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Abstract— This paper studies the robust stabil-
ity/performance analysis of linear time-invariant parameter-
dependent systems for which the coefficient matrices in
the state-space representations are parameter-dependent in
negative as well as positive power series of parameters, and
whose parameters are supposed to lie in a given convex
region. To analyze the robust stability/performance, we use
parameter-dependent Lyapunov functions that are parameter-
dependent in negative as well as positive power series, and
derive sufficient conditions for them via parametrically
affine linear matrix inequalities. Although our formulae have
greater numerical complexity than previous works, they
encompass formulae based on biquadratic stability, which
has been proposed to obtain less conservative conditions,
and conventional quadratic stability. We present numerical
examples that demonstrate the effectiveness of our proposed
methods compared with existing methods.

I. INTRODUCTION

Much research on the robust stability/performance anal-
ysis of linear time-invariant parameter-dependent (LTIPD)
systems has been carried out over many years. Convention-
ally, parameter-independent Lyapunov functions have been
used to analyze LTIPD systems ([1] and references therein),
but the results are too conservative; the analysis is not tight.
For this reason, methods using parameter-dependent Lya-
punov functions have been proposed for the robust stabil-
ity/performance analysis of parameter-dependent systems:
parametrically affine Lyapunov functions [2] and quadrati-
cally parameter-dependent Lyapunov functions [3], [4], [5].
However, these are restricted to systems with parametrically
affine state-space representations. Alternatively, a variety of
methods for the stability/performance analysis of systems
whose state-space representations are expressed as ratio-
nally parameter-dependent matrices have been proposed [6],
[7], [8], [9], [10]. Although the effectiveness of these has
been demonstrated in the literature theoretically and by
numerical examples, they are not entirely satisfactory.

As an example, consider the system depicted in Fig. 1.
This system is known as a benchmark problem for robust
controller design [11]. Implementing the feedback controller
u = 1.333(s−1.0257)(s+0.1301)

(s+1.2245)2+0.82902 x2 [12] and analyzing the
robust stability for variations of k and m1 (details are given
in Section VI), the closed-loop system with k = 1.25 + δk

and m1 = 1.0+δm is confirmed to be robustly stable for all
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Fig. 1. Benchmark problem

|δk| ≤ 0.76252 and |δm| < 1.0 by gridding the uncertainty
range. In [10], Ebihara and Hagiwara show the connections
with [7] and [9] for stability analysis, and roughly speaking,
their analysis method is the best among those, so we now
analyze the robust stability using that method. Under the
condition that δm = 0, the method confirms that the closed-
loop system is robustly stable for all |δk| ≤ 0.76252, which
is the limit of the variation of δk by gridding. However,
the method confirms that the closed-loop system is robustly
stable for all |δk| ≤ 0.762 and |δm| ≤ 0.036182, and this
is much more conservative than the numerical result.

In recent years, a new approach to robust stability analy-
sis has been proposed [13], [14]. Their proposed conditions
are necessary and sufficient conditions for robust stability.
In particular, Zhang et al. show the minimum degree of
polynomial-type Lyapunov functions to analyze the stability
of parametrically affine systems without introducing any
conservatism [14]. However, they have the following draw-
backs; we cannot decide the degree of Lyapunov functions
preliminarily [13]; that is, if the degree is set to be lower
than it is needed, then the analysis may not be satisfactory,
and the number of parameters in [14] is unity; this is a big
concern to apply their method to actual systems because
they usually have several parameters.

In this paper, we address the stability/performance anal-
ysis of LTIPD systems and propose a less conservative
method of analysis. Our study extends biquadratic stability,
proposed by Trofino et al. [3], to the case that both the
Lyapunov functions and matrices of the state-space repre-
sentations of LTIPD systems are parameter-dependent in
negative as well as positive power series, i.e. θ−1 , · · · , θ−N

and θ1 , · · · , θM . The Lyapunov functions used in this study
encompass the biquadratic Lyapunov functions proposed in
[3] as a special case, and we show the relationship between
our proposed analysis condition and a sufficient condi-
tion proposed in [3]. Further, we make some observations
on numerical complexity of our condition and previously
proposed conditions, showing that our method has greater
numerical complexity. Finally, using numerical examples,
we demonstrate that our methods are less conservative than
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existing methods.
Hereinafter, He(X) is a shorthand notation for X +XT ,

