used for

generating control signal is not larger than that of the plant.

Particularly, in the case of q < n, controllers based on lower

order models are used for controlling the plants. This is

of great interest in practical applications. Therefore, it is

necessary and reasonable to assume q ≤ p in the system.

In order to determine h and τ such that (A1,B1,C1) is

controllable and observable for a chosen gain matrix K, a

necessary and sufficient condition for the controllability and

observability will be established in following theorem.

Theorem 4. If q ≤ p and gain matrix K is such that

BK �= 0, then (A1,B1,C1) is controllable and observable if

and only if the following three equalities hold:

rank(Q1) = n, rank(Q2) = n, (7)

rank(Q3) = q, (8)

where Q1 = [A2(h) A1(h)A2(h) · · · An+q−2
1 (h)A2(h)],

Q2 =

⎡
⎢⎢⎣

C
CA1(h)
· · ·

CAn+q−2
1 (h)

⎤
⎥⎥⎦ , Q3 = CA2(−τ).

Proof. First, (A1,B1) is controllable if and only if

rank(Qc) = n+q, where Qc = [B1 A1B1 · · · An+q−1
1 B1].

From (6), inserting the expressions of A1 and B1 into Qc,

we get

Qc =

[
0 Q1
Iq 0

]
.

Clearly, rank(Qc) = n+q is equivalent to rank(Q1) = n.

Next, we will prove (A1,C1) is observable if and only if

rank(Q2) = n and rank(Q3) = q. From Theorem 3, (A1,C1)
is observable if and only if rank(Q̄o) = n + q. Since Q̄o
is a matrix with n + q columns, then rank(Q̄o) = n + q if

and only if all column vectors are linear independent, and

further from the expression of Q̄o, the latter is equivalent

to rank(W ) = q and rank(Q) = n. Since A1(h− τ)A1(h) =
A1(h)A1(h− τ) and A1(h− τ)A1(h) is invertible, then Q =
Q2A1(h − τ)A1(h) and further rank(Q) = rank(Q2). Also

note that eΛ(h−τ) = eΛ(−τ)eΛh, i.e.,[
A1(h− τ) A2(h− τ)

0 A3(h− τ)

]

=

[
A1(−τ) A2(−τ)

0 A3(−τ)

][
A1(h) A2(h)

0 A3(h)

]
,

from which it yields A2(h − τ) − A1(−τ)A2(h) =

A2(−τ)A3(h). Since that A3(h) = e(Â+B̂K)h is invertible,

then rank(W ) = rank[CA2(−τ)]. Therefore, (A1,C1) is

observable if and only if rank(Q2) = n and rank(Q3) = q.

�

Theorem 4 shows that for a chosen K, if we can find h
and τ satisfying conditions (7) and (8), then (A1,B1,C1) is

controllable and observable. Again according to Theorem

1, gain matrix K1 can be designed such that M is Schur

stable. From the expressions of Q1,Q2, and Q3, rank(Q1)
and rank(Q2) depend on K and h while rank(Q3) is related

to K and τ. Hence, once K is given, the determination of

h is independent of τ and the determination of τ is also

independent of h except for 0 < τ ≤ h. By Theorem 2, we

first choose a K with full row rank. Then we can plot the
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evolutions of rank(Q1) and rank(Q2) with h and rank(Q3)
with τ using MATLAB and from the plots, determine

a positive value h satisfying (7) and a positive value τ
satisfying (8) and τ ≤ h. If no suitable h and τ can be

found in (0, +∞), we need to choose another K and run

again. This suggests the following procedure.

Step 1. Choose K with full row rank.

Step 2. Plot the graphs of rank(Q1) and rank(Q2)
vs h and rank(Q3) vs τ . Then find from the

plots positive real numbers h,τ (≤ h) such that

h satisfies (7) and τ satisfies (8). If such h and τ
are available, then go to Step 3. Or else return to

Step 1.

Step 3. Select the eigenvalues of A1 +B1K1C1 sub-

ject to corresponding constraints a)–c) in Remark

2 and strictly lying in unit disk, determine Ψr and

Ur by solving corresponding system of algebraic

equations (4) and let K1 = Ψr(C1Ur)
−1.