Ξ2(X1, X2, X3) and Ξ∞(X1, X2, X3, X4, X5, X6) denote[
X1XT

2
X2 X3

]
and

[
X1 X2 XT

3
XT

2 X5 XT
4

X3 X4 X6

]
respectively, ⊗ denotes Kro-

necker product, and Rn×m and Sn×n respectively denote
a set of n × m dimensional real matrices and a set of
n × n dimensional symmetric real matrices. The notations
0i,j , 0i, and 0 respectively denote an i × j dimensional
zero matrix, an i × i dimensional zero matrix, and a zero
matrix of an appropriate dimension, and In denotes an n×n
identity matrix. For a matrix X ∈ Rl×m with rank r, X⊥ ∈
R(l−r)×l is defined as a matrix such that X⊥X = 0 and
X⊥(X⊥)T > 0. Furthermore, diag(X1, · · · , Xk) denotes a
block diagonal matrix composed of X1, · · ·, and Xk .

II. PRELIMINARIES

Consider the following LTIPD system:{
ẋ = A(θ)x + B(θ)w
z = C(θ)x + D(θ)w , (1)

where x ∈ Rn is the state vector with x = 0 at t = 0,
w ∈ Rm is the disturbance input vector, z ∈ Rl is the
controlled output vector, and θi is a time-invariant parameter
that represents plant uncertainties. The matrices in (1) is
given as follows:

A(θ)= θ̄nĀθ̄T
n , Ā∈Rn(σ+1)×n(σ+1),

B(θ)= θ̄nB̄θ̄T
m, B̄ ∈Rn(σ+1)×m(σ+1),

C(θ)= θ̄lC̄θ̄T
n , C̄ ∈Rl(σ+1)×n(σ+1),

D(θ)= θ̄lD̄θ̄T
m, D̄∈Rl(σ+1)×m(σ+1),

θ̄n = θ̄ ⊗ In, θ̄T
n = θ̄T ⊗ In,

θ̄l = θ̄ ⊗ Il, θ̄T
m = θ̄T ⊗ Im,

θ̄ =
[
1
[
θ−l1
1 · · ·θ−1

1 θ1 · · ·θm1
1

]
· · ·[θ−lk

k · · ·θ−1
k θk · · ·θmk

k

]] ∈ R1×(σ+1),

σ=
∑k

i=1(li + mi).
This expression can represent parameter-dependent matrices
of power series from −2li to 2mi of the ith parameter. The
parameter θi is supposed to lie in a given convex region:
θ ∈ Bθ, ∀t ≥ 0, where θ = [θ1 · · · θk]T .

We define θ̃ as follows:

θ̃ :=

⎡⎢⎢⎣
[θ1] · · · [θk]
{θ1} 0

. . .
0 {θk}

⎤⎥⎥⎦ ∈ R(σ+1)×σ,

[θi] = [0· · ·0︸ ︷︷ ︸
li−1

−1 θi 0 · · ·0︸ ︷︷ ︸
mi−1

],

{θi} =
[{θi}11 0li,mi

0mi,li {θi}22

]
∈ R(li+mi)×(li+mi),

{θi}11=

⎡⎢⎢⎣
θi 0

−1
. . .
. . . θi

0 −1θi

⎤⎥⎥⎦ , {θi}22=

⎡⎢⎢⎣
−1 θi 0

−1
. . .
. . . θi

0 −1

⎤⎥⎥⎦ .

We confirm that θ̃⊥ = θ̄ and we also easily confirm that

θ̃⊥n :=
(
θ̃ ⊗ In

)⊥
= θ̄n.

We newly define vecn,m and v̂ecn,m operators for X ∈

Rni×mj , in which X =

⎡⎣X11 · · ·X1j
...

. . .
...

Xi1 · · ·Xij

⎤⎦ and Xij ∈ Rn×m:

vecn,m (X) :=
[[

XT
11 · · · XT

1j

] · · · [XT
i1 · · · XT

ij

]]T
∈ R(nj)i×m,

v̂ecn,m (X) :=[[X11 · · ·Xi1 ] · · · [X1j · · ·Xij ]] ∈ Rn×(mi)j .

In the case of n = m, we define Trn for the above X as

follows: Trn(X) :=

⎡⎣Tr(X11) · · ·Tr(X1j)
...

. . .
...

Tr(Xi1) · · ·Tr(Xij)

⎤⎦ ∈ Ri×j .

We now show the well-known stability analysis and
performance analysis of the LTIPD system (1). In these
Lemmas, Lyapunov functions are set as xT P (θ)x.

Lemma 1 (Stability): The system (1) is robustly stable
for all θ ∈ Bθ if and only if there exists P (θ) > 0 such that

He{P (θ)A(θ)} < 0, ∀θ ∈ Bθ. (2)

Lemma 2 (H∞ performance): The system (1) is robustly
stable and its H∞ performance is bounded by γ∞ for all
θ ∈ Bθ if and only if there exists P (θ) > 0 such that

Ξ∞
[
He {P (θ)A(θ)} , P (θ)B(θ), C(θ), D(θ),

−γ∞Im,−γ∞Il

]
< 0, ∀θ ∈ Bθ. (3)

Hereinafter, we assume D(θ) = 0 when considering H2

performance.
Lemma 3 (H2 performance): The system (1) is robustly

stable and its H2 performance is bounded by γ2 for all
θ ∈ Bθ if and only if there exists P (θ) > 0 and N(θ) > 0
such that

Ξ2 {N (θ), P (θ)B(θ), P (θ)} > 0, ∀θ ∈ Bθ, (4)

Ξ2 [He {P (θ)A(θ)} , C(θ),−Il] < 0, ∀θ ∈ Bθ, (5)

γ2
2 > Tr {N (θ)} , ∀θ ∈ Bθ. (6)

III. PROPOSED METHODS

We first define multi-quadratic stability and performance
analysis based on multi-quadratic stability, and then show
tractable sufficient conditions for those.

A. Multi-Quadratic Stability

We set P (θ) in Lemmas 1, 2, and 3 as follows:

P (θ) = θ̄nP̄ θ̄T
n , (7)

where P̄ ∈ Sn(σ+1)×n(σ+1). This expression can represent
parameter-dependent P (θ) of power series from −2li to
2mi of the ith parameter. Using this P (θ), we define multi-
quadratic stability.

Definition 1 (Multi-Quadratic Stability): The system (1)
is said to be multi-quadratically stable if there exists P (θ) >
0 defined in (7) such that (2) holds.
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Based on this definition of multi-quadratic stability, we
derive a new condition for the stability analysis of (1).

Lemma 4: The system (1) is multi-quadratically stable
for all θ ∈ Bθ if and only if there exist a symmetric
matrix P̄ and matrices F (θ) ∈ Rnσ×n(σ+1) and M(θ) ∈
Rnσ×n(σ+1) such that

P̄ + He
{

θ̃nF (θ)
}

> 0, ∀θ ∈ Bθ, (8)

He
(
P̄ θ̄T

n θnĀ
)

+ He
{

θ̃nM(θ)
}

< 0, ∀θ ∈ Bθ. (9)

Proof: We first confirm that the following two condi-
tions are equivalent for a given P̄ . This fact is easily derived
from the Elimination lemma [15].

(i) θ̄nP̄ θ̄T
n > 0, ∀θ ∈ Bθ

(ii) ∃F (θ) such that P̄ + He
{
θ̃nF (θ)

}
> 0, ∀θ ∈ Bθ

Using the above equivalence, the existence of a positive
P (θ) that satisfies (2) in Lemma 1 is equivalent to the
existence of P̄ , F (θ), and M(θ) such that (8) and (9) hold.
This completes the proof.

We obtain the following lemma that characterizes H∞
performance based on multi-quadratic stability from Lemma
2 after applying the Elimination lemma to (3).

Lemma 5: The system (1) is multi-quadratically sta-
ble and its H∞ performance is bounded by γ∞ for all
θ ∈ Bθ if and only if there exist a symmetric ma-
trix P̄ and matrices F (θ) ∈ Rnσ×n(σ+1) and M(θ) ∈
R(nσ+mσ)×{n(σ+1)+m(σ+1)+l} such that (8) and

Ξ∞
{
He
(
P̄ θ̄T

n θ̄nĀ
)
, P̄ θ̄T

n θ̄nB̄, θ̄lC̄, θ̄lD̄,

−diag (γ∞Im, 0mσ) ,−γ∞Il}

+ He

{[
θ̃n 0
0 θ̃m

0l,nσ 0l,mσ

]
M(θ)

}
< 0, ∀θ ∈ Bθ. (10)

We now show a lemma that characterizes H2 perfor-
mance based on multi-quadratic stability. We set N(θ) in
Lemma 3 as θ̄mN̄(θ)θ̄T

m , where N̄(θ) ∈ Sm(σ+1)×m(σ+1) .
We then obtain the following inequality instead of (6).