In Section IV, we will give numerical examples to demon-

strate the procedure.

Remark 3. Similar results have been established for

discrete-time NCSs in [16].

IV. NUMERICAL EXAMPLES

Example 1. In this example, the plant full state is

available and the model is a reduced order model. The

parameters are as follows.

A =

⎡
⎣ 1 0 1

2 1 1

0 0 −1

⎤
⎦ , B =

⎡
⎣ 1 0

0 0

0 1

⎤
⎦ , C =

⎡
⎣ 1 0 0

0 1 0

0 0 1

⎤
⎦ ,

Â =

[
2 1

1 −2

]
, B̂ =

[
1 0

0 −1

]
.

We choose

K =

[
−1 −2

0 1

]
.

The evolutions of rank(Q1) and rank(Q2) vs h and of

rank(Q3) vs τ are plotted in Fig. 2, from which we can find

that (7) and (8) hold simultaneously for any h ∈ (0, 8] and

any τ ∈ (0, h]. So we can choose a larger h if it is desired.

Here we select h = 8,τ = 7. Let the poles of A1 +B1K1C1
be 0.1,0.2,0.3,−0.1, and −0.2. According to the method

introduced in Remark 2 and Lemma 3, we get

Ur =

⎡
⎢⎢⎢⎢⎣

0.7747 0.0063 0.0029

0.0685 −0.0005 −0.0005

−1.5659 −0.0082 −0.0027

0 0.0013 0.0009

0.0100 0.0050 0.0033

⎤
⎥⎥⎥⎥⎦×103

,

Ψr =

[
0 0.2623 0.2637

1.0000 1.0000 1.0000

]
,

K1 =

[
1.2004 0.0395 0.5544

4.5282 0.1491 2.0912

]
×103

,

where r = 3. A simulation of the system with h = 8, τ =
7, K, and K1 determined above, and the initial state of the

plant z(0) = [1 4 −2 −3 5]T is shown in Fig. 3.

Example 2. Now we consider another case: The plant

full state is not available and the model is a reduced order

model. The parameters are as follows.

A =

⎡
⎢⎢⎣

1 0 1 0

2 1 0 0

0 0 −1 1

0 0 0 −1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1

0

1

1

⎤
⎥⎥⎦ , CT =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎦ ,

Â =

[
2 1

0 −2

]
, B̂ =

[
1

−1

]
.

We choose K = [−1 1]. The evolutions of rank(Q1) and

rank(Q2) with h and rank(Q3) with τ are plotted in Fig.

4, from which we can find that (7) and (8) hold for any

h∈ (0, 5.5] and τ ∈ (0, h]. Here we take h = 1.5 and τ = 1.2.

Let the poles of A1 + B1K1C1 be 0.4,0.5,0.6,0.7,0.8, and

0.9. According to Remark 2 and Lemma 3, we get

Ur =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.3819 0.8206 0.5343

−2.8240 −1.9579 −1.4848

−2.1528 −1.3275 −0.9056

−1.1752 −0.7856 −0.5689

−0.3433 −0.3153 −0.2874

1.4286 1.2500 1.1111

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Ψr =

[
−0.2403 −0.2522 −0.2587

1.0000 1.0000 1.0000

]
,

K1 =

[
4.0063 1.6448 1.2652

−14.4436 −5.9649 −4.5850

]
,

where r = 3. A simulation of the system with h = 1.5, τ =
1.2, K and K1 determined as above, and the initial state of

the plant z(0) = [10 4 −12 −3 15 8]T is shown in Fig.

5.

V. CONCLUSIONS

We have extended the impulsive control scheme proposed

in [12] and [15] to networked systems with communi-

cation delays and established sufficient and/or necessary

conditions for the global exponential stability of the close-

loop systems. Based on the results, a simple procedure

for desinging controllers has been presented for NCSs.

Numerical results have shown the feasibility and efficiency

of the proposed method. Compared with recent work on

model-based network systems in [5], the present approach

introduces additional freedom and hence flexibility in de-

signing an NCS. Moreover, our method allows of a larger

samplings period and a reduced order model based control

of the plant. Also, the propagation unit used in [5] for

compensating delays is no longer needed here. These are

of practical interest in applications.
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