θ̄
[
diag

(
γ2
2 , 0σ

)− Trm

{
N̄(θ)

}]
θ̄T > 0, ∀θ ∈ Bθ

After applying the Elimination lemma to the above inequal-
ity, (4), and (5), we obtain the following lemma on H2

performance analysis from Lemma 3.
Lemma 6: The system (1) is multi-quadratically stable

and its H2 performance is bounded by γ2 for all θ ∈
Bθ if and only if there exist symmetric matrices P̄ and
N̄(θ), and matrices F (θ) ∈ R(mσ+nσ)×{m(σ+1)+n(σ+1)},
M(θ) ∈ Rnσ×{n(σ+1)+l} and H(θ) ∈ Rσ×(σ+1) such that

Ξ2

{
N̄(θ), P̄ θ̄T

n θ̄nB̄, P̄
}

+ He

{[
θ̃m 0
0 θ̃n

]
F (θ)

}
> 0,

∀θ ∈ Bθ, (11)

Ξ2

{
He
(
P̄ θ̄T

n θ̄nĀ
)
, θ̄lC̄,−Il

}
+ He

{[
θ̃n

0l,nσ

]
M(θ)

}
< 0, ∀θ ∈ Bθ, (12)

diag
(
γ2
2 , 0σ

)− Trm

{
N̄(θ)

}
+ He

{
θ̃H(θ)

}
> 0,

∀θ ∈ Bθ. (13)

The proofs are omitted here as they are similar to the
proof of Lemma 4.

We now verify the tractability of the LMIs in these
lemmas; that is, whether or not the LMIs are parametrically
affine. For (8) and (13), if N̄(θ) and the newly introduced
parameter-dependent matrices F (θ) and H(θ) are set to
be parameter-independent, then these inequalities become
parametrically affine and we need only solve them at
vertices of Bθ instead of at all points of Bθ . However,
other LMIs are not parametrically affine even if the newly
introduced matrices F (θ) and M(θ) are set to be parameter-
independent, so we must solve these LMIs at all points of
Bθ; that is, solve infinitely many LMIs. We derive tractable
sufficient conditions for those LMIs in the next subsection.

B. Tractable Sufficient Conditions

In the previous subsection, we derive new necessary
and sufficient conditions for the stability and performance
analysis of an LTIPD system (1). However, we had to solve
infinitely many LMIs because the derived LMIs are not
parametrically affine. To tackle this problem, we apply the
Elimination lemma again to those LMIs. Here, we show the
details for (9).

First, we set M(θ) in (9) as follows:

M(θ) =
(
Iσ ⊗ θ̄n

)
M̂1(θ)

(
Iσ+1 ⊗ θ̄T

n

)
,

where M̂1(θ) ∈ Rnσ(σ+1)×n(σ+1)2 . This expression means
that the every element of M(θ) is a function of θ̄, θ̄T ,
and the corresponding block matrix of M̂1(θ). Using this
expression, the term θ̃nM(θ) in (9) becomes θ̃nM(θ) =(
Iσ+1 ⊗ θ̄n

)
θ̃n(σ+1)M̂1(θ)

(
Iσ+1 ⊗ θ̄T

n

)
. Using the opera-

tor v̂ec, we obtain an alternative representation for θ̄nĀ as
θ̄nĀ = v̂ecn,n(Ā)

(
Iσ+1 ⊗ θ̄T

n

)
. Further, using the operator

vec we obtain an alternative representation for P̄ θ̄T
n as

P̄ θ̄T
n =

(
Iσ+1 ⊗ θ̄n

)
vecn,n(P̄ ). These representations are

the key idea in our proposed method.
With these preliminaries, we now show our main result

on stability analysis.
Theorem 1: The system (1) is multi-quadratically stable

for all θ ∈ Bθ if and only if there exist a symmet-
ric matrix P̄ ∈ Sn(σ+1)×n(σ+1) and matrices F (θ) ∈
Rnσ×n(σ+1), M̂1(θ) ∈ Rnσ(σ+1)×n(σ+1)2 and M2(θ) ∈
Rnσ(σ+1)×n(σ+1)2 such that (8) and

He
{
vecn,n(P̄ )v̂ecn,n(Ā)

}
+ He

{
θ̃n(σ+1)M̂1(θ)

}
+ He

{(
Iσ+1 ⊗ θ̃n

)
M2(θ)

}
< 0, ∀θ ∈ Bθ. (14)

Proof: Note that
(
Iσ+1 ⊗ θ̃n

)⊥
= Iσ+1 ⊗ θ̄n. Then,

we obtain (14) from (9) after applying the Elimination
lemma, similarly to Lemma 4. This completes the proof.
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We obtain the following theorems for performance anal-
ysis, similarly to Theorem 1. Their proofs are omitted here
as they are similar to the proof of Theorem 1.

Theorem 2: The system (1) is multi-quadratically sta-
ble and its H∞ performance is bounded by γ∞ for all
θ ∈ Bθ if and only if there exist a symmetric matrix
P̄ ∈ Sn(σ+1)×n(σ+1) and matrices F (θ) ∈ Rnσ×n(σ+1),
M̂1(θ) ∈ R{nσ(σ+1)+mσ(σ+1)}×{n(σ+1)2+m(σ+1)2+l} and
M2(θ) ∈ R{nσ(σ+1)+mσ(σ+1)}×{n(σ+1)2+m(σ+1)2+l} such
that (8) and

Ξ∞
[
He
{
vecn,n(P̄ )v̂ecn,n(Ā)

}
, vecn,n(P̄ )v̂ecn,m(B̄),

v̂ecl,n(C̄), v̂ecl,m(D̄),−diag
(
γ∞Im, 0mσ, 0m(σ+1)σ

)
,

−γ∞Il

]
+ He

{
X1M̂1(θ)

}
+ He {X2M2(θ)} < 0,

∀θ ∈ Bθ, (15)

where X1 and X2 are defined as follows:

X1 =

⎡⎣ θ̃n(σ+1) 0
0 θ̃m(σ+1)

0l,nσ(σ+1)0l,mσ(σ+1)

⎤⎦ ,

X2 =

[
Iσ+1 ⊗ θ̃n 0

0 Iσ+1 ⊗ θ̃m
0l,nσ(σ+1) 0l,mσ(σ+1)

]
.

Theorem 3: The system (1) is multi-quadratically
stable and its H2 performance is bounded by
γ2 for all θ ∈ Bθ if and only if there exist
symmetric matrices P̄ ∈ Sn(σ+1)×n(σ+1) and
N̄(θ) ∈ Sm(σ+1)×m(σ+1) , and matrices F̂1(θ) ∈
R{mσ(σ+1)+nσ(σ+1)}×{m(σ+1)2+n(σ+1)2}, F2(θ) ∈
R{mσ(σ+1)+nσ(σ+1)}×{m(σ+1)2+n(σ+1)2}, M̂1(θ) ∈
Rnσ(σ+1)×{n(σ+1)2+l} , M2(θ) ∈ Rnσ(σ+1)×{n(σ+1)2+l}
and H(θ) ∈ Rσ×(σ+1) such that (13) and

Ξ2

[
diag

{
N̄(θ), 0mσ(σ+1)

}
, vecn,n(P̄ )v̂ecn,m(B̄),

diag
(
P̄ , 0nσ(σ+1)

)]
+ He

{
X3F̂1(θ)

}
+ He {X4F2(θ)} < 0, ∀θ ∈ Bθ , (16)

Ξ2

[
He
{
vecn,n(P̄ )v̂ecn,n(Ā)

}
, v̂ecl,n(C̄),−Il

]
+ He

{
X5M̂1(θ)

}
+ He {X6M2(θ)} < 0, ∀θ ∈ Bθ, (17)

where X3, X4, X5, and X6 are defined as follows:

X3 =
[
θ̃m(σ+1) 0

0 θ̃n(σ+1)

]
, X4 =

[
Iσ+1 ⊗ θ̃m 0

0 Iσ+1 ⊗ θ̃n

]
,

X5 =
[

θ̃n(σ+1)
0l,nσ(σ+1)

]
, X6 =

[
Iσ+1 ⊗ θ̃n
0l,nσ(σ+1)

]
.

If N̄(θ) and the newly introduced matrices F (θ), F̂1(θ),
F2(θ), M̂1(θ), M2(θ) and H(θ) in Theorems 1, 2, and 3
are set to be parameter-independent, then all LMIs in these
theorems become parametrically affine LMIs; that is, we
need only solve these LMIs at vertices of Bθ to verify them,
and we now have the following sufficient conditions.

Theorem 4: The system (1) is multi-quadratically stable
for all θ ∈ Bθ if there exist a symmetric matrix P̄ and
matrices F (θ) = F , M̂1(θ) = M̂1 and M2(θ) = M2 such
that (8) and (14) hold for all vertices of Bθ .

Theorem 5: The system (1) is multi-quadratically stable
and its H∞ performance is bounded by γ∞ for all θ ∈ Bθ if
there exist a symmetric matrix P̄ and matrices F (θ) = F ,
M̂1(θ) = M̂1 and M2(θ) = M2 such that (8) and (15) hold
for all vertices of Bθ .

Theorem 6: The system (1) is multi-quadratically stable
and its H2 performance is bounded by γ2 for all θ ∈ Bθ

if there exist symmetric matrices P̄ and N̄(θ) = N̄ , and
matrices F̂1(θ) = F̂1, F2(θ) = F2, M̂1(θ) = M̂1, M2(θ) =
M2 and H(θ) = H such that (13), (16), and (17) hold for
all vertices of Bθ .

Remark 1: One way to convexify (6) is to restrict N(θ)
to be parametrically affine, similarly to [4]. However, it
leads to conservatism. In our formulation, N(θ) is set to be
parameter-dependent in negative as well as positive power
series of parameters, and this yields less conservative for-
mulation than one with being set N(θ) to be parametrically
affine.

IV. RELATIONSHIPS WITH EXISTING RESULTS

In this section, we show the relationships between The-
orem 4, a sufficient condition for biquadratic stability
proposed by Trofino and de Souza [3], and conventional
quadratic stability. We consider the following parametrically
affine system in this section.

ẋ=A(θ)x (18)

A(θ)=[A0 A1 · · · Ak] θ̄T
n

θ̄=[1θ1 · · ·θk ] ∈ R1×(k+1)

An LTIPD system (18) can be represented as one of (1); i.e.
l1 = · · · = lk = 0 and m1 = · · · = mk = 1 in (1). We have
an alternative representation for A(θ) in (18) as A(θ) =
θ̄nĀθ̄n, where Ā =

[
A0 A1 · · ·Ak
0nk,n(k+1)

]
. In addition, from the

definition of θ̃, we have the following representation of θ̃;
θ̃ =

[
θ1 · · · θk−Ik

]
.

Biquadratic stability is defined as follows.
Definition 2 (Biquadratic Stability [3]): The system

(18) is said to be biquadratically stable if there exists a
symmetric matrix P (θ) = θ̄nP̄ θ̄T

n > 0 such that (2) holds.
Trofino and de Souza propose the following sufficient

condition for biquadratic stability after applying the Elim-
ination lemma to an inequality; θ̄nP̄ θ̄T

n > 0 and (2),
and setting newly introduced matrices to be parameter-
independent.

Lemma 7: [3] The system (18) is biquadratically stable
for all θ ∈ Bθ if there exist a symmetric matrix P̄ ∈
Sn(k+1)×n(k+1) and matrices F ∈ Rnk×n(k+1) and M ∈
Rnk×n(k+1) such that (19) and (20) hold for all vertices of
Bθ .

P̄ + He
(
θ̃nF

)
> 0 (19)
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He
(
P̄ θ̄T

n [A0 A1 · · · Ak]
)

+ He
(
θ̃nM

)
< 0 (20)

We will claim that if there exists a symmetric matrix P̄
and matrices F and M such that (19) and (20) hold, then
there always exist a symmetric matrix P̄ and matrices F ,
M̂1, and M2 such that (8) and (14) in Theorem 4 hold.

We now assume that there exist P̄ , F , and M such that
(19) and (20) hold for all vertices of Bθ . Inequality (19) is
the same as (8) in Theorem 4 for the parametrically affine
LTIPD system (18). Therefore, if there exist a symmetric
matrix P̄ and a matrix F such that (19) holds, then (8)
always holds with the same P̄ and F .

We now check inequality (14). We set P̄ and M in
Lemma 7 as follows:

P̄ =

⎡⎢⎢⎣
P0 P1 · · · Pk
P T

1 P1,1 · · ·P1,k
...

...
. . .

...
P T

k P T
1,k · · ·Pk,k

⎤⎥⎥⎦ , M =

⎡⎣M1,1 · · ·M1,k+1
...

. . .
...

Mk,1 · · ·Mk,k+1

⎤⎦ ,

where Pi ∈ Rn×n, Pi,j ∈ Sn×n(i = j), Rn×n(i �= j),
and Mi,j ∈ Rn×n. Further, let He(S) denote the left-
hand term of (20); S denotes P̄ θ̄T

n [A0 A1 · · · Ak]+ θ̃nM ,
and let Si,j , i, j = 1, · · · , k + 1 denote the (i, j)th n-
dimensional square matrix of S. Using these notations, we
set M̂1 and M2 in Theorem 4 as follows with a sufficiently
small positive number ε:

M̂1 =

⎡⎢⎣M̂11,1 · · ·M̂11,k+1

...
. . .

...
M̂1k,1 · · ·M̂1k,k+1

⎤⎥⎦ , M̂1i,j =
[
Mi,j 0
0 0nk

]
,

M2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎣P1A0
... εInk

PkA0

⎤⎦ · · ·
⎡⎣P1Ak

... 0nk
PkAk

⎤⎦
...

. . .
...⎡⎣P T

1,kA0

... 0nk
Pk,kA0

⎤⎦· · ·
⎡⎣P T

1,kAk

... εInk
Pk,kAk

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(21)

With these definitions, we obtain the following inequality
from (14) in Theorem 4.

He

⎛⎜⎝
⎡⎢⎣ S̃1,1 · · · S̃1,k+1

...
. . .

...
S̃k+1,1 · · ·S̃k+1,k+1

⎤⎥⎦
⎞⎟⎠ < 0,

S̃i,j =
[
Si,j 0
0 0nk

]
, i, j = 1, · · · , k + 1, i �= j,

S̃i,i =
[
Si,i ε [θ1In · · · θkIn]
0 −εInk

]
, i = 1, · · · , k + 1

We apply congruence transformations with the following
matrices, i = 1, · · · , k − 1, to the above inequality:

diag
(
Ini, Zi, In(k+1)2−n{(k+1)i+1}

)
,

Zi =

⎡⎢⎢⎣
0n 0n · · ·0n In
0n In 0 0n
...

. . .
...

0n 0 In 0n
In 0n · · ·0n0n

⎤⎥⎥⎦ ∈ Rn(ki+1)×n(ki+1).

This transformation means the exchange of the i + 1th n-
dimensional square row/column matrices for the i(k +1)+
1th n-dimensional square row/column matrices. We then
obtain the following inequality:

He

⎛⎜⎝
⎡⎢⎣

S T1 · · · Tk
0n(k+1)−εIn(k+1) 0

...
. . .

...
0n(k+1) 0 · · ·−εIn(k+1)

⎤⎥⎦
⎞⎟⎠ < 0,

Ti =

⎡⎣εθiIn 0

0

[ 0n(i−1),nk

ε [θ1In · · ·θkIn]
0n(k−i),nk

]⎤⎦ , i = 1, · · · , k.

This inequality is equivalent to the following two conditions
after applying the Schur complement.

−ε < 0, He(S) +
ε

2
(
θ2
1 + · · ·+ θ2

k

)
In(k+1) < 0

If we set ε to be sufficiently small, then the above conditions
hold because θi is bounded; inequality (14) in Theorem 4
always holds for the same P̄ in Lemma 7 and M̂1 and M2

defined in (21).
From this discussion, if a parametrically affine LTIPD

system (18) satisfies Lemma 7, then the system always
satisfies Theorem 4. Thus our proposed methods encompass
analysis methods based on biquadratic stability as a special
case. As Trofino and de Souza prove, if parametrically
affine LTIPD systems (18) satisfy quadratic stability, then
they satisfy Lemma 7 [3]. Therefore if the systems satisfy
quadratic stability, then they always satisfy Theorem 4; that
is, our proposed methods also encompass analysis methods
based on quadratic stability.

V. NUMERICAL COMPLEXITY

In this section, we compare the numerical complexity of
our proposed method and previously proposed methods for
stability analysis.

We assume that the size of the state vector is n, the
number of parameters is k, and the LTIPD system (1) has
parametrically affine matrices in the state-space represen-
tation; that is, we now consider a parametrically affine
system (18). Under this assumption, quadratic stability and
biquadratic stability are both applicable and we compare the
numerical complexity of three methods; quadratic stability
(QS), Lemma 7, and Theorem 4. Table I shows the number
of decision variables in LMIs. QS has 1 + 2k LMIs and
other methods have 2 × 2k LMIs to be solved. The table
shows that our method has the greatest number of decision
variables. Although our proposed method has much greater
numerical complexity than existing results, we will show
that it is effective in analyzing the stability and performance
of LTIPD systems in the next section.
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TABLE I

NUMERICAL COMPLEXITY FOR PARAMETRICALLY AFFINE SYSTEMS

Method The number of decision variables
QS n(n + 1)/2

Lemma 7 (nk+n)(nk+n+1)/2+n2k(k+1)+n2k(k+1)
Theorem 4 (nk+n)(nk+n+1)/2+n2k(k+1)+2n2k(k+1)3

VI. NUMERICAL EXAMPLES

First, we demonstrate the effectiveness of our proposed
method with an example introduced in Section I. This is a
slightly revised form of the example in [10]. The plant is a
closed-loop system of the following plant and controller.⎡⎣ẋ1

ẋ2
ẍ1
ẍ2

⎤⎦ =

⎡⎣ 0 0 10
0 0 01

−k/m1 k/m1 00
k −k 00

⎤⎦[x1x2
ẋ1
ẋ2

]
+

⎡⎣ 0
0

1/m1
0

⎤⎦ u

u =
1.333(s − 1.0257)(s + 0.1301)

(s + 1.2245)2 + 0.82902
x2

We first maximize γ by the bisection algorithm such that
the closed-loop system with m1 = 1.0 and k = 1.25+δk is
robustly stable for all |δk| ≤ γ. Both Theorem 4 with setting
l1 = 0 and m1 = 1 and the method in [10] confirm that the
system is robustly stable for all |δk| ≤ 0.76252, which is
the limit obtained by gridding. We next maximize γ by the
bisection algorithm such that the closed-loop system with
m1 = 1.0+δm and k = 1.25+δk, |δk| ≤ 0.762 is robustly
stable for all |δm| ≤ γ. Theorem 4 with setting l1 = 1,
m1 = 0, l2 = 0, and m2 = 1 confirms that the system
is robustly stable for all |δm| ≤ 0.97186, which is very
close to the limit |δm| < 1.0 obtained by gridding. The
method in [10] confirms that the system is robustly stable
for all |δm| ≤ 0.036182. No methods in [8] can confirm
that the system is robustly stable. These results show that
our method is less conservative than those previous works.

Second, we introduce an example in [13].

A(θ) =
[−12 −7 7−11−13−5−2 9 −8

]
+ αI3 + θ1

[010
102
030

]
+ θ2

[ 1 2 0−3−10−1 0 0

]
For the above A(θ), we first maximize α by the bisection
algorithm such that the system is robustly stable for all
|θi| ≤ 1.0, i = 1, 2. Theorem 4 with setting l1 = 0,
m1 = 1, l2 = 0, and m2 = 1 gives the maximum α as
5.2432, which is the same value as obtained by gridding and
the method in [13]. We next maximize α by the bisection
algorithm such that the system with θ1 = θ2 is robustly
stable for all |θ1| ≤ 1.0. Theorem 4 with setting l1 = 0 and
m1 = 1 gives the maximum α as 5.4177, which is the same
value as obtained by gridding and the method in [13]. Thus,
the conservatism of our method vanishes for this example.

Finally, we analyze the robust H2 performance of a sys-
tem in [4]; {A0 + θA1, B0 + θB1 , I2, 0} , where [A0|A1]
and [B0|B1] are respectively given as follows:[−1.65−9.5−1.3−20

0 −7 2 −10
]
,
[
2.1−3.752.20.5−4 −3.5 −6−5

]
.

We set the range of θ to be |θ| ≤ 0.6. The method in
[4] gives the minimum of γ2

2 as 35.004. Theorem 6 with
setting l1 = 0 and m1 = 1, and setting l1 = 0 and m1 = 2
respectively gives the minimum of γ2

2 as 33.846 and 33.827.
We obtain the minimum of γ2

2 as 33.827 by gridding. Thus,
our method is less conservative than existing results and the
conservatism of our method vanishes for this example.

VII. CONCLUSIONS

This paper proposes sufficient conditions for stability,
H∞, and H2 performance analyses of LTIPD systems
for which the state-space representations are parameter-
dependent in negative as well as positive power series of
parameters. In this study, we use parameter-dependent Lya-
punov functions that are parameter-dependent in negative
as well as positive power series of parameters. Although
our proposed methods introduce additional matrices and
require more computational effort to solve than previous
works, numerical examples show that our methods are less
conservative than previous works.
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